
Complete Coverage Planning in Nuclear Environments Using Off-Center
Proximity Sensors with 3D Obstacle Geometry

Alex Navarro, Mitch Pryor

I. INTRODUCTION

Efficient and effective monitoring of nuclear environments
is critical to maintaining the safety, productivity, and security
of nuclear worksites. The way in which routine radiation
surveys are conducted is dependent upon the type of con-
tamination which is being scrutinized. Gamma radiation,
for instance, can be monitored through the use of personal
and wall mounted dosimeters to keep track of dose rates
for radiation workers. Alpha radiation, on the other hand,
provides a more significant challenge to monitor, as it is
undetectable at distances greater than a few centimeters. For
this reason, routine surveys for alpha radiation are normally
carried out by wiping surfaces with cloth and then applying
the contaminated cloth to a close range alpha detector. This
slow procedure causes manual alpha radiation survey to be
time-consuming, labour intensive, and difficult to keep track
of over long periods of time.

An alternative method for alpha radiation survey is to
pass an alpha radiation detector close to surfaces of interest,
reading data directly from the source. This requires the
detector to stay within a small offset of the target surface
for extended periods of time to develop the desired count
uncertainty. This precise, long running method is ill-suited
to human applications, but plays to the strengths of mobile
robots. By suspending an alpha radiation detector a fixed
distance from the target surface, a mobile robot can record
detailed radiation count data which can be chronicled for
long term analysis.

Fig. 1: Target deplayment platform is a modified Ubiquity
Magni Robot with Modified Payload Deck [10]

Such an application requires the robot to have a software

package which can create a motion plan that simultaneously
maximizes the coverage of the survey, and minimizes the
total completion time. Such an application falls under the
umbrella of Complete Coverage Path Planning (CCPP). The
goal of CCPP is to create a plan for the robot which
visits as much of the task space as possible in an efficient
manner. CCPP can be divided into online planning and
offline planning [5]. Online planning generally assumes that
the robot does not have access to complete environmental
data, and therefore plans each step of the coverage plan
as required at runtime. Conversely, offline planners assume
complete knowledge of the environment, and compute the
entire plan prior to execution.

The difficulty present in the problem of alpha radiation
survey is that the coverage tool (the sensor) is not concentric
with the robot base. Many offline and online algorithms
present in the CCPP literature generate paths for the robot
center, planning a complete path for the robot to visit
the entire workspace, and not an offset sensor. Creating
a complete coverage path for an offset sensor provides
additional challenges such as more restrictive non-holonomic
movement constraints and a long, asymmetric robot profile.
However, it also provides a unique opportunity for optimiza-
tion by allowing the low-profile sensor to be inserted into
areas where the robot body itself would not fit. The main
contribution of this work, therefore, is to provide a navigation
framework which allows CCPP to be performed for an offset
tool, while still allowing traditional online and offline CCPP
algorithms to be applied to the coverage problem.

II. PRIOR WORK

Coverage planning is not a new topic in robot naviga-
tion. Galceran and Carreras [5] performed a comprehensive
survey in 2013 comparing a multitude of different coverage
algorithms for both 2D and 3D task spaces. Their survey
examined over 35 papers covering various algorithms used in
coverage planning. Methods include cell decomposition [3],
[1], grid decomposition [13], as well as landmark planning
[11] and neural network planning [12].

For both online and offline planning problems, the task
space is typically subdivided into regions which are consid-
ered obstacles or free space. The cell decomposition method
breaks up the space into irregularly shaped cells which can
easily be covered with primitive motions such as a back-
and-forth or zig-zag pattern. These regions may be formed
by polygonal obstacle approximations [3] or they may be
generated on arbitrary obstacle shapes [1]. Another method
uses grid-based decomposition, which is popular in general



motion planning [9], to divide the workspace. Planning can
then be performed by performing spiral motions in each grid
cell [4] or through propagating a wavefront through the grids
and following the path of shallowest descent [13].

Cellular decomposition methods have the advantage of
requiring comparatively little computer memory and generat-
ing intuitive coverage plans. However, these methods require
complete knowledge of the environment and perform best in
areas that are mostly comprised of free space, and so are
best applied to offline planning problems in open areas. On
the other hand, grid based methods are memory intensive and
can result in erratic plans, but allow for flexibility in cluttered
environments through the grid resolution and shape.

Grids used for coverage planning do not need to be
rectilinear, such as the case of the online coverage algorithm
presented by Kan, Teng, and Kardis [7]. This method uses
a hexagonal grid which can be covered by circular motions
of a non-holonomic robot, and plans for smooth transitions
between adjacent cells. Like many grid based algorithms,
prior knowledge of the environment is not required, as the
grid can be populated in real time. Due to these advantages
in flexibility, a grid based approach will be used in the
development of the nuclear survey coverage planner.

Bormann et al [2] addressed the specific case of an
off-center coverage tool, providing a solution for a floor
cleaning vacuum robot. Their solution detailed first solving
the coverage plan for the sensor as if it was the robot
center, and then subsequently calculating suitable robot poses
around each of these way-points to generate the coverage
path [2]. This approach works well in a 2D case, however this
does not utilize the sensor’s smaller size in 3D environments.
Additionally, it can create an impossible path if the sensor
passes through a narrow passageway which the robot cannot
follow, since there are no continuous paths which allow the
robot to follow the sensor path in that case.

III. IMPLEMENTATION

The robot is assumed to have have access to 3D environ-
mental knowledge at runtime, either through sensor data or
a stored 3D map. For our implementation, the environment
is represented using a dense pointcloud. We further assume
that dynamic obstacles are only present in an online context
and that all information of the environment is up to date for
an offline context. Online obstacle data is stored in memory
as a local 3D map through the use of custom ray-tracing
software.

One of the main issues in planning for an off-center
detector is that the effective navigation space for the detector
is distinct from the navigation space of the robot body. That
is to say, the sensor may be able to safely occupy a location
which would result in a collision for the robot body, and
vice-versa.

To alleviate this issue, collision detection for the robot
is performed in multiple steps to allow the alpha detector,
which has a much smaller profile than the rest of the robot,
to be considered separately from the rest of the robot. The
robot assembly is subdivided into cylindrical sub-bodies,

which each correspond to a physical portion of the robot. An
example subdivision is shown in Figure 2, where a total of 4
subdivisions have been used. Cylinders are used as they are
rotation invariant, and keep collision calculations tractable
for different robot orientations.

Fig. 2: Cylinder Decomposition of an Example Robot

For each of these subdivisions, a separate obstacle avoid-
ance costmap is created. Each costmap only accounts for
obstacles which would result in a collision for the corre-
sponding robot portion, as in Figure 3. This takes advantage
of the fact the wheeled mobile robots are constrained by
gravity in the vertical direction, and so planar slices of the
environment are all that is required to perform 3D collision
detection. Memory usage is identical to that of a typical grid
navigation problem multiplied by the number of cylinders.
Collision checking involves performing a random-access grid
lookup for each of the objects in O(1) time complexity
relative to the size of the environment and number of
obstacles.

In order to create a coverage plan using these multiple
occupancy grids, all of the cylindrical objects need to be
considered in parallel. In order to achieve this parallel
obstacle avoidance, we introduce the idea of “cell partitions”
to transform this navigation problem into one to which
traditional methods can be applied. A cell partition is an
angle measurement representing a continuous region around
a grid cell in which the robot can exist without collision. If
the radiation detector was placed at the center of the coverage
cell and at an angle within the range of the partition, the robot
is guaranteed to be collision free, as seen in Figure 4.

These cell partitions can be connected in a graph-like
structure, illustrated in Figure 5, which allows traditional
navigation algorithms to be applied to this multi-costmap
collision model by considering graph-adjacent partitions to
be analogous to cells in a grid. To determine if two partitions
are connected, an interpolated motion from one pose to the
next is simulated to account for non-holonomic constraints,
and collisions are checked on all costmaps at each simulation
step. If no collisions are detected then the partitions are
connected.

Performing these frequent simulations can put strain on
the computational power of the robot computer, despite the
fact the each individual transition test is computationally
cheap. However, each partition generation and connection
step between partitions is independent of all others, and so



(a) Costmap for Small Radiation Detector

(b) Costmap for Base Link of the Robot

Fig. 3: Two costmaps generated for different robot subdi-
vision parts. Aside from elevation, different objects have
different inflation radii to account for their sizes

Fig. 4: Robot poses at the extremes of the two valid partitions
of this coverage cell. For all orientations between each of the
pairs of poses, the robot configuration is collision free

presents a perfect candidate for multi-threading. Utilizing the
powerful GPU capabilities of the onboard Jetson, this process
has been implemented in CUDA C++ and presents very little
computational overhead at runtime. With this computational
boost, the algorithm described can be run either online or
offline depending on the knowledge of the environment. In
an offline context, the entire grid is partitioned at once, and
then all connections between partitions are made prior to
execution. In the online context, only the cells in a local

area surrounding the robot are partitioned and connected, and
only this area is only extended if no immediate unexplored
cell is found.

The coverage algorithm itself works as a variation of
the Path Transform method of [13], in which a wavefront
is propagated through the cells of the grid starting with
a value of planned end location, and increasing by one
at each iteration of the wave (Fig. 5). By then following
the path of shallowest descent, the robot passes through
all grid cells such that it surveys the end location last.
For the proposed algorithm, the grid cells are replaced by
cell partitions. Since they form a connected graph structure,
the completeness condition of the original algorithm holds.
Additionally, since partitions represent partially allowable
locations for the robot, this algorithm also ensures that the
radiation sensor will cover all reachable areas, including
those requiring insertion movements to reach. For online
planning, only the first step of the local coverage plan is
taken, and then a new plan is recalculated at the next step.

Fig. 5: Example wavefront propagation using a distance
transform

IV. EXPERIMENTS AND RESULTS

The offline version of the algorithm was run in simulation
using the Gazebo robot dynamic simulation environment [8].
The environment was modeled to have challenging geometry
such as overhangs from desks, and closely packed obstacles
such as the legs of the conference table. A 3D map of
the environment was created using the Octomap software
package [6], which was used as the input to the coverage
planner. Figure 6b shows the obstacle representation of the
workspace. The planner distinguishes between areas which
are unreachable by the radiation detector, and areas which
are unreachable only to the robot body.

Local planning was not performed in this simulation,
instead the simulated robot was made to follow the coverage
plan exactly. This means that while the robot perfectly
executes the coverage plan, total execution time and com-
putational load data are not available since the robot did not
spend time planning for local obstacle avoidance.



(a) Gazebo Simulation Environment

(b) Multiple occupancy grids of the simulation envi-
ronment for different parts of the robot. Black areas
represent collisions for the alpha detector, while gray
areas represent collisions for the robot body

Fig. 6: Simulation Environment and its Representation in the
Planner Context

Fig. 7: Executed Coverage Plan in Simulation. Color shading
represents the total time spent over each grid cell. Blue cells
were surveyed for shorter periods, while pink cells had the
maximum duration

For a non-holonomic test robot, the coverage plan was
completed in 3011 steps in a grid of 4000 cells. Running the
algorithm with the CUDA extension decreased the coverage
planner runtime by 92%, improving from 5.02 seconds
to only 0.39 seconds. Roughly 76% of computation time

was performed on the GPU, representing the significant
increase in performance over a CPU-only version. 57% of
the total computation time was used in the simulation step
to determine valid transitions between partitions. Figure 7
shows the results of the simulated coverage plan, indicating
how well the area was covered. Compared to the obstacle
representation in Figure 6b, the sensor does indeed cover
areas which represent collisions for the robot body. Addi-
tionally, the red traces in Figure 7 indicate the areas where
the robot had to backtrack, highlighting that very little time
was spent covering areas which had already been surveyed.

Testing with the online version of the planner was not
completed due to incompatibilities between the global plan
created by the dynamic coverage planner, and the off-the-
shelf local planner options available as part of the ROS
navigation stack. This is due to inconsistent perceptions of
which poses result in a collision to the robot between the
global and local planner. The traditional local planners only
account for the projected costmap of the 3D LiDAR scan,
which means that certain poses which are commanded by the
coverage planner were not feasible to the local planner. This
will be remedied in a future work through the development
of a Dynamic Window Approach (DWA) local planner using
the obstacle representation presented in this paper.

V. CONCLUSION AND FUTURE WORK

The concept presented is a flexible navigation framework
for use in nuclear environments. In order to maximize
coverage, it was determined that the robot body and the
radiation detector must be planned for separately, but in
parallel. This allows the detector to provide maximum cov-
erage while maintaining a collision free path for the robot.
A test case in a simulated environment was performed, and
efficient coverage was realized and executed. The proposed
framework is agnostic to robot shape and size, and is valid
for both holonomic and non-holonomic robots through the
simulation step to connect partitions.

Through the use of GPU parallelization, the computation
time was reduced by over 90% compared to a CPU-only
implementation. With this parallel framework, a real-time
application of the framework was developed to run alongside
an online coverage planning algorithm. This online addition
allows for the global map to contain stale data and dynamic
obstacles, without a significant effect on total coverage in
theory. With the need to recreate global maps removed, the
robot could then perform these radiation surveys completely
autonomously, contributing much in the way of reduced
manpower and increased safety in nuclear worksites.

True implementation of this framework presents multiple
challenges related to non-simulated hardware. Real envi-
ronments are dynamic, with small objects such as chairs
and tools moved between surveys. However, due to local
planner limitations, we were unable to test the framework
in a such a dynamic environment. Additionally, the planner
creates coverage paths which pass very close to obstacles,
so a lot of effort would need to go into tuning a motion
planner that performs well in extremely close proximity to



obstacles. Future experiments on the Magni robot (Fig. 1)
will attempt to tackle these issues and others that will arise
in the transition from simulation to actual execution.

REFERENCES

[1] Ercan U. Acar, Howie Choset, Alfred A. Rizzi, Prasad N. Atkar,
and Douglas Hull. Morse decompositions for coverage tasks. The
International Journal of Robotics Research, 21(4):331–344, 2002.

[2] Richard Bormann, Florian Jordan, Joshua Hampp, and Martin Hägele.
Indoor coverage path planning: Survey, implementation, analysis. In
2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 1718–1725, 2018.

[3] Howie Choset and Philippe Pignon. Coverage path planning: The
boustrophedon cellular decomposition. In Alexander Zelinsky, editor,
Field and Service Robotics, pages 203–209, London, 1998. Springer
London.

[4] Y. Gabriely and E. Rimon. Spiral-stc: an on-line coverage algorithm
of grid environments by a mobile robot. In Proceedings 2002
IEEE International Conference on Robotics and Automation (Cat.
No.02CH37292), volume 1, pages 954–960 vol.1, 2002.

[5] Enric Galceran and Marc Carreras. A survey on coverage path plan-
ning for robotics. Robotics and Autonomous Systems, 61(12):1258–
1276, 2013.

[6] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss,
and Wolfram Burgard. Octomap: An efficient probabilistic 3d mapping
framework based on octrees, 2013.

[7] Xinyue Kan, Hanzhe Teng, and Konstantinos Karydis. Online ex-
ploration and coverage planning in unknown obstacle-cluttered envi-
ronments. IEEE Robotics and Automation Letters, 5(4):5969–5976,
2020.

[8] Nathan Koenig and Andrew Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
2149–2154, Sendai, Japan, 09 2004.

[9] H. Moravec and A. Elfes. High resolution maps from wide angle sonar.
In Proceedings. 1985 IEEE International Conference on Robotics and
Automation, volume 2, pages 116–121, 1985.

[10] Ubiquity Robotics. Magni robot. https://www.
ubiquityrobotics.com/products-magni/, 2022.

[11] S. C. Wong and B. A. MacDonald. A topological coverage algorithm
for mobile robots. In Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003) (Cat.
No.03CH37453), volume 2, pages 1685–1690 vol.2, 2003.

[12] S. X. Yang and C. Luo. A neural network approach to complete
coverage path planning. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 34(1):718–724, 2004.

[13] A. Zelinsky, R.A. Jarvis, J. C. Byrne, and S. Yuta. Planning paths of
complete coverage of an unstructured environment by a mobile robot.
In In Proceedings of International Conference on Advanced Robotics,
pages 533–538, 1993.


