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Abstract— Selecting an optimal robot and configuring it for a
given task is currently mostly done by human expertise or trial
and error. To evaluate the automatic selection and adaptation
of robots to specific tasks, we introduce a benchmark suite
encompassing a common format for robots, environments, and
task descriptions. Our benchmark suite is especially useful for
modular robots, where the multitude of robots that can be
assembled creates a host of additional parameters to optimize.
The benchmark suite defines these optimization problems and
facilitates the comparison of solution algorithms. All bench-
marks are accessible through cobra.cps.cit.tum.de, a website to
conveniently share, reference, and compare solutions.

I. INTRODUCTION

Benchmarking has supported significant progress in com-
puter science research of computer vision [1], [2], robotic
skills, such as grasping [3], or motion planning [4], [5].
Recent advances in Modular Reconfigurable Robots (MRRs)
have shown that they can be more efficient in automating
industrial processes [6]–[8]. Comparing these approaches
was done by re-implementation by each author, making the
comparisons hard to trust.

Therefore, we propose CoBRA, a Composable Benchmark
for Robotics Applications, which includes standardized de-
scriptions for many MRR models, typical industrial robot
tasks, and robotic deployments that solve these tasks. Each
of these contributions is hosted on the central website co-
bra.cps.cit.tum.de where they are available for anyone.

II. METHOD

CoBRA considers the optimization problem for (modular)
robots. Its goal is to minimize a cost function JC by
optimizing a module composition M , base pose B, and joint
trajectory x⃗:

[M∗,B∗, x⃗∗] = argmin
M,B,x⃗

JC(x⃗(t),B,M) (1)

By assuming different parts fixed, we include sub-
problems such as robot base placement optimization (M
fixed), or robot path planning (M and B fixed). We provide
multiple cost functions for the robot complexity, e.g., number
of joints, trajectory costs, such as mechanical energy, and
degree of task fulfillment, e.g., number of solved goals.
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A. Robot

In CoBRA we aim to formalize any conceivable rigid
Modular Reconfigurable Robot (MRR), which also includes
any manipulator arm. A serial robot M is constructed as a
vector of modules M = (m1, ...,mN ), where each module
mi is in a set of available modules R. A more powerful
description, e.g., for parallel robots, is also provided1.

Each module describes a combination of bodies connected
via joints, extending the formalization in [6] to modules with
more than one joint. Bodies describe inertia, collision infor-
mation, and provide connectors to other bodies. Connectors
are an extension of [9], adding size and type parameters to
the gender-based connections. Every joint models the relative
movement of two bodies and can encode dynamics with
inertia from a geared drive-train, and friction.

B. Task

A task Θ in CoBRA describes what a robot should do
and the environment it should be done in. It gives a set
of static obstacles O, constraints to obey C, and goals to
achieve G. Obstacles are described by geometric primitives or
triangulated meshes. The benchmark suite already includes a
set of common machines and a few 3D scans of real-world
machine-shops.

Both constraints and goals are defined as functions,
c(x⃗(t), t,B,M) ∈ C and g(x⃗(t), t,B,M) ∈ G, respectively.
A constraint is fulfilled if ∀t : c(x⃗(t), t,B,M) ≤ 0. CoBRA
contains common robotic constraints, such as joint limits,
freedom of collisions, and limitations on the orientation of
the end-effector. Constraints on the base pose of the robot
allow to simplify or remove the optimization of the base-pose
B. A solution to all goals in G can be enforced, including
an optional order of goals.

A goal is fulfilled if its termination condition g evaluates to
true. We provide goal primitives for reaching (and stopping)
at specific task space poses, returning to previous states for
cyclic movements, pausing, trajectory following, or leaving
specific areas, such as the workspace of a machine. We want
to especially highlight our formalism for arbitrarily tolerated
poses in the workspace. We consider any pose T ∈ SE(3)
as valid for a desired pose Td ∈ SE(3) if S(T−1

d T) ∈
Γ(Td). Here, S is an arbitrary combination of projection
functions, e.g., to the Cartesian position x, y, z, or roll, pitch,
yaw angles, and Γ contains intervals for each projection to
be considered valid.

1https://cobra.cps.cit.tum.de/robot_description
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Fig. 1. A solution path for task simple/PTP 3 with cost [(JT |1)]. The
solving robot was constructed from the set PROMODULAR and has the
module order M = [59, 3, 55, 3, 40, 4, 38, 5, 24, 6, 54, 6, 61].

C. Solution

Each solution to a task Θ specifies an assembled MRR,
its base pose B, a cost function JC , and solving trajectory
x⃗ describing the joint state of the robot over time. By
recombining different tasks, robot module sets, and cost
functions, the benchmark suite implements composability to
adapt it to evaluate different optimization problems in the
area of MRRs. A specific solution can be uploaded to the
benchmark suite’s website for reference and comparison2.

III. DISCUSSION

At the moment, we include a set of 340 task descriptions
in CoBRA. They are based on 20 industrial machines and
objects to interact with, including five high-resolution 3D
scans from a machine-shop. A set of test tasks is provided
under the prefix of simple/3 that show the usage of various
goal types and constraints. A big batch of synthetic tasks is
based on the sampling described in [10], with a grid of cubic
obstacles and random desired poses in the free-space, are
prefixed with Whitman2020/. The 3D scans and several
CAD models of CNC machines have been used for task
generation similar to case 2b in [7] and can be found by
their prefix Liu2020/.

We would like to highlight a sample solution to discuss
the comparison features of CoBRA. It is a simple point-to-
point movement task and shown in Fig. 1. The website lists

2https://cobra.cps.cit.tum.de/new-submission
3Use this in the field ”(Partial) Task Name” on https://cobra.cps.

cit.tum.de/tasks.

solutions by various users and can be filtered by desired cost-
functions on the top. In the detailed view the solution file can
be downloaded, and we show a 3D animation of the solution,
as well as the calculated costs and a reported computation
time to find the solution.

New users can find a thorough documentation of all of Co-
BRA’s features and a getting started guide on our website4.
If questions or suggestions arise they can be discussed in
the forum. In addition, we provide CoBRA I/O to interface
with the benchmark suite in python and timor-python [11]
which provides many utilities such as a robot simulator and
verification for many of the discussed CoBRA features.

IV. CONCLUSION

This extended abstract introduced CoBRA, a benchmark
suite for Modular Reconfigurable Robot (MRR) composi-
tion optimization. CoBRA contains formal descriptions for
MRRs, tasks they should fulfill, and solutions that describe
how specific robot assemblies minimize a cost-function in a
given task. With over 300 tasks CoBRA contains a variety of
automatically generated and real-world tasks defined in 3D
scans. We provide tools to interact with the benchmark, and
invite the community to provide their own benchmark tasks
or use it to compare their MRR optimization algorithms.
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