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1. INTRODUCTION

Model predictive control (MPC) is one of the few
ways to handle input and output constraints explic-
itly[1]. Also, recent studies suggest that MPC is pos-
siblly effective for hybrid systems. Although MPC
has been widely applied to chemical process control,
the effectiveness for mechanical systems with shorter
time constants has not been fully investigated. The
goal of this paper is to investigate the applicability
of model predictive control to mechanical systems
based on experimental examples of multi-vehicle for-
mation and autonomous blimp control.

Section 2 describes an application example of
MPC to an autonomous blimp. Lighter Than Air ve-
hicles have attracted much attention due to their po-
tential utilization in surveillance, exploration, trans-
portation and so on [2][3]. One of the key issues
in flight control system design is how to deal with
input constraints due to actuator saturations and
output limitations for safety reasons. We take into
account inequality constraints on position, velocity
and thrust of the blimp in MPC design, in order to
keep the blimp within the prescribed regions. To
this end, a simple linear model connected to a dead-
zone nonlinearity is constructed based on experimen-
tal data. Then, MPC controllers are derived offline
as piecewise affine state feedback laws based on a ro-
bust MPC approach[4] to take into account additive
uncertainties. We show an example of indoor exper-
iments using the MPC controllers obtained based on
the simple model. See [5] for more examples.

Section 3 deals with an MPC problem of a multi-
vehicle formation. Coordinated control of multiple
vehicles has been a significant field of research in re-
cent years[6]-[8]. One of the challenging issues in
formation control is collision avoidance between vehi-
cles. Since the collision avoidance constraints can be
described by linear inequality constraints including

integers, on-line optimal control problems in MPC
are solved by using mixed-integer programming. In
this paper, we show an experimental example of a
distributed MPC method for a group of unicycles
proposed in [9]. This method first stabilizes the sys-
tem by using feedback linearization, and then a col-
lision avoidance method based on MPC is applied to
the linearized system.

2. MPC OF AUTONOMOUS BLIMP

2.1 Outline of the experimental system

The unmanned blimp for our indoor experiments
is depicted in Fig. 1. It has inertial sensors (three ac-
celerometers, three magnetic gyroscopes, and an axis
meter), actuators, a Linux PC (CPU: Intel 486dx2),
and batteries. It can communicate with a ground
base using wavelan (IEEE 802.11b). The actuator
consists of two cross-shaped vectored thrusters in the
center of balance and two thrusters on the tail. Lo-
calization of the blimp is based on the inertial sensors
of the blimp and a position measurement system on
the ground. See [10] for the detail of the experimen-
tal system.

Fig. 1 Blimp for experiments
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In this paper, we forcus on a position control prob-
lem, and it is assumed that the yaw angle, which is
controlled independently by a given feedback law, is
sufficiently small The set point and the initial point
can be defined on the global frame as

(xr(t), yr(t), zr(t)) = (0, 0, 0) (1)
(x(0), y(0), z(0)) = (x0, y0, z0), (2)

respectively, where x0, y0, z0 are given constant num-
bers. For the safety reasons, upper and lower bounds
of the position and velocity of the blimp are given as
constraints. We define control input variables ux, uy,
uz as thrust levels in x, y, z directions, respectively.
By taking accout of the saturation levels, control in-
put constraints are given as

|ux(t)| ≤ 100, |uy(t)| ≤ 70, |uz(t)| ≤ 70. (3)

Double integrator models in x, y, z directions are sep-
arately constructed using step response data.

2.2 Controller design
Based on double integrator models, the following

discrete-time state space models are constructed us-
ing the zero-order-hold discretization with sampling
time Ts = 0.8:

ξx[k + 1] = Aξz [k] +B1ux[k], (4)
ξy [k + 1] = Aξy [k] +B2uy[k], (5)
ξz [k + 1] = Aξz [k] +B3uz[k], (6)

where ξx := [x, ẋ]T , ξy := [y, ẏ]T , ξz := [z, ż]T . We
independently design a controller for each model in
(4)-(6). Note that ẋ, ẏ and ż are estimated from the
position measurements x, y and z, since the experi-
mental system has no velocity sensor.

An example for x0 = −18, y0 = 0, z0 = −4 is
shown in this paper. See [5] for other examples. The
following constraints are given for the position and
velocity:

x(t) ≤ 0.5, |y(t)| ≤ 0.5, z(t) ≤ 0.5 [m] (7)
|ẋ(t)| ≤ 0.8, |ẏ(t)| ≤ 0.8, |ż(t)| ≤ 0.8 [m/s].(8)
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Fig. 2 Partitions in state space for MPC

First, an LQ feedback controller

ux = −K1ξx, K1 = [31, 183] (9)

is obtained by using the weighting matrices Q :=
diag{100, 2000}, R := 0.1 for ξx and ux, respectively.
The performance of linear feedback controllers as
in (9) largely depends on the initial states for con-
strained systems. In this example, ẋ violates the
velocity constraint in (8), and goes beyond the mea-
surement ablity of the position sensor. To take into
account the constraints, we modify the feedback law
as ux = −K1ξ + vx, and choose vx by MPC. Thus,
the following closed-loop model is used for MPC

ξx[k + 1] = Ac1ξx[k] +B1vx[k], (10)

Ac1 := A−B1K1 (11)

instead of (4).
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Fig. 3 Time plot of x for x0 = −18
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Fig. 4 Time plot of ux for x0 = −18

MPC methods typically determine control input
based on finite horizon open-loop control optimiza-
tion problems. Our optimization problem at k to
determine vx[k] in (10) is

min
vτ

N−1∑
τ=0

v2
τ (12)

subject to
ξτ+1 := Ac1ξτ +B1vτ , ξ0 := ξx[k](13)
ξ ≤ ξτ ≤ ξ, u ≤ −K1ξτ + vτ ≤ u, (14)
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Fig. 5 Time plot of ẋ for x0 = −18

where ξ, ξ, u, u are the upper and lower bounds given
in (7)-(8) and (3). The first element v0 of the optimal
solution is applied at each time step k. While tra-
ditional MPC methods solve online the optimization
problem as described above, recent methods[11][12]
can solve offline the problem above as the following
piecewise affine feedback low:

vx[k] = Frξx[k] +Gr, if ξx[k] ∈ Pr (15)

Pr = {ξ ∈ R2| Hrξ ≤ Er}, r = 1, · · · , Np, (16)

where Np is the number of the polytope regions. In
order to take account of disturbances and modeling
errors, we adopt a robust MPC approach[4], which
deals with the additive uncertainty wx[τ ] ∈ W as

ξx[τ + 1] = Ac1ξx[τ ] +B1vx[τ ] + wx[τ ]. (17)

The polytope W is simply chosen as

W := {w ∈ R2| |w| ≤ B1η} (18)

to consider input disturbances, where η is a design
parameter. See [13]-[15] for more details on robust
MPC approaches.

Fig. 2 shows partitions Pr for η = 25 in (18) and
a trajectory of ξx of the double integrator model for
x0 = −18, which is obtained using Multi-Parametric
Toolbox for MATLAB[16]. From the figure, it can
be seen that the given constraints are satisfied with
some margin, since the controller takes account of
the disturbance in (17).

The MPC controller for η = 25 mentioned above
is applied to the blimp system. Solid lines in Fig.
3-5 show respectively the trajectories of x, ux and
an estimate of ẋ. Fig. 3-4 show that the MPC con-
troller satisfies the given constraints. Although the
estimate of ẋ slightly violates the constraint because
it is considerably noisy as shown in Fig. 5, it can be
seen that the maximum velocity is kept around the
given value 0.8. Note that although MPC is applied
to the control of y and z in the same way, MPC is
not essential in control of y and z in this example,
since the constraints are not tight for small initial
deviations.

3. MULTI-VEHICLE FORMATION

3.1 Problem formulation
We consider a group of n unicycles indexed by

i = 1, · · · , n:

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi, (19)

where vi and ωi are the linear and angular velocities
of the vehicle i respectively, and (xi, yi, θi) denotes
the measurable coordinate with respect to a global
frame (see Fig. 6).

θi
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y

Fig. 6 Wheeled vehicle

We also define a leader vehicle described as:

ẋr = vr cos θr, ẏr = vr sin θr, θ̇r = ωr, (20)

where vr and ωr are the linear and angular velocities
respectively, and (xr , yr, θr) denotes the measurable
coordinate with respect to the global frame.

The reference position of the vehicle i in (19) is
given as a constant vector (ri, li) in a local frame
on the leader vehicle in (20) (see Fig. 7). In other
words, the reference trajectory for the vehicle i is
given with respect to the global frame as

zd
i :=

[
xr + ri sin θr + li cos θr

yr − ri cos θr + li sin θr

]
. (21)

We refer to the vehicle i(= 1, · · · , n) in (19) as the
“follower i”, and the leader vehicle in (20) as the
“leader”.

Our goal is to control the each follower’s position
with a given offset d, defined as

zi :=
[
xvi

yvi

]
=

[
xi + d cos θi

yi + d sin θi

]
, (22)
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Fig. 7 Leader and follower
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to the reference trajectory zd
i in (21) without col-

lisions. We assume that a sufficient condition for
collision avoidance between the followers i and j is
given from the size of the vehicles as follows:

‖zi − zj‖∞ ≥ ψ, ∀j �= i. (23)

Note that it is known in the literature that the col-
lision avoidance constraint in (23) can be written as
the following linear constraints[8]

xvi − xvj ≤ Ψκij1 − ψ

yvi − yvj ≤ Ψκij2 − ψ

−xvi + xvj ≤ Ψκij3 − ψ (24)
−yvi + yvj ≤ Ψκij4 − ψ

4∑
p=1

κijp ≤ 3

including binary variables κijp (= 0 or 1), where Ψ
is a positive number much larger than the possible
values of zi. In the same way, it is possible to take
account of the collisions with the leader. However,
we do not incorporate the collision avoidance with
the leader into the control problem, since the leader
could be given only virtually in some applications.

In this paper, we propose an algorithm for the fol-
lowers to determine (vi, ωi) steering zi to zd

i without
collisions. This method first stabilizes the system
by using feedback linearization as described in Sec-
tion 3.2, and then a collision avoidance method based
on a distributed MPC in Section 3.3 is applied to
the linearized system. For implementation of this
method, we assume that the vehicles can communi-
cate necessary information on the future trajectories
predicted in their optimization problems, as in the
existing works [8][7]. Note that we also need to as-
sume that the followers know the future trajectory
of θr(t) (t ≤ τ ≤ t+T ) for a given constant T , when
the collision avoidance method is applied.

3.2 Feedback linearization
In this section, we describe the feedback lineariza-

tion method. The basic idea is similar to the one in
[6]. However, we need to modify the method in [6] to
take account of the collision avoidance between the
followers.

From (20) and (21), we have

żd
i = Fiur, , ur :=

[
vr

ωr

]
(25)

Fi :=
[

cos θr ri cos θr − li sin θr

sin θr ri sin θr + li cos θr

]
. (26)

It is also seen from (19) and (22)

żi = Giui, (27)

where

Gi :=
[

cos θi −d sin θi

sin θi d cos θi

]
, ui :=

[
vi

ωi

]
.(28)

The tracking error ei := zi − zd
i is now described as

ėi = Giui − Fiur. (29)

By applying

ui = G−1
i (−λei + Fiur + αi) (30)

to (29) we have

ėi = −λei + αi, (31)

where λ > 0 is a design parameter. Note that Gi is
always invertible for d > 0, since

detGi = d cos2 θi + d sin2 θi = d.

3.3 Model predictive collision avoidance
In the proposed method, each follower sequentially

solves an optimal control problem at every update
interval δ. More precisely, the follower i solves the
optimal control problem at t = kiδ for ki := sn +
i − 1 (s = 0, 1, · · ·), and apply the optimal control
trajectory α∗

i until its next update time t = (ki+n)δ.
The predicted value of ei(τ) at t = kδ is defined as
êi(τ |k), which is transmitted to all other followers
as soon as the optimal control problem at t = kδ is
solved. The vehicle i uses the predicted trajectories
êj transmitted from other vehicles j (j �= i) to take
account of collision avoidance.

The algorithm for the vehicle i is described as fol-
lows:

Algorithm for the follower i:
Step 0: At the initial time t = 0, define
k := 0 (32)
α̂i(τ |0) := λei(0), 0 ≤ τ ≤ T (33)
êj(τ |0) := ej(0), 0 ≤ τ ≤ T, (34)
for each j �= i.

Step 1: At t = kδ,
• If k = i − 1 (mod n), solve the optimization

described below, update α̂i and êi as
α̂i(τ |k) = α∗

i (τ |k) (35)
êi(τ |k) = e∗i (τ |k)

t ≤ τ ≤ t+ T, (36)
and transmit êi(τ |k), where α∗

i (τ |k) and
e∗i (τ |k) denote the optimal trajectories ob-
tained from the optimization below.

• Otherwise, receive êp(τ |k) from the vehicle p,
where p = k (mod n).

Step 2: Apply ui(τ) in (30) for t ≤ τ ≤ t+δ using
αi(τ) = α̂i(τ |k). (37)

Step 3: Update k, α̂i, êj as
k = k + 1 (38)
α̂i(τ |k) = α̂i(τ |k − 1) (39)
êj(τ |k) = êj(τ |k − 1), t+ δ ≤ τ ≤ t+ T (40)
êj(τ |k) = exp(λ(t+ T − τ)) êj(τ |k − 1),

t+ T ≤ τ ≤ t+ T + δ (41)
and go to Step 1.

Note that, in (41), the predicted value of ej is com-
puted by assuming

αj(τ) = 0, t+ T ≤ τ ≤ t+ T + δ, (42)
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since the vehicle j does not have the optimal control
trajectory for αj(τ) at t + T ≤ τ ≤ t + T + δ. It is
also important to note that the prediction horizon T
needs to be chosen such that T ≥ nδ to achieve the
collision avoidance.

The optimal control problem for the vehicle i at
k = i− 1 (mod n) is described as follows:

Optimization at t = kδ:

min
α̂i

∫ t+T

t

α̂i(τ |k)TRα̂i(τ |k)dτ (43)

subject to
˙̂ei = −λêi + α̂i, êi(t|k) = ei(t) (44)
‖êi(τ |k) − êj(τ |k) + μi − μj‖∞ ≥ ψ(45)
‖ − λêi(τ |k) + α̂i(τ |k)‖∞ ≤ η (46)
‖êi(t+ T |k)‖∞ ≤ γi (47)

∀j �= i, t ≤ τ ≤ t+ T,

where

μi :=
[

sin θr cos θr

− cos θr sin θr

] [
ri
li

]
(48)

and R is a given symmetric positive definite ma-
trix. Note that this optimization needs to be approx-
imated by a discretized problem for implementation.

This problem determines êi(τ |k) and α̂i(τ |k) as
mentioned in Step 1 above, while êj(τ |k) is given in
advance in Step 3. The equality constraint in (44)
is a prediction model for êi based on (31). The in-
equality in (45) is the collision avoidance constraint
in (23).

The inequality constraint in (46) is introduced to
constrain the control input ui in (30), where η is a
design parameter chosen as a positive number. The
terminal constraint in (47) is introduced to guarantee
the feasibility of the optimal control problem at each
time and the asymptotic stability of the closed-loop
system. Conditions, which γi needs to satisfy for the
feasibility and stability, are given in the next section.

3.4 Experiments
The formation control method using MPC is ap-

plied to the experimental vehicle systems developed
based on Tamiya radio-controlled model tanks (see
Fig. 8). The coordinates of the vehicles (xi, yi, θi)
are measured by a camera located on the ceiling. The
control inputs for all vehicles are computed by one
PC (CPU: Intel Pentium III 1.0GHz, RAM: 512MB)
to reduce the cost and size of the experimental sys-
tem. The collision avoidance control is implemented
using a MATLAB algorithm[17] for solving Mixed
Integer Quadratic Programs and MATLAB compiler
4[18].

The offset d in (22), the distance bound ψ, and
a large number Ψ in (24) are given as d = 0.15,
ψ = 0.45 and Ψ = 30, respectively. The predic-
tion horizon T and update time δ in the control al-
gorithm are given as T = 3 and δ = 0.25. We set
λ = 0.4 in (30), γi = 1.25 in (47) and η = 0.5 in (46).

Fig. 8 Vehicles

0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x[m]

y[
m

] Leader

Reference

Reference

Follower 2

Follower 1

Fig. 9 x-y plot of followers

The initial coordinates of the follower 1 and 2 are
(0.5,−1.75, 3π/4) and (−0.5,−1.75, π/4), while the
reference positions are (−0.5,−0.5) and (0.5,−0.5)
in the global frame. The leader does not move in
this example due to the restriction of the space for
experiments. The follower 1 and 2 collide in this sit-
uation, if the collision avoidance method in Section
3.3 is not applied (i.e. α = 0).

We apply the collision avoidance method by dis-
cretizing the problem in (43) with sampling interval
1.0[sec]. Fig. 9 and Fig. 10 show the x-y plots of
the followers’ trajectories in the global frame and
the minimum distance between the followers, i.e.
mini,j ‖zi−zj‖∞, respectively. From these figures, it
is seen that the vehicles track the reference positions
without violating collision avoidance constraints.

Note that the constraint in (46) plays a significant
role in this example, since the vehicle system has an
input constraint |ωi| ≤ 1. Fig. 11 and Fig. 12 show
the x-y plots of the vehicles without applying the
constraints in (46) and the time plot of a input ω2

for the follower 2, respectively. These figures show
that the follower 2 has an erratic trajectory without
the constraint in (46), since the constraint |ωi| ≤ 1
is largely violated.
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