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Abstract— In this paper, state-predictive control is applied
to an autonomous blimp in the presence of time delay and
disturbance. To this end, a state predictor to compensate time
delay is constructed based on the separate-bias filters taking
into account nonzero-mean disturbances. Experimental results
show that constraint violations are reduced in model predictive
control (MPC) with input and state constraints by compensating
time delay. Also, flight experiments in the presence of the winds
show that the steady-state error to disturbances are reduced
as a result that the state prediction performance is improved
by using separate-bias predictor. Moreover, MPC using soft
bounds is applied for recovering constraint violoations due to
disturbances.

I. INTRODUCTION

Lighter Than Air vehicles (LTAs), also known as airships,

have attracted much attention due to their potential utiliza-

tion in surveillance, exploration, transportation and so on.

Therefore, modeling and control methods of airships for

autonomous flights have been actively studied in the last

decade (see e.g. [1]-[5]).

Unlike most existing works, the authors have focused on

autonomous flight control taking into account input con-

straints due to actuator saturations and output limitations

from the viewpoint of safety[6]. Model predictive control

(MPC), which is one of the few ways to handle input

and state constraints explicitly[7]-[9], has been applied to

an autonomous blimp, and indoor flight experiments have

been performed to investigate the effectiveness. While the

control performance has been improved by incorporating

input and state constraints explicitly in controller design, the

constraints have been violated in some examples[6].

One possible reason for such constraint violations is the

transmission delay between the measurement system on the

ground and the controller on the blimp. A common approach

to deal with time delay is to incorporate delay into models for

control optimization[7]. Another approach is state-predictive

control, which predicts the state using a model and the past

input to apply it to state feedback control for systems without

delay[10]-[12].

In this paper, state-predictive control is applied to an

autonomous blimp in the presence of time delay and dis-

turbance. To this end, a state predictor to compensate time
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delay is constructed based on the separate-bias filters[13]-

[15] taking into account nonzero-mean disturbance. Exper-

imental results show that the constraint violation problem

in [6] is overcome by compensating time delay in MPC.

Also, flight experiments in the presence of the winds show

that the steady-state error to disturbances are reduced as

a result that the state prediction performance is improved

by using separate-bias predictor. Moreover, MPC using soft

bounds is applied for recovering constraint violoations due

to disturbances.

II. OUTLINE OF BLIMP SYSTEM

The unmanned blimp for our indoor experiments is de-

picted in Fig. 1. It has inertial sensors (three accelerometers,

three magnetic gyroscopes, and an axis meter), actuators, a

Linux PC, and batteries. It can communicate with a ground

base using wavelan (IEEE 802.11b). The actuator consists of

two cross-shaped vectored thrusters in the center of balance

and two thrusters on the tail (Fig. 2). Localization of the

blimp is based on the inertial sensors of the blimp and a po-

sition measurement system on the ground. TotalStation[16],

which has an auto-tracking function, is used to measure the

position of the blimp. See [5]-[6] for more detail on the

experimental system.

As shown in Fig. 2, one pair of thrusters (A-B) is used

for X direction on the body-fixed frame, and another pair

(C-D) is used simultaneously for the Y -Z directions. The

yaw angle is controlled by the tail rotors E-F, and the roll

and pitch angles are not controlled since the blimp can move

stably in an indoor environment. The control input variables

UX , UY , UZ are defined as the thrust levels in X , Y , Z

Fig. 1. Blimp for experiments
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directions, respectively. After compensating the deadzones

of the thrusters as shown in [6], control input constraints in

X , Y , Z directions are given as

|UX(t)| ≤ 150,
√

U2
Y + U2

Z ≤ 150. (1)

On the other hand, the thrust levels in x, y, z-directions on

the global frame are defined as ux, uy, uz .

In this paper, we only focus on position control from the

initial position (x0, y0, z0) to the origin. It is assumed that the

yaw angle ψ with the initial condition ψ0 = 0 is controlled

independently by a given feedback law, so that ψ ≃ 0. Since

this implies (ux, uy, uz) ≃ (UX , UY , UZ), it is reasonable

to consider the same constraint as (1) for (ux, uy, uz).

Fig. 2. Kinematics of the blimp actuators

III. STATE PREDICTION

In the same way as [6], state-space models are constructed

independently in x, y, z directions based on the following

simple motion equations:

ẍ = b1ux, ÿ = b2uy, z̈ = b3uz, (2)

where b1, b2 and b3 are positive numbers chosen based

on step responses. Based on the motion equations in (2),

state space models are constructed for ξx := [x, ẋ]T , ξy :=
[y, ẏ]T , ξz := [z, ż]T using the zero-order-hold discretization

with sampling time Ts = 0.8. The difference from the model

in [6] is that terms describing delay and disturbance are

additionally introduced.

The model in x-direction with ℓ step delay is described as

follows:

ξx[k+1] = Axξx[k] + Bxux[k−ℓ] + Gxwx[k],

x[k] = Cxξx[k] + vx[k] (3)

where ξx[k] ∈ R
2 has Gaussian initial condition ξx[0] ∼

N (ξ̂x0,Σx). It is assumed that wx[k] ∈ R
r and vx[k] ∈ R

are zero-mean Gaussian white signals, which satisfy

E

{[

wx[k]

vx[k]

]

[wT
x [s], vx[s]]

}

=

[

Ir 0
0 Λx

]

E{wx[k]ξT
x [s]} = 0, E{vx[k]ξT

x [s]} = 0, k ≥ s. (4)

It is also assumed that Ax, Bx, Cx, Gx, Λx, Σx, ξ̂x0,

and ℓ are given constants. Since the models and predictors

for x, y, z directions are similarly described except for the

difference of subscripts, we drop subscripts in the rest of the

paper, whenever this does not lead to confusion.

The steady-state Kalman state estimator for the model as

in (3) is described as follows[17]:

ξ̂[k|k] = ξ̂[k|k−1] + L(x[k] − Cξ̂[k|k−1]) (5)

ξ̂[k+1|k] = Aξ̂[k|k] + Bu[k−ℓ], (6)

where L is

L := PCT (CPCT + Λ)−1 (7)

and P is obtained by solving the following algebraic Riccati

equation (ARE):

P = A(P − PCT (CPCT + Λ)−1CP )AT + GGT . (8)

The initial condition is

ξ̂[0|−1] = ξ̂0, u[−1] = · · · = u[−ℓ] = 0. (9)

To compensate the time delay in (3), the state-predictive

control methods decide u[k] based on ℓ-step predictor, which

is the conditional mean

ξ̂[k+ℓ|k] = Aℓξ̂[k|k] +
ℓ

∑

i=1

BAi−1u[k+ℓ−i], (10)

instead of ξ̂[k|k].

In this paper, we also consider the following model with

nonzero-mean disturbance b[k] to take into account the effects

of winds.

ξ[k+1] = Aξ[k] + Bu[k−ℓ] + Gw[k] + Hb[k],

b[k+1] = b[k] + Dd[k],

x[k] = Cξ[k] + v[k] (11)

where b[0] ∈ R
p is unknown, and d[k] ∈ R

p is zero-mean

Gaussian white noise. State estimation in the presence of

unknown inputs have been actively studied since the end

of 1960’s[13]-[15]. Similarly to [13], we use the following

augmented model:

ζ [k+1] = Āζ [k] + Bu[k−ℓ] + Ḡw̄[k],

x[k] = C̄ζ [k] + v[k] (12)

where

ζ :=

[

ξ

b

]

, w̄ :=

[

w

d

]

, C̄ := [C, 0] (13)

Ā :=

[

A H

0 I

]

, Ḡ :=

[

G 0
0 D

]

. (14)

It is assumed that the similar condition to (4) is satisfied for

w̄ and ζ.

E

{[

w̄[k]

v[k]

]

[w̄T
[s], v[s]]

}

=

[

Ir+p 0
0 Λ

]

(15)

E{w̄[k]ζT
[s]} = 0, E{v[k]ζT

[s]} = 0, k ≥ s. (16)
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Similarly to (5)-(6), the state estimator for (12) is

ζ̂ [k|k] = ζ̂ [k|k−1] + L̄(x[k] − C̄ζ̂ [k|k−1]) (17)

ζ̂ [k+1|k] = Āζ̂ [k|k] + B̄u[k−ℓ], (18)

where

L̄ := P̄ C̄T (C̄P̄ C̄T + Λ)−1 (19)

and P̄ is obtained by solving the following algebraic Riccati

equation (ARE):

P̄ = Ā(P̄ − P̄ C̄T (C̄P̄ C̄T + Λ)−1C̄P̄ )ĀT + ḠḠT . (20)

The initial condition is set to

ζ̂ [0|−1] =

[

ξ̂0

0

]

, (21)

since the initial value of b is unknown.
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Fig. 3. Partitions in x direction using hard bound
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Fig. 4. Time plot of x in simulation

IV. CONTROLLER DESIGN

Using the ℓ-step predictor ξ̂[k+ℓ|k] and the model

ξ̂[k+ℓ+1|k] = Aξ̂[k+ℓ|k] + Bu[k], (22)

we design deterministic controllers. Controller design explic-

itly taking into account the disturbance terms in (3) or (11)

is a future work.
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Fig. 5. Time plot of ẋ in simulation
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Fig. 6. Partitions in y direction using softbound

As mentioned in [6], since the linear state feedback law

u[k] = −Kξ̂[k+ℓ|k] (23)

is difficult to handle input and state constraints especially for

large initial states ξ[0], we consider the feedback law as

u[k] = −Kξ̂[k+ℓ|k] + α[k] (24)

and choose α[k] by MPC taking into account the constraints.

Thus, the model in (22) for MPC can be written as

ξ[k+ℓ+1|k] = Acξ[k+ℓ|k] + Bα[k] (25)

Ac := A − BK. (26)

MPC methods typically determine control input at each

time step k based on finite horizon open-loop control op-

timization problems. A simple example of the optimization

problem at k for a given ξ̂[k+ℓ|k] is

min
α̂

k+N−1
∑

τ=k

α̂2
[τ |k] (27)

subject to

ξ̂[τ+ℓ+1|k] := Acξ̂[τ+ℓ|k] + Bα̂[τ |k] (28)

ξ ≤ ξ̂[τ+ℓ+1|k] ≤ ξ (29)

u ≤ −Kξ[τ+ℓ|k] + α̂[τ |k] ≤ u, (30)
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where ξ, ξ, u, u are the upper and lower bounds given in state

and input constraints. The first element α̂[k|k] of the optimal

solution is applied at each time step k, i.e. α[k] = α̂[k|k].

The optimization problem above can be solved offline as

piecewise affine feedback of the following form [8]-[9]:

v[k] = Φiξ̂[k+ℓ|k] + Γi, if ξ̂[k+ℓ|k] ∈ Pi (31)

Pi = {ξ ∈ R
2| Miξ ≤ Ei}, i = 1, · · · , Nr, (32)

where Nr is the number of the polytope regions Pi.

In order to take into account disturbances and modeling

errors, we adopt a robust MPC approach[9], which deals with

the additive (deterministic) uncertainty δ as

ξ̂[k+ℓ+1|k] = Acξ[k+ℓ|k] + Bα[k] + δ[k], δ[k] ∈ ∆. (33)

The polytope ∆ is simply chosen as

∆ = {δ ∈ R
2| |δ| ≤ Bη} (34)

to consider input disturbances, where η is a design parameter.

Fig. 3 shows partitions Pi for x direction with η = 25
in (34). The upper and lower bounds of the constraints in

(29)-(30) are

ξ
x

=

[

−0.8
−10

]

, ξx =

[

0.8
0.5

]

, ux = −100, ux = 100

(35)

The feedback gain in (24) is chosen as Kx = [−31.6,−117]
based on LQ control. The dotted line in Fig. 3 shows a

trajectory of ξx for x0 = −8, which is obtained using Multi-

Parametric Toolbox for MATLAB[18]. The time plots of x

and ẋ are shown in Fig. 4 and 5, respectively. From these

figures, it can be seen that the given constraints are satisfied

with some margin, since the controller takes into account the

disturbance in (33).

If an unexpectedly large disturbance not described by ∆ in

(33), the state ξ may go out of the feasible regions Pi in (31).

One simple way to deal with such infeasible problems is to

apply the maximum control input outside feasible regions to

recover the constraint violation as soon as possible. More

systematic way for rapid recovery from constraint violation

is to solve the following optimal control problem instead of

(27) based on soft bounds[7]

min
α̂,ǫ

k+N−1
∑

τ=k

α̂2
[τ |k] + W‖ǫτ‖

2
∞ (36)

subject to (28), (30) and

ξ − ǫτ ≤ ξ̂[τ+ℓ+1|k] ≤ ξ + ǫτ (37)

0 ≤ ǫτ (38)

where W is an extremely large number. The slack variable ǫτ

quantifies constraint violation of ξ̂[τ+ℓ+1|k], and its non-zero

value is heavily penalized in the cost function. Fig. 6 shows

partitions for y direction obtained by solving (36). The upper

and lower bounds of the constraints in (37) and (30) are

ξ
y

=

[

−0.5
−0.5

]

, ξy =

[

0.5
0.5

]

, uy = −100, uy = 100

(39)

Other parameters are chosen as

Ky = [−31.6,−148], η = 20, W = 1.0 × 1010. (40)

V. EXPERIMENTS WITH CONSTRAINTS AND TIME DELAY

This section shows experimental results without distur-

bances. The MPC controller in x direction based on (27)-

(30) is applied for the initial position (−8, 0, 0). In this case,

MPC controller is not necesarry in y and z direction, since

the constraints are easily satisfied by LQ controllers.

The parameters for state prediction in Section III are

chosen as follows:

Gx = Gy = Gz =

[

0
1

]

, ξ̂x0 =

[

x0

0

]

(41)

ξ̂y0 = ξ̂z0 =

[

0
0

]

, Λx = Λy = Λz = 10 (42)

Solid lines in Fig. 7-8 show respectively the trajectories of

the position measurement x and the estimate of ẋ for ℓ = 1.

The dash-dotted lines in Fig. 7-8 show the trajectories for

ℓ = 0, which implies that the time delay is ignored. The

dash-dotted line in Fig. 8 shows that the velocity constraint

is violated due to the effect of the delay. Also, the blimp is

decelerated too much, since the violation penalty is imposed

after the violation is recovered, because of the time delay.

Fig. 9 shows that electric power is wasted for large control

in the case without delay compensation. Fig. 10 using a

different velocity constraint also shows constraint violation.

Note that, in the case without MPC (αx = 0 in (25)), the

experiments cannot be complited, since the velocity grows

beyond the ability of the measurement system.
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Fig. 7. Time plot of x in experiment

VI. EXPERIMENTS WITH DISTURBANCE AND TIME

DELAY

This section shows experimental results in the presence of

disturbance, which is the wind from a fan in y direction. In

this case, the controller in (24) is replaced by the following

one with additional integrator term:

uy [k] = −Ky ξ̂y [k+ℓ|k] + αy [k] − KI

k
∑

i=0

ξ̂y [i+ℓ|i], (43)
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where ℓ = 1. Fig. 11 shows the response of y for Ky in (40)

and α[k] = 0. The reponses for KI = 0 and KI = 1 are

shown by the dash-dotted and solid lines, respectively. The

parameters for state prediction are chosen as the same values

in Section V. The trajectories in Fig.11 show large steady-

state errors even in the case of LQI controller, due to the state

prediction errors caused by the disturbance. In Fig. 12, the

solid and dash-dotted lines show the position estimates by

the filters in (5)-(6) and (17)-(18) for H = B and D = 0.1,

respectively. The position estimate by (5)-(6) has large error,

because the bias of the disturbance is ignored. In Fig. 13, the

dash-dotted and solid lines show the velocity estimates by

the filters in (5)-(6) and (17)-(18), respectively. This figure

shows that the velocity estimate by (5)-(6) also has large

error. The solid line in Fig. 14 shows that the steady-state

error is decreased by using the separate-bias filter in (17)-

(18). Furthermore, Fig. 15 shows responses of y in another

experiment. The dashed line shows trajectory for αy = 0,

while the solid line shows the case of the MPC controller

using the soft bound in Section IV. The separate-bias filter

in (17)-(18) is used in both cases. It can be seen from Fig. 15

that the peak of the error due to the disturbance is decreased

by the MPC controller using the soft bound.
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Fig. 10. Time plot of estimate of ẋ
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Fig. 11. Time plot of y in the presence of wind

VII. CONCLUSION

In this paper, state-predictive control is applied to an

autonomous blimp in the presence of time delay and distur-

bance. We have constructed a state predictor to compensate

time delay based on the separate-bias filters taking into ac-

count nonzero-mean disturbance. Experimental results show

that constraint violations are reduced in MPC with input and

state constraints by compensating time delay. Also, flight

experiments in the presence of the winds show that the

steady-state error to disturbances are reduced as a result

that the state prediction performance is improved by using

separate-bias predictor.
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