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Abstract—Recently, many older people have difficulty stand-
ing up despite that motion’s importance in daily life. Therefore,
a machine to support their standing-up motion is needed; yet
we still do not know how people control their motor system
when they stand up. For that reason, we can not produce such
a machine. In this study, we analyze the system of people’s
standing-up motion using information related to muscle activity.
Muscle synergy-coherent activations of groups of muscles are an
efficient means to achieve this goal. The results of experiments
demonstrate the importance of muscle synergies that exist when
people stand up.

Index Terms—Electromyographic, Motor control, Torque es-
timation, Standing up

I. INTRODUCTION

These days, the aging of society is advanced rapidly. Many
old people have difficulty standing up. Standing-up motion
is important because many actions rely on it. Therefore,
machines to support those who cannot stand up are needed
now.

To achieve this goal, we use synergy analysis to extract
behavior primitives, which consist of standing-up motions.
The idea of behavior primitives is efficient because it helps us
to determine how people stand up: each primitive is expected
to have a certain contribution to the motion.

In this study, we specifically examined the idea of muscle
synergies: coherent activations of a group of muscles. We
were able to divide the standing-up motion into several
groups of muscle coordination. We also analyzed how each
synergy contributes to the standing-up motion by building a
musculoskeletal model with neural networks. To make this
experiment meaningful, we obtained useful data based on
electromyography (EMG), floor reaction force (FRF), and
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motion trajectory. These are all results of information tech-
nology development, which has improved the measurement
equipment.

Through this study, we were able to understand the mech-
anism of human standing-up motion by extracting behavior
primitives, such as muscle coordinate activations. In addition,
we elucidated the contribution of each synergy to the human
standing-up motion.

II. BEHAVIOR PRIMITIVES

The system of moving properly or adaptively to the en-
vironment remains unknown. Here, we define ”a behavior
primitive” as a unit of the fundamental system to make up
the whole motion. In other words, behavior primitives are
components of human motion. In this study, we specifically
examined standing up. We also extracted the behavior prim-
itives. For discerning the behavior primitives, we analyzed
muscle movement that occurs while standing up.
A. Synergy hypothesis

The synergy hypothesis was suggested by Bernstein in
1967 [1]. Synergy is a group of several muscles performing
a coordinated movement. We can observe various patterns of
muscle activity using surface electromyography (EMG) dur-
ing their motion. The synergy hypothesis suggests that those
observed muscle activities can be divided into fundamental
elements, called synergy. Actually, d’Avella’s modeling of the
synergy is efficient because their model suggests that muscle
patterns can be generated as linear combinations of time-
varying synergy, which are time-varying profiles of muscle
activity. Each synergy has intensity and onset delay. We also
use the sample regenerations of activity patterns of three
different muscles to demonstrate its efficiency. In this sample,
each activity uses three different muscles (Figs. 1a and
1b); each synergy consists of the same number of muscles.
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Fig. 1. The longitudinal axis of each graph represents the muscle level
activation; the horizontal axis shows time. Two time-varying synergies are
scaled in amplitude (ci|{i=1,2}) and shifted in time (ti|{i=1,2}). Then those
two synergies are summed together to generate original muscle patterns.

Synergies represent the time course of the activation level
for each muscle. To generate the original muscle profiles,
each synergy must be scaled in amplitude by a non-negative
coefficient (c1 and c2); every synergy is shifted in time by
an onset delay (t1 and t2). Then the elements of different
synergies are summed together corresponding to the same
muscle and same time. Therefore, even though each synergy
has its own muscle profile, it can regenerate muscle patterns
of various kinds by changing the amplitude and time delay
[2]. Although d’Avella’s model is simple, it is an efficient
way to describe the synergy hypothesis in a quantitative
manner. In this study, we define synergy as human behavior
primitives and extract them.

B. Process of extracting behavior primitives

This section explains the flow of the extraction of be-
havior primitives. To find behavior primitives, we analyzed
the human motion, standing up, from several perspectives.
First, we must examine a command from the human brain.
Although the brain sends a command to the body to stand up,
it is difficult to observe that command stimulus in the brain
accurately. Therefore, we used electromyography (EMG)
to characterize the command from the brain. Thereby, we
can see which muscle is active and when it is active. The
command from the brain controls the muscle. This order is
exactly what the synergy expresses; synergy is the muscles’
activity level profile. It is a way for muscles to be active
through movement. We extracted certain synergies from the
human standing-up motion.

In addition, to characterize the function of synergies during
the motion, we must determine which synergy plays what
kind of role during their motion. To do so, it is necessary
that we record the human movement, especially the trajectory

of several parts of the body, and the torque of the human
joint. Corresponding synergy directly to the human motion,
such as trajectory and torque, the synergies’ function can
be found. The trajectory and torque can be visualized using
certain apparatus.

The human system of muscles and bones, the muscu-
loskeletal system, is complex because of the numerous mus-
cles and bones that are present in the human body. This sys-
tem is important because it connects human muscle activity to
actual human movement. For this study, we construct neural
networks to relate the functions of synergies to actual human
movement.

III. METHOD AND EQUIPMENT
A. Method for extraction of behavior primitives

We used a decomposition algorithm developed by d’Avella
to extract the synergy from observed muscle patterns [3].
Additionally, we measured EMG patterns with one subject
in an experiment. Also it is necessary to know the exact
number of synergies from observed muscle patterns. We used
cross-validation to check a sufficient number of patterns to
determine the number.

1) Experiment 1: EMG signals: One healthy 22-year-old
man participated in this study. In the first experiment, to
analyze EMG signals while standing up, we record EMG
signals from 10 muscles, as presented in Fig. 2. Those
muscles are considered important muscles for standing-up
motion from an anatomic viewpoint. During the standing-
up motion, from a sitting posture to a standing posture, the
subject had his arms crossed in front of his chest. We also
recorded the floor reflection force (FRF) at four places in the
foot: right toe, left toe, right heel, and left heel. We used
FRF as trigger signals; those signals gave signs for the EMG
recording starting point. The EMG measurement machine
recorded EMG patterns for 2.5 seconds before the time when
FRF values exceed a certain threshold value to 2.5 seconds
after that time. Therefore, we were able to obtain EMG
patterns from the phase of sitting, which is the starting point
of the motion, to the phase of standing, which is an end point
of the motion. The EMG data were filtered with an upper
cut-off frequency of 500 Hz and lower cut-off frequency of
200 Hz. Those data, EMG patterns and FRF patterns, were
first sampled at 204.8 Hz. We obtained 18 samples from
this experiment. In addition, we filtered those data using a
smoothing filter and down-sampled these data sampling rates
of 12.8. Therefore we obtain 64 values for one particular time
series EMG profile. The EMG patterns we obtained from this
experiment were 10 for one sample (five muscles for each
half of the body), yet we regard the function of muscles
obtained from each half body as equivalent. Therefore, we
averaged two values of the EMG patterns from the same time
and the same muscle of both the left half of the body and
right half of the body. Two places to measure EMG patterns
were used for the same muscle: the left half of the body and
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Fig. 2. This figure shows EMG sensor locations; the gastrocnemius muscle,
quadriceps femoris muscle, gluteus muscle, latissimus dorsi muscle, and the
prevertebral muscle.

the right half of the body. Additionally, we normalized each
muscle data as 0–1 using the benchmark in maximum muscle
activity for all trials for the particular type of muscle.

2) Decomposition Algorithm: This algorithm developed
by d’Avella has three parts [3].

Under the situation in which d muscles are observed, let
i-th synergy wi(t) be a vector representing activation of d
muscles at a certain time t. Consequently, the i-th time-
varying synergy can be written as {wi(t)}|i=1...n (let n be
the number of synergies to be extracted).

m(t) =
N∑

i=1

ciwi(t− ti) (1)

In that equation, m(t) represents the activity level of d
muscles for time t(0 < t ≤ j) (let j be the total time step
of the observed EMG patterns, and in our study j is 64 and
d is 5), and m(t) is expressed as formation (1), where ci is
non-negative scaling coefficient for the i-th synergy and ti is
time-delay for the i-th synergy. Given a maximum total time
length of synergy tmax, the i-th synergy Wi is a matrix which
can be made of d rows and j columns. The i-th synergy’s
columns {wi(t)} are d-dimensional vectors, which represent
the activation of d muscles of i-th synergy at the k-th time
tk(0 < k ≤ j).

wi(tk) =


0 tk < 0
wi(tk) 0 ≤ tk < tmax

0 tk ≥ tmax

(2)

This algorithm’s object is to extract the time-varying
synergies that minimize the total squared reconstruction error
calculated by formation (3) on a set of s-th observed EMG
patterns sample. This algorithm uses the multiplicative update
rule for optimization of non-negative amplitude and elements
of synergies to achieve this goal.

E2 = trace
(
(Ms − WHs)T(Ms − WHs)

)
(3)

The time-series patterns of muscles can be regenerated
through formation (4), where Ms (with d rows and j
columns) is a matrix indicating the time-series EMG patterns.
Matrix W (with d rows and n× j columns) represents all n
synergies set with the discrete time length of j.

Ms = WHs (4)

Hs =



0 0 c1 0 0
...

...
...

. . .
...

0 0 0 0 c1
...

0 cn 0 0 0
...

...
. . .

...
...

0 0 0 cn 0


Matrix Hs (with n × j rows and j columns) has the

function of scaling in amplitude and shifting time for the
s-th synergies. In fact, Hs has n blocks, and for example, i-
th block has information of the amplitude ci and time delay
tdsi (the amplitude ci starts at tdsi-th column of the i-th
block).

Step 1: For the s-th observed muscle patterns Ms, we
calculate the time delay tdsi for every i-th synergy Wi by
formation (5). For each synergy, we adopt the best time delay
tdsi, which gives the maximum value of ψsi(tsi).

ψsi(Tsi) =
∑

t

ms(t)Twi(t− tdsi) (5)

Step 2: Under the particular time delay tdsi, calculated by
Step 1, we renewed the value of non-negative amplitude ci
by formation (6). In addition, HT

si is the matrix of i-th block,
which is extracted from Hs. Furthermore, ⊖si is the matrix
which replaces the elements of Hs by 1.

cnew
si = csi

(
trace(MT

s Wi⊖si[tdsi])
trace(HT

siW
T
i Wi⊖si[tdsi])

)
)

(6)

Step 3: Using the time delay {tdsi}i=1...,n|s=i...,s and
{csi}i=1...,n|s=i...,s, we renewed W using the equation (7).

Wnew
ij = Wij

(
(MHT )ij

(WHHT )ij

)
(7)

(in formation (7) Xij represents the i-th row and j-th
column element of the matrix X)
Repeat the process of stepI to stepII until the sum of squared
errors E2 converges.

3) Cross-validation procedure: In this synergy model, the
number of synergies to extract is an important issue. We must
test the accuracy of the model to determine the number [4].
The accuracy of the model is related closely to the number
of synergy: if it is smaller than the best fitted number, the
model cannot explain the observed data sufficiently; if it is
beyond the best number, it is also not good because the model
extracts the specific model’s noise. Therefore, it is important
to try the model using different numbers. The cross-validation
procedure is as follows.

First, we randomly divided 18 data into six groups; each
group has three datasets. Then we chose five datasets as
training data and one dataset as test data. Next, we calculated
the model from the chosen five datasets using the decom-
position algorithm, and computed the mean validation R2
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from eq. (8) with the test dataset. Actually, E2 is the squared
error calculated from (3); S2

M is the variance of all observed
EMG patterns. Repeat this process six times changing the
test dataset to obtain the accuracy of each model which has
different number to extract synergies. Doing this calculation
for certain numbers, we obtained the specific number.

R2 = 1 − E2

S2
M

(8)

B. Method for building a musculoskeletal system

The human musculoskeletal system is so complex that it
is not understood completely. However, a method of con-
structing a musculoskeletal system using neural networks was
developed by Koike et al. [5]. This method is very sufficient
to detect the human musculoskeletal system. We also apply
neural networksto build that complex system and produce
the function between EMG patterns and human movement
during the standing-up motion.

1) Link model: We used a link model to represent the
human body in this study. Because we specifically examined
on the motion of human standing up, we need a four-link
model with three joint parts. Each link indicates a particular
human body part; between each link, one particular joint
exists (Fig. 3-a). This four-link model is sufficient to portray
human body movement during the standing-up motion. We
apply some assumptions to use this model. First, every body
segment, indicated by the ”link” in this model, is rigid. The
second is that every joint is uniaxial; body movement is
expressible in the x-z plane. The third is that the human
arms and head are included in the link4 that indicates the
body trunk.

2) Experiment 2: Motion capture: We performed another
experiment to monitor the movement of the human while
standing up. We used a motion capture machine [HMK-
200RT; MotionAnalysis] to record the positions of parts
of the human body. The recorded parts are four points:
acromion, greater trochanter, articulatio genus, and ankle.
Positions of those regions are necessary because they are
endpoints of each link explained above. In this experiment,
the sampling rate was 64 Hz. When we used this for
computation, we down-sampled this to the 12.8 Hz to adapt
it to EMG pattern sampling rate. At the beginning of the
standing-up motion, the subject kept the angle of his ankle
at 80 deg. His back was straight; the chair height was
425 mm. Those conditions were the initial state of the
subject. From this experiment, we obtain angle of each joint,
θi{i=ankle,knee,hip} shown in Fig. 3-(a).

3) Experiment 3: Calculating torque: We also monitored
FRF using a forceplate. This measurement is for computing
the torques of each joint in the motion. We consider the forces
and torques to the body as shown in Fig. 3-(b), where m is
the mass of the body represented using a link, g is gravity,
(xn, yn){n=1,2,3,4} is the position of center of gravity of each
link, fxi,xj is the horizontal force of particular position, fyi,yj
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Fig. 3. (a) This figure portrays the positions measured by the motion capture
machine: the ankle, articulatio genus, greater trochanter, and acromion. (b)
This shows parameters we defined to every link.

is the vertical force, τi,j{i,j=ankle,knee,hip} is the torque of
each joint, I is the inertia moment, and M is the moment
from the center of gravity.

The equations of motion can be written as follows.
mẍn = fxj − fxi (9)

mÿn = fyj − fyi −mg (10)

Iθ̈i = M − τi − τj (11)
Those equations are approved to every link n{n=1,2,3,4}.

Therefore, we solved these equations for each torque by
inverse calculation under the conditions of a link model.

4) Musculoskeletal system modeling: In this study, to
see the functions of synergies, we must construct a certain
musculoskeletal model to verify how every synergy works.
For this study, we used neural networks to estimate the
relationship between synergies and human movement. Koike
has already developed that between EMG patterns and human
arm torque and trajectory [5]. For this study, we used the
same method to detect the musculoskeletal system. We first
build neural networks that construct functions between the
EMG patterns and joint torques. As input signals, we put
the five EMG patterns regenerated from extracted synergies.
Thoes patterns are 64 time series datas and they are liner
sum of several synergies with the average amplitude and
the average time-delay extracted from synergy analysis into
it. As output signals, we obtained the three joint torques
of the ankle, knee, and hip. We used backpropagation to
renew the weight of this neural network. As teaching data,
we used five EMG patterns for input data, and also used three
calculated joints torques for output data. We designate this
neural network as ”NN1”. We also used neural networks to
determine the relationship among those human torques and
human body trajectory. For this neural network, we used joint
torques calculated by NN1, angles of each joint, and angle
rates of each joint as input signals; as output data, we used
angular accelerations of each joint. To train those networks,
we used backpropagation as well. The difference from the
former network is the recurrent part. As shown in Fig.4, this
neural network has the output signal, angular acceleration,
back to input signals as recurrent factors. Therefore, we
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were able to estimate the position of the body repeatedly
by computing the angular acceleration. This neural network
is designated as ”NN2”.

IV. SYNERGY ANALYSIS

The number of synergies to be extracted from the observed
EMG patterns was clarified by cross-validation. The relation-
ship between mean validation R2 and the synergy number
is depicted in Fig. 5. Specifically regarding synergy number
3, it is a sufficient number: before that number, the slope
of the graph increases rapidly; after that point, the slope
does not change sharply. The salient implication is that three
synergies are sufficient for reconstruction of the observed
EMG patterns: adding more synergies would merely increase
redundancy. Therefore, we determined the synergy number to
extract as three.

We used the decomposition algorithm again to determine
synergies. The squared error E2 converged; the patterns for
the synergies are portrayed in Fig. 6.

From these figures and Table 1, we were able to presume
the function of each synergy. Synergy 1 is started in no
time-delay (Table 1); the gastrocnemius muscle activity is
prominent. This synergy starts at an early time, and controls
the ankle joint. Controlling the ankle is important because
it is a point of support for the upper part of the body.
Therefore, this synergy is presumed to have the function of
controlling the posture of the human body at the beginning
of the standing-up motion. This starts earlier even than the
movement, such as bending and lifting the upper body.

Synergy 2 is similar to the first synergy. In this synergy, the
gastrocnemius muscle activity is also prominent. However,
unlike the first, this synergy starts at the latest point among

TABLE I
THIS REPRESENTS THE TIME DELAY FACTOR t FOR EVERY SYNERGY.

average time delay standard deviation
Synergy 1 0.0 0.0
Synergy 2 33.0 0.0
Synergy 3 26.3 0.59
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Fig. 6. These graphs show the synergy we extracted. Each synergy has
its own characteristic. X-axis represents each time step of synergy. Y-
axis represents the muscle activity for each muscle and these values are
normalized of 0–1.

the three synergies. Therefore, this synergy can be thought
to have the function of controlling the posture of the human
body at the final stage of the motion.

Synergy 3 differs from the rest with respect to the number
of the active muscles. Every muscle is active in this synergy
compared to the others. Moreover, this synergy starts at
middle of the motion, which is remarkable because the
dynamic movement of body starts at this point. Therefore,
this synergy can be considered to have the function of
producing movement, such as bending the back and lifting
the upper body.

V. BUILDING OF THE MUSCULOSKELETAL SYSTEM

We were able to estimate the torques of three joints
sufficiently. The neural networks for estimating angular ac-
celeration also converged. Therefore, when we have torques
calculated by NN1 with all three synergies, the regenerated
movement by NN2 is reconstructed similarly to the originally
measured one. Then, we examined and simulated the function
of synergies by shutting out one synergy. For example, to
check the function of synergy 1, we arranged input signals,
EMG patterns, of NN1 being made only from synergy 2 and
synergy 3. In results, the output signal from NN1, torques of
three joints, lacked information of synergy 1, thereby putting
that output into one input signal of NN2, we were able to see
how the standing movement changed. Similarly, we checked
all the functions. Those ways of standing up differs from the
way determined using all synergy input. Time series data of
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Fig. 7. Simulation results. The graphs portray the angles of ankle, knee,
and hip with different conditions.

each angle of the joint change dramatically, as in the Fig. 7.
The angle of the ankle without synergy 1 differs greatly

from others at the early stage of the motion. Consequently,
this synergy controls the ankle movement of the early time.
This function is the controlling posture for compensating
the movement, bending the upper body, coming immediately
after synergy 1.

The angle of the ankle without synergy 2 also differs from
that with all synergies in the late stage of the motion. This
change also indicates that synergy 2 is the one controlling the
ankle movement. This function is for posture control as well.
However, the aim differs from that of synergy 1. Synergy 2’s
posture control is useful for accommodating the change of
center of gravity by lifting the upper body. This movement
is rather large throughout the entire motion of standing up.
Therefore, controlling the posture is also necessary.

Without synergy 3 the angles of the ankle, knee, and hip
all depart from normal values at the middle of the time when
people lift their body. This result suggests that people without
synergy 3 lose control of three angles of joints from the time
they lift their body.

VI. RESULTS

We were able to extract three synergies from the motion
of standing up; these are clearly human behavior primitives.
Additionally, we found that each synergy has its own original
function for standing up. There seem to be two prominent
types of synergy: one for making dynamic movements and
one for posture control. Both functions are necessary for
standing up. The function for dynamic movement is neces-
sary because standing up is a dynamic motion. Standing up
is a radical change of the human body state because, at first,
the human sits on a chair. This phase is very stable because it
has support for the person’s weight. However, once beginning
standing up, the body state changes rapidly from a stable state

to an unstable state. People must bend and lift their upper
body: this movement is dynamic. Synergy 3 has exactly this
function. Synergy analysis showed that every muscle involved
in synergy 3 is active. Furthermore, the simulation through
musculoskeletal system built by neural networks suggests that
the standing without synergy 3, every angle of joints is caused
aberrant from the time they presumed to lift their body. On
the other hand, synergy 1 and synergy 2 show a different
function controlling the human body posture. The difference
between those two synergies is the start time. Synergy 1 starts
at beginning of the motion, which compensates the coming
motion of bending the body. Synergy 2 is for accommodating
the change of human body central of gravity caused by lifting
the body. In both synergies, the gastrocnemius muscle is
active. The simulation suggests that this activity is related
to the ankle angle.

Therefore, through two analyses, we were able to find
human behavior primitives during standing-up motion. Three
synergies are involved. Each synergy has a clear function
such as movement control and posture control.

VII. DISCUSSION AND FUTURE WORKS

Each synergy has a clear function is important to produce
a strong model for analyzing the standing-up motion. It can
be readily inferred that people who have difficulty in standing
up are expected to have some critical change in their EMG
patterns. Therefore, if we can detect a problem by which a
person can not stand up because of lack of synergy 3, which
controls rapid movement, that knowledge is expected to be
helpful to produce a machine to support their standing up.

In our future research, we will test these experiments
using more subjects and confirm the function of synergies
extracted from different subject. Additionally, we will build
a better musculoskeletal system. Although we obtained clear
results from the simulation, the model might have redun-
dancy because of neural network characteristics: excessive
and unnecessary connections are formed between inputs and
outputs. Efforts to reduce the redundancy of neural networks
might be needed to produce a more sophisticated model.
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