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Abstract— In this paper, we propose an efficient estimation
method of an omnidirectional camera movement. The pro-
posed method is based on Structure from Motion utilizing a
constraint of parallel lines. In an environment having man-
made structures, parallel lines can be extracted from an
omnidirectional image easily and constantly, because of its
wide field of view. Parallel lines provides a valuable constraint
for camera movement estimation. The proposed method can
estimate 3-D camera movements by solving one degree of
freedom problem three times without regard to the number
of viewpoints. Experimental results show the effectiveness of
our proposed method.

I. INTRODUCTION

To estimate camera movement accurately and efficiently is
a essential assignment for scene reconstruction by monocular
stereo, such as an approach based on Structure from Motion
(SfM) [1], [2] or vSLAM [3], [4]. Camera movement esti-
mation from an image sequence acquired by a single camera
is difficult, because a camera movement matrix, such as the
essential matrix, has at least 6 degrees of freedom (DOFs)
(rotation is 3 DOFs and translation is 3 DOFs) and is a
non-linear matrix. The processing cost will be high and the
calculation of the optimal camera matrices will be complex
if viewpoints to be estimated increase.

A limited field of view of cameras equipped with a
typical lens makes it difficult to estimate camera movement,
too. Self-localization method by monocular stereo often
needs feature tracking (KLT tracker [5], SIFT [6], and so
on) to obtain correspondence between different viewpoints.
However, features will be lost easily due to camera swing.
Consequently, the camera movement will be limited if we
use a such camera for scene reconstruction.

Therefore, we use an omnidirectional camera equipped
with a hyperboloid mirror. An omnidirectional camera is
suitable for self-localization [7], because the acquired image
has a panoramic field of view (Fig. 1). Self-localization and
scene reconstruction method by using an omnidirectional
camera have been proposed [8], [9], [10].

In previous monocular stereo, there are some approaches
by using feature points [2], [3], [8], [9], [10], straight lines
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Hyperboloid Mirror

Camera

Fig. 1. The omnidirectional camera which we use is shown in the left
figure. The camera attaches a hyperboloid mirror on the front of the camera
lens. An omnidirectional image is shown in the right figure. The image has
a 360-degree horizontal field of view.

[11], [12], [13] or both features [1]. Point-based methods
have the benefit of fast calculation by the linear solution
(8-point algorithm [14], 5-point algorithm [2], and so on).
However, there may be not sufficient number of feature
points in indoor environments. On the other hand, the method
needs to solve higher DOF problem than a point-based
method, because a line-based method has to use more than
3 viewpoints for camera movement estimation. There are
linear computation algorithms for a line-based SfM by using
trifocal tensor [15], [16]. However, these methods are only
for image triplets.

We propose an efficient camera movements estimation
method by using correspondences of parallel lines between
not less than three images. The constraint obtained from
parallel lines is useful for reduction in the degree of freedom
of the camera movement estimation. As a previous method,
SLAM by using parallel lines and their vanishing point [17],
SfM in urban environment (building scene) [18], rotation
estimation by video compass [19] and so on have been
proposed. However, the computation time of these method
increases exponentially as the number of features and view-
points increase [17], [18]. In addition, these methods assume
that a camera movement is only horizontal movement [18],
[19].

The proposed method can estimate 3-D camera move-
ments of more than 3 viewpoints efficiently. Rotation ma-
trices and translation vectors estimation are divided in two
phases. Each phase is solved as a 1 DOF problem without re-
gard to the number of viewpoints and features. Consequently,
although these are non-linear problems, the calculation cost
is extremely low. The proposed method can find the global
optimal solution easily even if an initial value near to the
ground truth is not given. The effectiveness of our proposed
method is shown in experimental results.

The proposed method needs at least 3 images and 6 lines.
Three of these lines have to be parallel. Parallel lines are
easily extracted from a man-made structure in an indoor
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Fig. 2. Procedure of our proposed method. Estimation of rotation matrices
and translation vectors are divided in two phases. Each phase is solved as
a 1 DOF problem without regard to the number of viewpoints and features.

environment, because an omnidirectional camera has a wide
field of view. The others must have different direction from
the parallel lines. A line which connects two feature points
can be used as the other line. Therefore, the assumption is
relevant for general indoor environments. An omnidirectional
camera is calibrated in advance. The procedure of our
proposed method is shown in Fig. 2.

Straight-lines are extracted and tracked along an om-
nidirectional video. Parallel lines and the vanishing point
are detected from these lines. The vector directed to the
vanishing point from the viewpoint is calculated. It is called
a VPV in this paper. Camera rotation estimation is divided in
two phases. In the first phase, the method calculates a camera
rotation matrix which makes a VPV at each viewpoint have
at the same 3-D direction. In the second phase, a rotation
matrix about a VPV is estimated. If a rotation matrix between
two viewpoints is determined, rotation matrices at the other
viewpoints are calculated by solving a quartic function about
the rotation angle. Therefore, in the proposed method, rota-
tion estimation can be solved as a 1 DOF problem without
regard to the number of viewpoints and features.

Camera translations are estimated by two phases. In the
first phase, translations in a plane are estimated. The plane is
vertical to 3-D direction of parallel lines. If a translation di-
rection between two viewpoints is determined, translations at
the other viewpoints are calculated by solving a simultaneous
equation. Therefore, the estimation is a 1 DOF problem about
the translation direction. In the second phase, translations
along 3-D direction of parallel lines are estimated. In this
phase, if a translation between two viewpoints is determined,
translations at the other viewpoints are obtained by algebraic
calculations. Consequently, the proposed method estimates
camera movements by solving 1 DOF problems.

II. COORDINATE SYSTEM OF OMNIDIRECTIONAL
CAMERA

The coordinate system of our omnidirectional camera
is shown in Fig. 3. A hyperboloid mirror reflects a ray
heading to image coordinates (u, v) from the camera lens.
In this paper, the reflected ray is called a ray vector. The
extension lines of all ray vectors intersect at the focus of
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Fig. 3. The coordinate system of the omnidirectional camera. Ray vector
is defined as a unit vector which starts from the focus of a hyperboloid
mirror.

(a) (b) (c)
Fig. 4. Edge segment extraction. (a) Input image. (b) Detected canny edge
points. (c) Edge points which are line-like.

the hyperboloid mirror. The ray vector is calculated by the
following equations.

r =

 λ(u− cx)px
λ(v − cy)py
λf − 2γ

 , (1)

λ =
α2

(
f
√
α2 + β2 + β

√
u2 + v2 + f2

)
α2f2 − β2 (u2 + v2)

, (2)

where cx and cy are the center coordinates of the omnidirec-
tional image, px and py are pixel size, f is the focal length
of a camera lens, α, β and γ are hyperboloid parameters.

III. STRAIGHT-LINE TRACKING

Straight-lines are extracted from a distorted omnidirec-
tional image. The proposed method obtains edge points
detected by Canny edge detector [20]. An example of edge
point detection is shown in Fig. 4(a) and (b).

To separate each straight-lines, corner points are rejected
as shown in Fig. 4(c). Corner points are detected by using
two eigenvalues of the Hessian of the image. If the ratio
of eigenvalues is high enough, the edge point is regarded as
line-like. Other edge points are rejected as corner points. The
ratio is set to 10 by the trial-and-error method.

A least square plane is calculated from ray vectors of
segmented edge points. If the edge segment consists of a
straight-line, these ray vectors are located on a plane (Fig. 5).
Therefore, an edge segment which has a small least square
error is regarded as a straight-line. The proposed method
can extract straight-lines, even if an edge segment looks like
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Fig. 5. The relationship between a straight-line and a ray vector. Ray
vectors which belongs to the line are located on the plane including the
line.
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Fig. 6. Searching for a corresponding edge segment in the next frame. (a)
Points extracted at constant intervals. (b) Edge segments in the next frame.
(c) Points (a) are tracked between the current frame and the next frame. (d)
Corresponding edge points. (e) Corresponding edge segment.

a curve in an omnidirectional image. If over half the edge
points of the edge segment i satisfy the following equation,
the segment is determined as a straight-line.(

ri,j
Tni

)2
< lth, (3)

where lth is a threshold. ri,j is a ray vector heading to the
edge point j included in the line i. ni is the normal vector
of the least square plane calculated from the line i. ni is
an unit vector. The vector is called NV in this paper. In
the detection, edge points which do not constitute the line
are rejected as noise by RANSAC [21]. The threshold lth is
determined from the image resolution.

Straight-lines are tracked along the omnidirectional image
sequence. The proposed method obtains points located on
a straight-line. Points located on the line are extracted at
constant intervals (Fig. 6(a)). Edge segments are extracted in
the next frame (Fig. 6(b)). The points extracted in Fig. 6(a)
are tracked to the next frame by KLT tracker (Fig. 6(c)). The
edge point closest to the tracked point is selected as a cor-
responding edge point (Fig. 6(d)). The edge segment which
has the maximum number of corresponding edge points is
regarded as a corresponding edge segment (Fig. 6(e)). If an
edge segment corresponds to several lines, a line which has

larger number of corresponding edge points is selected.
Matching point serach on a line has the aperture problem

[22]. However, it is not difficult for the proposed method
to obtain corresponding edges, because it does not require
point-to-point matching. By continuing the above processes,
straight-lines are tracked along the omnidirectional image
sequence.

IV. DETECTION OF PARALLEL LINES AND VANISHING
POINT

Parallel lines and their vanishing point are detected from
tracked lines. A VPV vc and NV nc about parallel lines at
a viewpoint c satisfy the following equation.

nT
cvc = 0. (4)

Three lines are required for parallel lines detection from an
image. The proposed method selects three lines from tracked
lines randomly. A VPV is calculated from selected lines by
solving (5) by the least squares method.

nl∑
i

(
nT
i,cvc

)2

→ min, (5)

where nl is the number of lines. If selected lines satisfy the
following equation at all of an input image sequence, these
are regarded as parallel lines.

3∑
i

nT
i,cvc < pth, (6)

where pth is a threshold. Lines which are regarded as
parallel each other are integrated. A line group which has the
maximum number of lines is used for the following process
as parallel lines. The VPV vc at the viewpoint c is calculated
from the integrated parallel lines by (5).

V. ROTATION ESTIMATION

Camera rotation estimation is divided in two phases. In the
first phase, the method calculates a camera rotation matrix
which makes a VPV at each viewpoint have the same 3-D
direction. In the second phase, a rotation matrix about a VPV
is estimated by using at least 3 lines. These lines must have
different 3-D direction from parallel lines.

A. Rotation calculation by VPV direction

This phase requires VPVs only. A VPV at each viewpoint
should have the same 3-D direction in the world coordinate,
because a vanishing point is theoretically at an infinite dis-
tance away from viewpoints. Therefore, the proposed method
calculates a rotation matrix Rm

c satisfying the following
equation.

vc0 = Rm
c

Tvc. (7)

where Rm
c is a rotation matrix between the initial viewpoint

c0 and a viewpoint c. In this paper, the initial camera
coordinate system is equal to the world coordinate system.
Rm

c is calculated as a rotation matrix about a vector mc

by Rodrigues rotation formula. The rotation angle θc is

3575



θ
c

v
c

v
c0

m
c

Z

Y

X

Z

Y

X

Viewpoint c
0

Viewpoint c

v
c

v
c0

Fig. 7. The relationship among VPVs vc0 , vc, a rotation axis vector mc

and the rotation angle θc.

calculated A relationship between mc and θc are shown in
Fig. 7. They are defined as the following equations.

mc = vc0 × vc, (8)

θc = arccos(vc0 · vc). (9)

The 3-D direction of parallel lines and the VPV are the
same. Therefore, the VPV vc0 also means 3-D direction of
parallel lines in the following explanation.

B. Estimation of rotation around parallel line axis

In the second phase, a rotation matrix about the VPV vc0

is estimated. This phase needs at least three lines. The 3-D
direction of these lines must not be equal to the VPV vc0 .

In the proposed method, unknown parameter of 3-D rota-
tion remains only a rotation Rv

c about the VPV vc0 , because
the other two parameters can be obtained from a constraint
of VPV direction. Therefore, this phase estimates a rotation
matrix Rv

c , namely, the rotation angle ϕc (Fig. 8).
The true rotation matrix Rc between the initial viewpoint

c0 and a viewpoint c is defined as the following equation.

Rc = Rm
c Rv

c . (10)

The true rotation matrix Rc and 3-D line direction di

satisfy the following equation.(
RT

cni,c

)T
di = 0, (11)

where nc,i is the NV of the line i at the viewopint c. di is an
unit vector. If a rotation angle ϕc is given, the 3-D direction
di of the line i is calculated by the folowing equation.

di = nc0 ×
(
Rc

Tnc

)
. (12)

By using the 3-D line direction, a rotation matrix Rk

between the initial viewpoint c0 and the other viewpoint k
is calculated by solving the following equation.

erot(ϕk) =

nl∑
i

∣∣∣(Rk
Tni,k

)T
di

∣∣∣2 → min . (13)

where, nl is the number of non-parallel lines. Although
the function is non-linear, it can be solved easily because
erot(ϕk) is just a quartic function about ϕk. Consequently,
if a rotation angle ϕc at a viewpoint c is given, rotation angles
ϕk at the other viewpoints k are determined. The proposed
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Fig. 8. Rotation about VPV vc0 .

optimization of rotations is represented as the following
equation.

Erot(ϕc) =

nc∑
k

erot(ϕk) → min, (14)

where nc is the number of viewpoints. In the proposed
method, rotation estimation is 1 DOF problem about the
rotation angle ϕc without regard to the number of viewpoints
and features.

In the following explanation, v expresses the VPV vc0 . v
also means 3-D direction of parallel lines.

VI. TRANSLATION ESTIMATION

Camera translations are estimated by two phases. In the
first phase, translations on the plane vertical to v are esti-
mated. In the second phase, translations directed along par-
allel lines are estimated. As same as the rotation estimation,
translations can be optimized by solving 1 DOF problems.

A. Estimation of translation on vertical plane

In the first phase, translations on the plane vertical to the
VPV v are estimated. This phase requires parallel lines.

Translations in the plane and locations of parallel lines are
optimized simultaneously. Here, the method introduces basis
vectors a and b (a ⊥ b, a ⊥ v, and b ⊥ v). A unit vector
gp
i,c directed to the parallel line i from the viewpoint c are

calculated by (15). The vector gi,c is perpendicular to the
VPV.

gp
i,c = v × (RT

cni,c). (15)

By using these vectors, a and b elements of the true
translations can be estimated. A translation vector tpc between
the initial viewpoint c0 and a viewpoint c, the location lpi
of parallel lines i and a vector gp

i,c satisfy the following
equation. The relationship among these vectors is shown in
Fig. 9.

δi,cg
p
i,c + tpc − lpi = 0, (16)

where δi,c is a fixed number which means the depth of the
line at the viewpoint. δi,c is calculated by the following
equation.

δi,c =
(tpc − lpi )

T
gp
i,c

gp
i,c

T
gp
i,c

. (17)

Here, the translation tpc is expressed by (18).

tpc = a cosψc + b sinψc, (18)
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where ψc means translation direction from the initial view-
point c0 to the viewpoint c. The absolute scale is unknown
in the SfM approach. Thus, the distance between these two
viewpoints is set to 1 in the proposed method. When the
direction ψc is given, the locations of parallel lines are
calculated by the following equation.

lpi =
(
ζi,c0g

p
i,c0

+ ηi,cg
p
i,c + tpc

)
/2, (19)

where ζi,c0 and ηi,c are fixed factors which mean the depth
of the line from each viewpoint. Fixed factors ζi,c0 and ηi,c
are calculated as factors satisfying the following expression.∥∥ζi,c0gp

i,c0
− ηi,cg

p
i,c − tpc

∥∥2 → min . (20)

By using the locations of parallel lines, translations at the
other viewpoint k are calculated by minimizing the following
equations.

Et1 (λk, µk) =

nl∑
i

∥∥∥δi,kgp
i,k + tpk − lpi

∥∥∥2 , (21)

tpk = λka+ µkb. (22)

When the line location lpi , namely, the translation direction
ψc is given, Et1 (λk, µk) can be solved as simultaneous
equations about λk and µk. Therefore, translations on the
plane vertical to parallel lines are optimized by minimizing
the following function about ψc.

Et1 (ψc) =

nc∑
k

Et1 (λk, µk) . (23)

B. Estimation of translation along parallel lines

In the secons phase, translatons directed along parallel
lines are optimized by the method based on Bundle adjust-
ment [23]. At least 3 lines are required in this phase. The 3-D
direction of the lines used for the estimation must be different
from VPV. The true translation vector tc is represented as
the follows:

tc = tpc + ωcv, (24)

where ωc is an unknown parameter about translation distance
to be estimated in this phase. Translations and line locations
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Fig. 10. Reprojection error of straight-line.

are optimized by minimizing the sum of reprojection errors
as shown in Fig. 10 and (25)-(27).

Et2 =

nl∑
i

(
1− qi,c

Tgo
i,c

)2
, (25)

qi,c =
loi − tc + τi,cdi

∥loi − tc + τi,cdi∥
, (26)

τi,c =
(tc − loi )

T
di

di
Tdi

, (27)

where qi,c is a unit vector crossed at a right angle to the
straight-line i. go

i,c is a unit vector heading to the line from
the viewpoint c. The vector is calculated by the same way
as (15). If there are no errors, these vectors will be the
same. However, in fact, these have different direction because
of various errors. The angle error is almost the same to a
reprojection error.

When ωc, namely, the translation from the initial viewpoint
c0 to the viewpoint c is determined, 3-D line locations loi are
calculated in the same way as (16). By using the locations,
(25) at the other viewpoint k can be solved as a quartic
function about ωk. Therefore, the translation estimation is a
non-linear 1 DOF problem about ωc. The optimum transla-
tions are estimated by minimizing the following equation.

Et2(ωc) =

nc∑
k

Et2(ωk). (28)

VII. EXPERIMENT

We demonstrate proposed camera movement estimation by
using simulation data. In these experiments, the true values of
NVs ni,c acquired at each viewpoint c are given. It is known
that which lines are parallel. The vector heading to their
vanishing point is calculated from given normal vectors. The
camera movement includes 3-D rotations and translations.
In these experiments, we estimate camera movements by
exhaustive searches without using any preconditions.

At first, we verified that the proposed method can estimate
camera movements from 6 lines. Three lines of these are
parallel. The others have different direction. The number
of viewpoints is 10. The position relationship between the
viewpoints and lines is shown in Fig. 11. Red, yellow
and orange axes show a camera coordinate system at each
viewpoint. Parallel lines are represented by green color. Other
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Fig. 11. Estimated camera movement and line locations.

lines are represented by blue color. The estimation errors of
camera movement and line measurement are within a round-
off error of the computation in this experiment.

We verified the robustness of the proposed method in noisy
data. In this experiment, noisy NVs are given. The noise
means an angle error between a given vector and the true one.
The noise follows normal gaussian distribution. We evaluated
estimation errors of camera rotations and translations by
using noisy data including 0.01 to 1.28 degrees angle errors
on average. Input data is 40 lines including 20 parallel lines
acquired at 20 viewpoints. A different noise is added to a
NV randomly in 10 times trial runs.

The estimation results are shown in Fig. 12. The rotation
error in Fig. 12 (a) means an angle errors between the axis
of estimated camera coordinate system and the true one.
The translation error in Fig. 12 (b) is a distance between
an estimated camera location and the true one. These values
are the average of 10 times trial runs. In this experiment,
translation distance between the beginning viewpoint and
the end viewpoint is set to 1, because translation scale is
indefinite in the SfM approach. The translation error mean
a distance error between the true location and the estimated
location.

These results show that the proposed method performs
well in noisy data, because these estimation errors are nearly
within the given noise. The proposed method can find the
global optimal solution easily because the proposed method
can estimate camera movement by solving 1 DOF problem
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Fig. 12. Estimation errors with noisy data.

three times. It contributes implovement of robustness of self-
localization.

We verified the proposed method by using real images.
200 images are acquired by a mobile robot equipped with
an omnidirectional camera. The movement distance is about
1.5 meters. The image size is 800 × 600. An input image is
shown in Fig. 13. The experimental environment is an indoor
(texture-less hallway). This experiment is done with off-line
processing. CPU is Intel Core i7 975 (3.33 GHz).

Extracted lines are shown in Fig. 14. Blue lines show
parallel lines. Red lines show the other lines. Correspondence
of 10 parallel lines and 5 other lines were obtained from the
input omnidirectional video. The computation time of line
tracking is 25 ms per frame. That of parallel lines detection
is 35 ms.

The estimation result of camera movement and line mea-
surement is shown in Fig. 15. This figure shows a top view of
hallway. Although camera rotations and translations at 200
viewpoints are estimated, this figure shows 20 positions of all
viewpoints for easier viewing. An average of the reprojection
errors is within 6 pixels. The major cause of the error is
correspondence accuracy of lines. The computation time of
rotation estimation is 2 ms. That of translation estimation is
16 ms.

VIII. CONCLUSION

In this paper, we proposed an efficient estimation method
of 3-D camera movement. Camera rotations and translations
are estimated as a reasonable 1 DOF problem. Although
these are non-linear problems, the calculation cost is ex-
tremely low and to find the global optimal solution is easy
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Fig. 13. Input image. The image sequence is acquired in an indoor
environment (texture-less hall way).

Fig. 14. Extracted lines. Blue lines show parallel lines. Red lines show
the other lines.

even if an initial value near to the ground truth is not given.
Experiments show the effectiveness of the proposed method.

As future works, efficient and robust search for obtaining
the solution should be considered. We should verify the
proposed method in a large environment.
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