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Abstract—Dynamical mobile task allocation, by which tasks 

can move randomly before they are assigned robots to execute. 

For such a new task assignment domain, we propose a hybrid 

dynamic mobile task allocation and reallocation method that 

combines our previous proposed dynamical sequential method 

and global optimal method. Robots bid for tasks and transmit 

the costs to other robots. Then all robots select tasks from the 

combinatorial cost table to minimize the objective function. 

During the next time step, robots continue to select the assigned 

tasks for which costs are smaller than the set thresholds. 

Alternatively, robots for which costs exceed the corresponding 

threshold rebid unassigned tasks and transmit the calculated 

costs to others. The un-selected robots then re-select unassigned 

tasks from the combinatorial cost table according to global 

optimal task allocation method. In this study, the advantages of 

the proposed approach are demonstrated by comparison with 

existing task allocation methods. The simulation results 

demonstrate that a system implementing our method can obtain 

maximal accomplished efficiency of whole system and minimal 

executed costs for each individual robot. The negotiation time 

steps, communication costs and computational times are reduced 

using the proposed algorithm. Moreover, we believe that our 

method can extend the previous methods to be suitable for a 

large-scale distributed multi-robot coordination system. 

 

Index Terms—Dynamical Mobile task allocation, Multi-round 

negotiation, Global optimization, Body expansion behavior, 

Distributed multi-robot coordination system 

I. INTRODUCTION 

ERVICE robots are in a stage of infancy as a new 

high-technology industry to address needs of society such 

as labor shortages accompanying the reduction in younger 

population, and longer lifespan of humans in the coming aged 

society. Previously, service robots of many kinds were 

developed, such as transport robots, nursing and medical 

service robots, and assistant robots for disabled and elderly 

people, in addition to cleaning robots. Transport robots have 

been examined in previous studies [1-3]. Results showed that 

robots can transport pharmaceuticals safely and effectively to 

a destination. Network robots have been proposed for use as 
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shopping guides, which expand from a single location to 

multiple locations [4, 5]. Robots can guide a customer to a 

shopping area when the person reaches the store. As described 

in this paper, we present a mobile task allocation and 

reallocation method for a guidance service system in which 

multiple autonomous mobile robots guide multiple human at a 

shopping mall, museum, or exhibition. 

The remainder of this paper is structured as follows. The 

next section presents a formal definition of the dynamical 

mobile task assignment problem, along with disadvantages of 

existing investigated task assignment methods used to resolve 

the new domain. Section III describes objective functions and 

notions about body expansion behavior, setting two thresholds 

for robot decision-making, in addition to our proposed 

algorithm. Section IV presents a discussion of simulation 

results. Finally, section V explains the conclusions and 

outlines future work. 

II. TASK DESCRIPTION 

A. Formal Definition 

As described in this paper, the task assignment problem is 

studied for multiple, fully distributed, initially homogeneous 

mobile robots. We develop a task allocation and reallocation 

method to deal with a dynamical mobile task allocation 

problem. The formal definition of this problem is reasonable 

and efficient dynamically mobile task assignment to multiple 

robots. For the whole system mission, because the dynamical 

mobile tasks can change in many ways before assigned robots 

execute, and because the conditions of these tasks can vary 

over time, thus we should assign and reassign tasks to robots 

properly. We allow a set of tasks VT and robots VR to be 

time-dependent (i.e. VT (t) and VR (t)) and require that the 

objective functions be minimized/maximized (The method 

should minimize objective functions which are cost, energy 

and others. Conversely, it should maximize the objective 

functions such as efficiency.) for every instant of time or over 

the entire history. The definition also includes the online and 

dynamical domain, from which tasks and robots might be 

added or removed over time. We propose a method combining 

dynamical sequential and global optimal task allocation and 

reallocation approach, to resolve new domains of this kind. 

B. Related Works and Disadvantages of Existing Methods 

Task allocation for a multi-robot coordination system is a 

widely studied field. Related works have examined task 

allocation problems such as market-based auctions [6, 7] and 
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system auctions tasks for all robots. After bidding for tasks, 

robots that obtain profits that are largest for the whole system 

execute these tasks. In other methods, ALLIANCE [8–10] and 

broadcast local eligibility (BLE) [11] set some thresholds for 

robots: each robot plans a path from its location to tasks and 

calculate the costs between robots and tasks. Systems will 

assign tasks to robots when the corresponding value exceeds 

the set threshold. Based on these methods, however, once the 

situations of tasks vary, the system should reassign all tasks to 

all robots. In other words, the efficiency of these methods is 

extremely low to address the dynamic mobile task allocation 

and reallocation problem, it necessitates long computational 

times for motion planning, cost calculation, and negotiation. 

Furthermore, neither the BLE nor ALLIANCE method 

explicitly considers global efficiency. Instead, these methods 

are satisfied with finding any feasible solution. A notable 

exception is the work by M. Nanjanath et al. [12], which 

proposes a method named repeated auction for distributing 

tasks dynamically among a group of cooperative robots. Tasks 

that are not yet achieved are re-submitted for bidding every 

time a task has been completed. 

Therefore, previously, few researchers have addressed the 

domain of tasks which are dynamical and which move 

arbitrarily. All existing methods are suitable for tasks for 

which positions are fixed. For mobile tasks, such methods are 

inefficient. Furthermore, earlier reports neglect discussion of 

task reallocation when robots are executing tasks, except for 

robot malfunction, partial system failure, and communication 

failure. Actually, for mobile tasks in terms of position change, 

we should consider not only assigning tasks to robots, but also 

finding a mode by which robots perform tasks efficiently for 

the whole coordinated system. 

A repeated auction [12] comes closest to our approach. 

Main differences include our method reallocation tasks for 

robots in every time step. We mainly specifically examine the 

dynamical mobile tasks. Moreover, for this study, we use body 

expansion behavior [13] to reduce the communication costs 

and computational times when some corresponding values are 

smaller than the given thresholds. Previously, we proposed 

two methods: dynamical sequential task allocation and 

reallocation [14], and named global optimal task allocation 

and reallocation [15] for a distributed multiple robot 

coordination system. Simulation results show that minimal 

executed costs and maximal accomplished efficiency are 

obtained using the latter method, whereas this method 

consumes much communication costs and computational time. 

Another problem is system changes frequently assignment of 

tasks to robots based on global optimal method which occurs 

in certain situations. In result that robots always wander 

between several tasks, this cause the Total Summation of 

Completion Times are extended and waste robot energy.  In 

contrast, the former method is an approximate global optimal 

assignment method. It expends acceptable communication 

costs and computational times. However, the fatal 

shortcoming is that the time which the last task is completed is 

late, in other words, the Last Task Completion Time (i.e. the 

Final Completion Time of System) very close to repeated 

auction-based method [12]. That means the overall efficiency 

of distributed multi-robot coordination system is not so 

particular desirable. Other disadvantages of both proposed 

algorithms are that they still take so long time for tasks 

negotiation and robots communication that require certain 

communication costs and computational times. Therefore, 

these methods are suitable for small and medium scale 

multiple robot coordination systems. Herein, we propose a 

method combining dynamical sequential and global optimal 

task allocation methods to improve the previous algorithms to 

overcome the major mentioned disadvantages of those 

methods. Particularly, the whole system utilizing the hybrid 

method can obtain minimal executed costs and maximal 

accomplished efficiency. We believe that this approach can 

accommodate large-scale multiple robot coordination systems, 

and to reduce the negotiation time steps, computational times, 

and communication costs.  

III. PROPOSED ALGORITHM 

A. Mathematical Model 

As described in this paper, we consider a homogeneous set 

of robots. The efficiency for distributed multiple robots 

coordination system consists of two important evaluations. 

One is the Summation Executed Costs of All Robots
SECARCostE  

with which robots perform all mobile tasks. 
SECARCostE  

depends on the relative positions of the task and robot, in other 

words it depends on the Summation Completion Time of All 

Robots  
etionTimeSCTARComplT  necessary for robots to reach the task 

location, it is a function of time. Since all tasks can move 

randomly before they are assigned robots to execute, therefore, 

SECARCostE  and 
etionTimeSCTARComplT  which a robot performs a task 

varies. For that reason, robots should select optimal tasks for 

which the needed executed costs by robots to reach are least to 

perform. Doing so for each task improves the overall system 

efficiency. 

Another important evaluation is the time that the last task is 

completed by robot, we define as Last Task Completion Time 

mempletionTiLTCTLastCoT . As we know that we can declare the entire 

system is completed only after the last task is finished. In some 

situations, system consumes very little 
SECARCostE  and 

etionTimeSCTARComplT , while 
mempletionTiLTCTLastCoT  may be large 

compare with other situations. It means that robots take a long 

time to execute the last task in these situations, so we say that 

the time which entire system is completed is later than others, 

although the 
SECARCostE  and 

etionTimeSCTARComplT  are more 

efficiency. Actually, such situation raises frequently in the 

coordination system which utilizing dynamical sequential task 

allocation and reallocation method. 

The locations of M robots 
RV  and N mobile tasks 

TV  are 

known, as is the cost function 
RidualCostSIRCIndiviE ,

 (where Mi� ) 
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by a robot only once. At each time step, one robot is assigned 

to a single task. In initialization, the working status of all 

robots is free: robots wait for tasks to execute. 

Tasks broadcast request information including task IDs and 

coordinates to all robots at every time step. In the initial time 

step, all robots receive request information from tasks, then 

plan paths and calculate distances among all tasks in the 

robots’ global map. Each robot transmits the calculated 

distances to other robots. For each robot, a combinatorial cost 

table is made after collecting all the bidding from others. Then 

a task to execute is selected based on the objective function. 

The objective function to be minimized executed costs and 

maximized accomplished efficiency for the whole system. The 

objective of this method is to reduce the total time for 

executed tasks for the entire system. That is the global optimal 

allocation method, the algorithm of which is as follows. 

1. All tasks broadcast the request information including task IDs Tj and 

the coordinates to each robot Ri. 

2. All robots do the following steps simultaneously: 

For  Ri (i=1, i<=M, i++) 

     i.  Robot Ri Plans the path for the first n tasks. 

     ii.  Calculate distance DRiTj between robot Ri and the first n tasks Tj. 

     iii.  Robot Ri transmits all distances DRiTj to other robots. 

3. All robots Ri receive distances DRiTj from other robots. 

4. Each Ri produces combinatorial distance table based on DRiTj. 

5. Each Ri simultaneously selects a task from the combinatorial distance 

table to minimize the objective function: 

¦¦
��

  

RR VRi

RidualCostSIRCIndivi

VRi

RidualCostSIRCIndiviSECARCost DEE ,,
. 

67. All robots move to the selected tasks according to the planned paths. 

In the next time step, the system conducts body expansion 

behavior. Each robot plans a path and calculates the distance 

to the corresponding last assigned task. For all robots from 1R  

to Rm  sequentially, if the distance is greater than 
ThresholdD2 , 

then the robot requests that other robots execute and broadcast 

information to others. Otherwise, the working state of the 

robot changes to half-free-robot and refuses all requests. 

Robots for which the distance exceeds the set threshold rebid 

all unassigned tasks and transmit calculated costs to others. 

The un-selected robots re-select unassigned tasks from the 

combinatorial cost table using global optimal task allocation. 

The algorithm of body expansion behavior is as follows. 

1. Renew time step. 

      2. All robots compare the distances DRiTj between robots and the 

selected tasks with a large/small distance threshold. 

          If    DRiTj<=
ThresholdD2 . 

                 If   DRiTj<=
ThresholdD1 . 

Then  i.  Robot Ri executes the allocated task Tj. 

ii.  Robot Ri broadcasts the execution information to 

other robots. 

iii.  Robot Ri changes state to Busy-robot. 

iv.   If  Robot Ri completes task Tj. 

Then  Robot Ri changes state to a Free-robot. 

 Else  Return to 1. 

                  Else   i.  Robot Ri continues to select the allocated task Tj. 

                            ii.  Ri broadcasts the selection information to other robots. 

                            iii.  Robot Ri changes state to Half-free-robot. 

                            iv.  Return to 1. 

           Else   i.  Robot Rt requests that other robots execute task Tj. 

                     ii.  Collect all information about  robots and tasks for which 

distances DRiTj>=
ThresholdD2 . 

                iii. Return to global optimal task allocation. 

IV. SIMULATION AND RESULTS 

A. Simulation Environment Setting 

To demonstrate the validity and efficiency of our approach, 

various experiments are conducted through computer 

simulation. The simulation environment without obstacles is 

built up with the setting of 400 × 400 m
2
. At the initial time 

step, five tasks and three robots are distributed randomly in 

the environment. A robot accomplishes a task when the robot 

captures the task. For the whole system, three robots should 

execute 12 tasks. During the simulation, tasks move with 

variable speed over time, although the robot speed is a 

constant of 0.76 m/s. The small distance threshold 
ThresholdD1  

is 4 m. The large distance threshold 
ThresholdD2  is 40 m. To 

compare our approach, we simulate a kind of general method 

market-based repeated auction, dynamical sequential task 

allocation and global optimal task allocation in the same 

situation. 

B. Simulation Results 

The simulation results depicted in Fig. 2 are the consumed 

time steps during which robots accomplish all tasks. As the 

figure shows, it is apparent that the consumed time steps using 

dynamical sequential, global optimal and hybrid dynamic 

method are almost identical, but much smaller than using the 

repeated auction method. Moreover, the more tasks that are 

executed, the greater the reduced consumed time steps are. 

Furthermore, the average consumed time steps using hybrid 

dynamic mobile method are between the dynamical sequential 

and global optimal method. Consequently, the whole system 

can obtain maximal accomplished efficiency and minimal 

executed costs based on our method. 

Figure 3 displays the assigned status of robots that 

implement the methods described above in each time step. 

Results show conditions in which a robot assigns tasks during 

the simulation. As the figure shows, it is apparent that robots 

often change the tasks to perform according to the distance 

order, but not as frequently as we expect. In contrast to the 

consumed time steps, the reassigned tasks using the repeated 

auction method are fewer than other three methods. Similarly, 

the proposed method a little more frequently reallocates tasks 

to robots than dynamical sequential method, but far less than 

global optimal method. That also proved that the proposed 

method can prevent robots always wandering between several 
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tasks and changing frequently allocation of tasks to robots in 

all simulation situations. Therefore, the hybrid dynamic task 

allocation and reallocation method saves more robot energy 

and reduces the Total Summation of Completion Times. 
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Fig. 2. Total consumed time steps. 
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(a) Hybrid dynamic       (b) Dynamical Sequential 
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(c) Global optimum       (d) Repeated auction 

Fig. 3. Assigned status. 
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(c) Global optimum       (d) Repeated auction 

Fig. 4. Consumed time steps for each task. 

The necessary time steps during which each task is 

accomplished by a robot are presented in Fig. 4. As mentioned 

above, the Final Completion Time of System based on both 

dynamical sequential and marked-based repeated auction 

method is very later than hybrid dynamic and global optimal 

method, for example, the Final Completion Time of System 

are 1521 and 1736 using hybrid dynamic and global optimal 

method, respectively. Whereas for dynamical sequential and 

repeated auction task allocation method, the Final Completion 

Time of System are 3472 and 3633, respectively. The results 

show that the Final Completion Time of System which 

implemented dynamical sequential method is even more than 

repeated auction method in those situations. Thus the overall 

efficiency of distributed multi-robot coordination system by 

our algorithm is very desirable. 

C. Communication Costs and Computational Times 

An important strength of our task allocation and 

reallocation method is the ability to address changing 

conditions efficiently. Our method does not rely on the initial 

task allocation. It can perform task reallocation according to 

variable solutions. Therefore, the distributed multi-robot 

coordination system is highly robust to changes in the 

environment, including robot malfunction. Consequently, the 

method presented in this paper enables a robot to address a 

dynamical environment in an opportunistic and adaptive 

manner. Communication costs and computational times using 

the four methods presented in Table I and Table II, where M 

represents the number of robots, T is the number of time steps, 

and T0 is the time for calculating the distance from one robot 

to one task. Communication costs and computation times of 

hybrid dynamic mobile task allocation and dynamical 

sequential task allocation method vary according to time 

because of implementation of body expansion behavior for 

robots to select tasks. 
TABLE I  COMMUNICATION COSTS 

Hybrid 

Dynamic 

Dynamical 

Sequential 
Global Optimal Repeated Auction 

Variable Variable 
TMM � )1(2

 

)1()1(2 ��� MNMM
 

TABLE II  COMPUTATION TIMES 

Hybrid 

Dynamic 

Dynamical 

Sequential 
Global Optimal Repeated Auction 

Variable Variable 0TTMM   
00 )( TMNTMM ��  

Figure 5 and 6 portray communication costs and 

computation times for the simulated example. Results show 

that the global optimal method entails higher communication 

costs and computation times. For the hybrid dynamic and 

dynamical sequential method, if the distance is less than 

ThresholdD2 , then the robot only plans path to the assigned task. 

Thereby it is more conducive to reduction of the numerous 

computational times to calculate the distance for the entire 

system. Because the communication costs are task-selection 

information between robots, communication costs are also 

greatly diminished. Communication costs and computational 

times based on hybrid dynamic are intermediate between the 

global optimal and dynamic sequential task allocation method. 

However, the repeated auction method is the least because the 

communication costs and computational times only occur 

when a task is achieved. 
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Fig. 5. Communication costs. 
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Fig. 6. Computational iterations. 

Actually, based on the global optimal task allocation 

method, all robots plan paths, calculate distances, conduct 

negotiations, and perform task selection simultaneously. 

Consequently, the negotiation times of the whole system are 

less than the dynamical sequential under which robots select 

tasks sequentially, which requires overly long negotiation 

times for the whole system, especially when the robots are 

extremely numerous. While using global optimal, each time 

step, robots calculate distances to all tasks and communicate 

mutually, so the computational times of each robot and 

communication costs are much greater than under dynamical 

sequential because communication only occurs with the 

un-selected robots. Fortunately, the proposed hybrid method 

combines both methods, which implements their advantages. 

Therefore, probably the proposed method can improve all 

these performances and can be suitable for a large-scale 

distributed multi-robot system. 

V. CONCLUSION 

A hybrid dynamic mobile task allocation and reallocation 

method was developed in this study to resolve a new mobile 

task allocation domain. The proposed algorithm combines our 

previously proposed methods: dynamical sequential method 

and global optimal method. The advantages of the proposed 

approach are demonstrated in comparison with existing task 

allocation methods. The simulation results demonstrate that 

the whole system can obtain maximal accomplished efficiency 

and minimal executed costs based on our method. The 

negotiation times, communication costs and computational 

times are lower when using the proposed algorithm. Moreover, 

we can extend the previous methods to be very suitable for a 

large-scale distributed multiple robot coordination system. In 

future works, we will implement our approach to real robots 

and optimize the given distance thresholds according to the 

scale of the environment and the number of robots. 
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