
Rule Abstraction and Transfer in Reinforcement Learning
by Decision Tree

Min Wu, Atsushi Yamashita and Hajime Asama

Abstract— Reinforcement learning agents store their knowl-
edge such as state-action value in look-up tables. However,
loop-up table requires large memory space when number of
states become large. Learning from look-up table is tabula-
rasa therefore is very slow. To overcome this disadvantage,
generalization methods are used to abstract knowledge. In this
paper, decision tree technology is used to enable the agent
to represent abstract knowledge in rule from during learning
progress and form rule base for each individual task.

I. INTRODUCTION

Motion planning requires a mobile robot to generate
collision-free trajectories from its initial point to desired
destinations during moving in environment. However, to
compute the whole trajectory is infeasible in real time
application when the environment is unknown to the agent.
Reinforcement learning (RL) [1], [2] is suitable in this
situation as RL enables agents to learn correct policy by
trial-and-error interactions with dynamical environment.

However, in RL, learning agent starts trail-and-error
progress without knowing anything about the environment.
Therefore the agents should repeat trying every possible
action to ensure correct learning result in every new task and
result in bad initial performance. Secondly, as the number of
states and possible actions growing, the size of state-space as
well as computation power requirement grows exponentially.

A. Related work

Transfer learning (TL)[3] shows the idea that to share
knowledge among different tasks. In TL framework, learned
knowledge in former tasks can be transferred though tasks of
different settings, or even cross different types of tasks. By
TL, RL learning agents are able to achieve faster learning
performance. However, current transfer learning requires a
lot of manual interventions, especially the mapping function
among different tasks. Relational reinforcement learning
(RRL)[4] will be a sound solution in this problem.

Decision tree technique is applied to reinforcement learn-
ing(DTRL) [12], [13] to split large amount of data from sen-
sor reading into different states. At the leaf nodes of the tree,

This work was partly supported by Global Center of Excellence for
Mechanical Systems Innovation

Min Wu is with the Department of Precision Engineer-
ing, the University of Tokyo, Hongo 7-3-1, Tokyo, Japan
wumin@robot.t.u-tokyo.ac.jp

Atsushi Yamasita is with Faculty of Precision Engineer-
ing, the University of Tokyo, Hongo 7-3-1, Tokyo, Japan
yamasita@robot.t.u-tokyo.ac.jp

Hajime Asama is of Faculty of Departement of Precision En-
gineering, the University of Tokyo, Hongo 7-3-1, Tokyo, Japan
asama@robot.t.u-tokyo.ac.jp

corresponding state values are stored. Therefore,decision tree
technique saves memory for state representation. For this
character, it is suitable for those tasks in which it is not
easy to distinguish one state from others or those tasks that
has so many states that looking up table will require very
large memory. However, decision tree stores value for each
individual task. It is not suitable for reusing in different tasks.

In addition, it is worth to mention fuzzy decision tree [9]
which can classify data into different fuzzy sets, instead of
crisp category in common decision tree.

B. Paper motivation

The idea of rule abstraction is not new. Fuzzy reinforce-
ment learning(FRL)[6], [8], [7] has shown great advantage in
solving navigation problems with fuzzy rules. But in current
FRL research, the rule bases are either provided by human or
enumerated across all possible combination of fuzzy terms.
Therefore current fuzzy-RL can not be extended in different
tasks.

The motivation of this work is similar with fuzzy rein-
forcement learning that to use rules to represent knowledge
learned. However, different with FRL where rules are in the
form that

If state is A then action is B
with corresponding value function v

we use the form that

If state is A and action is B
then its a Good Choice

It will be shown later that this form is convenient when
decision tree is used to generate the rule base autonomously.
We generate rules from agents’ experienced state-action
pairs. To archive autonomous rule generation, decision tree
technique is applied.

We organize this paper as follow: Section II and III
summary necessary techniques. Section describe problem
configuration. Section present purposed method. Section
presents simulation result and conclusion is discussed in
Section.

II. REINFORCEMENT LEARNING

Reinforcement Learning framework[1] describes learning
tasks which require series of action choice by Markov-
Decision-Process. It includes:

1) A set of states S. It is the set of states that an
agent would be in. There are initial states ∃s ∈
Sinit, Sinit ⊂ S in which an agent starts and terminal

2012 IEEE/SICE International Symposium on System Integration (SII)
Kyushu University, Fukuoka, Japan
December 16-18, 2012

978-1-4673-1497-8/12/$31.00 ©2012 IEEE 529

states ∃s ∈ Sterm, Sterm ⊂ S in which an agent
terminates learning.

2) A set of actions A. It is the set of actions an agent
could execute.

3) A transfer function T . T : S×A×S 7→ R indicates the
probability of the next state st+1, by taking action at,
in state st. It is also called the model of environment.

4) Reward function R: R : S × A 7→ R shows how an
agent benefits from the environment by arriving in a
certain state s by taking action a.

5) Discounted accumulated reward Rt: The accumulated
reward is discounted from time t until the end of one
learning process.

Rt =

n∑
i=t+1

γi−tr(i) (1)

where 0 < γ ≤ 1 is discount factor, r(i) is immediate
reward defined by R.

6) A policy π: π : S 7→ A suggests an agent to take action
at in state st by probability π(st, at). For an agent, the
purpose of reinforcement learning is to obtain optimal
policy π∗ which maximizes discounted accumulated
reward Rt.

7) Value function V (s) and Q(s, a): Value function es-
timates average discounted reward under policy π for
each state or state-action pairs. It evaluates how the
agent can benefit from certain state s by V (s) : S 7→ R
or from certain state s and taking action a by Q(s, a) :
S ×A 7→ R.

Qπ(st, at) = Eπ(Rt|st, at)
Vπ(st) = Eπ(Rt|st)

(2)

8) Episode: The full progress that an agent starts from
s0 ∈ Sinit , by executing policy π and arrives in sn ∈
Sterm.

9) Markov Property: The environment model should sat-
isfy that:

P{st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, rt−1, · · · ,
s0, a0, r0} = P{st+1 = s′, rt+ 1 = r|st, at, rt}

(3)

10) Action Selection Policy: A well known policy is Soft-
max policy that:

p(s = st, a = ai) =
e−Q(st,ai)∑n
j=1 e

−Q(st,aj)
, i = 1, . . . , n

(4)
where p(s = st, a = ai) is the probability of selecting
action ai given state st.

By value function, RL problems of finding optimal policy
π∗ are converted to finding optimal value function V ∗s or
Q∗(s, a) if environment satisfies equation (3) There are two
kinds of value function estimation methods. The on-policy
method which evaluate V (s) and the off-policy method
which evaluate Q(s, a). Q-learning [7] is a well known off-
policy algorithm that to estimate value function Qst, at in

state st by taking action at at time t by:

Q(st, at)← Q(st, at)+α[r+γmaxa′Q(st+1, a
′)−Q(st, at)]

(5)
where st+1 is the state result by action at and r is the
temporal reward by state transition st → st+1

III. DECISION TREE TECHNOLOGY

Decision tree is a supervised learning method that clas-
sifies a group of data Q which are represented by a set
of features, or attributes A, into class ci ∈ C . For each
attribute Ai ∈ A, it has its value in a set Vi. Decision tree
organises its classification progress by a series of testing if
Ai is vi, vi ∈ Vi in each node of tree, and classes ci for
each data in the leaf of each branch as well. Decision tree
requires a set of training data to build. After a tree is build,
further data can be automatically classified to certain class.

ID3[5] is an important learning algorithm in decision tree
building. It deals with data of discrete domains that the value
of each attribute Ai is discrete, and binary decision that class
c ∈ {0, 1}. In each node, the testing attribute Ai of is chosen
in the set of attributes that maximize information gain G. The
information gain is the difference of information I between
the data before and after classified by Ai. A summary of ID3
algorithm is presented below.

1) Given training data Q which is described by a set of
attributes A, compute its information I by:

IQ = − p

N
log2

p

N
− n

N
log2

n

N
(6)

where N = p+ n is the number of data in set Q and
there are p data are classified to 1 as well as n data
are classified to 0.

2) Choose an attribute Ai in set A which has |Ai| different
values V = {v1, · · · , v|Ai|} to split the data Q into |Ai|
subsets Qj , j = 1, · · · , |Ai| in which there is Ai =
vj ∈ V . In each subset Qj there are Nj data with pj
classified to 1 and nj classified to 0.

3) Compute information for each subset Qj by:

IQj = − pj
Nj

log2
pj
Nj
− nj
Nj

log2
nj
Nj

, j = 1, · · · , |Ai|
(7)

4) Compute weighted summary information for all Qj as
the information Ii contained by data Q after split by
attribute Ai by:

Ii =

|Ai|∑
j=1

Nj
N
IQj (8)

5) Information Gain G(Ai) is defined by :

Gain(Ai) = IQ − Ii (9)

6) Select the attribute Ak that maximize information
gain(9) as the node of tree so that Q is divided into
|Ak| subsets Qj , j = 1, · · · , |Ak|.

7) For each subsets Qj , repeat from setup 1) in attribute
set A−Ak unless all data in subset Qj belong to the
same class.

530

8) A decision tree can generate rules from its root to leafs
by its testing condition in the form that:
if Aroot is vroot and . . . Aleaf is vleaf then Class is c

IV. PROPOSED METHOD

A. Tree Generation

It is supposed that state of a learning agent can
be expressed by n variables, or attributes, labelled by
V1, V2, . . . , Vn. That is, for each state s ∈ S, there is:

s = [v1, v2, · · · , vn]T , vi ∈ Vi, i = 1, . . . , n (10)

In each state, the learning agent can choose an action ai from
m possible actions a1, · · · , am. Therefore by Q-learning
algorithm (5), value functions of each state-action pair form
a look-up table that:

V1 V2 · · · Vn Action Q− V alue
v11 v12 · · · v1n a1 Qs1,a1
v11 v12 · · · v1n a2 Qs1,a2

· · · · · ·
· · · v1n am Qs1,am

v21 v22 · · · v2n a1 Qs2,a1
v21 v22 · · · v2n a2 Qs2,a2

· · · · · ·
· · · v2n am Qs2,am
· · · · · ·
· · · · · ·
· · · · · ·

For each state s (suffix for state index is dropped for
convenience) that:

v1 v2 · · · vn a1 Qs,a1 Class1
v1 v2 · · · vn a2 Qs,a2 Class2

· · · · · ·
· · · vn am Qs,am Classm

value function Qs,am is categorized into two fuzzy sets
labelled as Good and Bad. We define CLASS as the member
ship of fuzzy set Good. For simplification, we assume that
Good and Bad is a triangular orthogonal fuzzy set on CLASS.
That is, when CLASS = 1 it means Good and when
CLASS = 0 it means Bad. The CLASS is computed that,
with state s and its possible action set {a1, · · · , am}:

CLASSi = 1− Qmax −Q(s, ai)

Qmax
, i ∈ 1, · · · ,m

where Qmax = max(Q(s, a1), · · · , Q(s, am))

(11)

As defined in Equation (4), the class is computed within one
sate with all its possible actions. This definition emphasizes
the relativity character of fuzzy logic that a Good action
may not necessarily to have a large value compared with all
possible states.

Further more, some alternate of equation (4)may be intro-
duced that we should eliminate those states that either action
is Bad.Therefore, CLASS can be defined that,

if
max(Q(s, a1), · · · , Q(s, am))

minQall
> h then CLASS = 0

(12)

where minQallis the minimum value of all known state and
h is a factor decided by human to express the degree of Bad.

To handle the situation that during exploring state of RL,
some Q-function are of their initial value, such as 0, we
follow the idea in fuzzy decision tree[9] that to set its class
averagely that:

if Q(s, ai) is unknown then CLASS=0.5

B. Rule Generation

After categorizing value function table, we can use deci-
sion tree algorithm described in section III to build a tree
to classify data. As in fuzzy decision tree, p and n in (6),
which express number of data classified in class Good and
in class Bad respectively, are computed by:

p =

N∑
i

CLASSi

n =

N∑
i

(1− CLASSi)

(13)

where N is the total umber of data.
We introduce two factor Fpos and Fneg to express the

confidence of data belong to set Good and Bad. They
are decided by human. Decision tree construction terminal
condition is alternated to either all attributes are used or
p/N > Fpos or p/N < Fneg . When a decision tree is
constructed, we can generalize rule from its root to leaves.
The rules are in the form that:

if V1 = v1 and V2 = v2 and · · · and Vt = vt and
Action = ai then CLASS is xGood

where Vi, i = 1, . . . , t are attributes of states, ai ∈ A is
action and x is confidence of set Good. Furthermore, in the
initial stage of RL, the Q-value table is so sparse that most
of data are categorized into 0.5. Therefore rules in which
only x > Fpos or x < Fneg is considered.

This operation results in two series of rules leading to
Good choice and Bad choice. We label them as Rule Good
and Rule Bad. When a learning agent decides its action, it
is likely to try to chose actions in Rule Good and to avoid
chosing actions in Rule Bad. That is, for probability p(t) =
1− e−f(t) where t is passing time:

P (s = st, a = ai) =
eQ

′(st,at)/τ∑m
b=1Q

′(st, at)/τ

Q′(st, at) = NRuleGood(st, ai)−NRuleBad(st, ai)
(14)

where st is current state, ai is possible action. NRuleGood is
the number of rules that suggested action ai given st in set
Good. NRuleBad is the number of rules that suggested action
ai given st in set Bad, respectively. This softmax approach
will balance conflict rules in rule sets. The algorithm is
shown as blow. An important difference between rule table
and Q-value table is that in Q-value table, the number of
attributes |Vi| equals to the total number of attributes n. But
in rule table, the number of attributes in each rule can be less
than n. This character of rule table shows that by looking up

531

Algorithm 1 Algorithm Summary
repeat

initial all Q(s, a) STATE s← s = 0
repeat

for each episode
obtain s
for probability p = 1− e−f(t)
if rand(1) < p then

select action a by softmax (4)
else

obtain NGood(s, a) and NBad(s, a) for each a ∈ A
select a by (14)

end if
execute a at s, obtain r and new state s′

Q(s, a)← Q− Learning(Q(s, a), s, a, s′) by (5)
records, a,Q(s, a) in DATA
s← s′

until s ∈termial
for all < s, a,Q(s, a) > do

obtain classs,a,Qs,a by (11)
end for
repeat

obtain p, n by (13) and I by (6)
for all attribute Vi do

use Vi split DATA
obtain pi, ni by (13) and Ii by (6)

end for
record Vi as a node of TREE
use Vi maximize I − Ii to split DATA

until tree construction end
generate RuleGood and RuleBad from TREE

until max learning loop reached

a Q-value table, a learning agent can only get information
about one state-action pair but by looking up a rule table it
can get information about all state-action pairs which satisfy
the rule. Recall that the size of state space of RL is defined
by:

size = |A|
n∏
i=1

|Vi| (15)

therefore reducing number of attributes appears in look-up
table will reduce the size of space to be searched into largely.

V. ROBOT DEFINITION

Proposed task environment is shown in Fig. 1(a). A mobile
learning agent(red circle) A is suggested to move in the
ground defined by outer square to its goal point(green square)
without collision with other obstacles. Obstacles are defined
by circles with different radius in the ground. The agent is
suggested to be equipped by a Laser Range Finder(LRF) to
acquire distance information from obstacles and boundaries.
It is also suggested that the agent knows where its goal
is. Limited by LRF sensor function, the agent can only get
distance information in the range of 240◦, with 120◦ on the
left and 120◦ on the right, as it is shown in Fig. 1(b). Sensor

range of LRF is divided into 5 zones called Right, R-Front,
Front, L-Front and Left symmetrically. In each zone, the
minimum distance reading di fro LRF is used to presentate
distance information in the zone. di is discretized into 3 part,
Large, Middle and Small.

Position information from robot to its goal poitn is defined
in Fig. 1(c). The direction of robot motion is defined as front.
Right, Back and Left are defined respectively. Distance from
robot to its destination, dgoal is discretized by Large, Middle
and Small, too.

Therefore the state of the robot can be described by:

dR dR−F dF dL−F dL dgoal θgoal

where discreted distances ds can be any value in
{Large,Middle, Small} and θgoal can be any value in
Front,Right,Back, Left

The action space of the agent is {v,+ω,−ω} indicating
that the agent can move towards its direction at velocity v, or
turn left, indicated by ’+’ or right, indicated by ’-’, at angle
velicity ω. For simplicity it is supposed that the agent can
not change its direction while moving.

In order to handle continuous time simulation in discrete
state-space, technical of semi-MDP[10] is applied. That
is, the agent will continuous execute its action until state
change is detected. Accumulate reward is accounted by factor∫
γtdt.
Reward structure of robot is decided as below. For every

step the agent received −1 punishment from environment.
When it research its goal, the reward is 0. If the agent collide
with obstacles or boundaries, it receive −100 punishment.
Therefore the reward is usually less than 0. Furthermore,
maxLearningT ime is defined so that when the agent
spends too much time in one episode, it stops and is marked
as failure. When maxLearningT ime is reached, the agent
gains −100 punishment.

The setting of agent in simulation is listed below:

size r = 0.2m
speed v = 0.5m/s

ω = 0.52rad/s
Learning rate α = 0.7
Discount rate γ = 1
Rule Factor Fpos = 0.8, Fneg = 0.2
h 0.8

VI. SIMULATION RESULT

Two different environments are used to illustrated the
character of RL with rule knowledge, as shown in Fig. 2(a)
and Fig. 2(b). In the first task, an agent is placed just nearby
its goal and there are no obstacles around it. The boundaries
are initially far from the agent. In the second task, an agent is
placed far away from its goal and very near to boundary on
the right side. This task is similar to cliff walk task presented
in [1]. While the first task is very easy, the second task is
challenging to reinforcement learning because initial failure
will result in large amount of search into useless state space.

Simulation setting is t = 0.01s, maximum trail time is 50s
and in each task the agent repeat 1000 times. Simulation

532

(a) Environment setting (b) Distance from Objects (c) Goal setting

Fig. 1. Robot Configuration

(a) Task 1 (b) Task 2

(c) Task Result 1 (d) Task Result 2

Fig. 2. Task setting and result

environment is in C++. Each task runs more than 5 times
and averaged data are collected.The result is drawn as x
axis the number of trials and y axis is its reward. Fig. 2(c)
shows result of task 1 shows that the for the simplest task,
RL and purposed method works both well. The proposed
method shows a bit better performance in learning rate
compared by RL. However, in task 2, the average reward of
purposed method is worse than pure RL learning algorithm.
Figure 2(d) shows the proposed method as a bit higher
initial performance but get low average reward in the later.
It is because the proposed method is likely to force the
agent to choose a very ”dangerous” path that is to move

along the walls. However, as the agent is still exploring the
environment and most of its state-action value is unknown
therefore is labelled as 0.5Good therefore the agent is try
to choose them which will have great probability to lead
to collision with the wall on its right side. However, if we
transfer the rule that the agent learned in task 1 to task 2,
the situation changed. That is, in the very beginning of task
2, the agent’s rule base is initialized by rules that it learned
in task 1. Figure VI shows the result that with transfer, the
agent achieved to learn faster and better final performance.

533

Fig. 3. Result of Task 2 by Transfer

VII. CONCLUSION AND DISCUSSION

In this paper, we present a method to construct rule base
from reinforcement learning process as knowledge based on
Q-learning and fuzzy decision tree techniques. It enables an
agent to abstract rules from its experienced task, and reuse
these rules in new tasks autonomously. The simulation result
in section VI has shown that the purposed method enable the
reinforcement learning agent to archive better performance.

However, there are some problem to be discussed. First
of all, the result curve in either fig. 2(c), fig. 2(d) or VI
shows burrs which infers that the agent come across some
failures even if it has learned converging policy. It may be
caused by that the reinforcement learning algorithm does
not converge properly. As a reinforcement learning agent
requires its state space to satisfy Markov property, laser
range finder reading may cause non-Markov problem due
to its partially observable character. Therefore, to achieve
better result, POMDP framework [11] should be included
into purposed method.

The second issue is that in transfer learning, mapping
between different states are usually based on similarity
between them. However, for autonomous transfer, the agent
must be able to find which states can be mapped with each
other. In our approach, an underline suggestion is that in
new task, the learning agent regards any state in new tasks,
which can satisfy all tests in one brunch of decision tree, is
similar with those states of old tasks that satisfy the same
tests in the same brunch of the tree. Therefore knowledge
can be transferred. If old knowledge is not suitable for new
environment, decision tree generating algorithm will correct
the old tree to match new state-space.

The third issue on reinforcement learning is that in simula-
tion, we find that initial value of each unknown state, as well
as the punishment agent received when it come across the
state time over, affect the convergence greatly. The learning
algorithm converge much slower when value of all unknown
states are initialized as 0. The learning algorithm is likely to
repeat ending in time over if the punishment of time over is
set smaller than the punishment of fail.

In summary, the purposed algorithm performs well in
situations that reinforcement learning converges correctly.
But if the value function can not be required correctly,
the rule base may be ill and force the learning agent to
make more failures. In order to overcome this problem,
technique that help converge in ill environment, such as
POMDP environment, should be introduced. Furthermore,
human experience as well as social rules can also be regarded
as initial rule base. These initial rules is expected to enable
the learning agent to interact better in social environment.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, MIT Press, 1998.

[2] Kaelbling, Leslie Pack and Littman, Michael L and Moore, Andrew
W, Reinforcement Learning : A Survey, Machine Learning, vol. 4,
1996, pp 237-285.

[3] Taylor, Matthew E and Stone, Peter, Transfer Learning for Reinforce-
ment Learning Domains : A Survey, Journal of Machine Learning
Research, vol. 10, 2009, pp 1633-1685.

[4] Džeroski, S. and De Raedt, L. and Driessens, K., Relational reinforce-
ment learning, Machine Learning, vol 43, no. 1, 2001, pp 7-52.

[5] J.R. Quinlan, Induction of Decision Trees, Machine Learning, vol. 1,
no. 1, 1986, pp 81-106

[6] Beom, H. Rak and Cho, H. S., A sensor-based navigation for a mobile
robot using fuzzy logic and reinforcement learning, IEEE Trans. Syst.,
Man, Cybern., vol. 25, no. 3, 1995, pp 464-477.

[7] Berenji, H.R. and Khedkar, Pratap, Learning and tuning fuzzy logic
controllers through reinforcements, IEEE Trans. Neural Netw., vol. 3,
no. 5, 2002, pp 724-740.

[8] Faria, G and Romero, RAF, Incorporating fuzzy logic to reinforcement
learning, Fuzzy Systems 2000. the 9th IEEE International Conference
on, vol. 2, 2000, pp 847-852.

[9] C. Z. Janikow, Fuzzy decision trees: issues and methods, IEEE Trans.
Syst., Man, Cybern. B, vol. 28, no. 1, 1998, pp 1-14.

[10] S.J. Bradtke, M.O. Duff, Reinforcement learning methods for
continuous-time Markov decision problems,in: NIPS-7, MIT Press,
Cambridge, MA, 1995, pp. 393400

[11] Cassandra, A. R. A Survey of POMDP Applications. Operations
Research. 1998. pp. 1724

[12] McCallum, R. Overcoming incomplete perception with utile distinc-
tion memory. Proceedings of the Tenth International Conference on.
1993

[13] Pyeatt, L. D., and Howe, A. E. Decision Tree Function Approximation
in Reinforcement Learning. Proceedings of the Third International
Symposium on Adaptive Systems Evolutionary Computation and
Probabilistic Graphical Models 2001 Vol. 2, pp. 7077

534

