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Parallel line-based structure from motion by using omnidirectional camera in textureless scene
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In this paper, we propose a reconstruction method for a 3D structure using sequential omnidirectional images in an artifi-
cial environment. The proposed method is fundamentally categorized into the Structure from Motion (SfM) technique.
The conventional point-based SfM using a standard camera is, however, likely to fail to recover a 3D structure in an arti-
ficial and textureless environment such as a corridor. To tackle this problem, the proposed technique uses an omnidirec-
tional camera and line-based SfM. Line features, such as a borderline of a wall and a floor or a window frame, are easy
to discern in an artificial environment comparing point features, even in a textureless scene. In addition, an omnidirec-
tional camera can track features for a long period because of its wide field-of-view. Extracted line features in an artificial
environment are often mutually parallel. Parallel lines provide valuable constraints for camera movement estimation.
Directions and locations of lines are estimated simultaneously with 3D camera movements. A 3D model of the environ-
ment is constructed from measurement results of lines and edge points. Experimental results show the effectiveness of
our proposed method.
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1. Introduction

In this paper, we propose a reconstruction method of a
3D structure using sequential images acquired with a
monocular omnidirectional camera in an artificial
environment.

The accurate and efficient estimation of the camera
movement is very important for scene reconstruction
using the monocular stereo method. As a method of
monocular stereo, approaches based on Structure from
Motion (SfM) [1,2] or vSLAM [3,4] have been pro-
posed. Camera movement estimation from an image
sequence acquired using a single camera is difficult
because a camera movement matrix (such as the essential
matrix) has at least six degrees of freedom (DOFs) (three
DOFs for rotation and three DOFs for translation). More-
over, the estimation is a nonlinear problem. When loca-
tions and orientations of many viewpoints are estimated
simultaneously using previous methods, the processing
cost is high and the probability of falling into a local
minimum is great.

An omnidirectional camera is used for a self-localiza-
tion and a scene reconstruction in our proposed method.
Self-localization methods using monocular stereo often
necessitate feature tracking (KLT tracker [5], SIFT [6],
etc.) to obtain correspondence between different view-

points. However, features will be lost easily because of a
camera swing, if a typical camera which has a narrow
field of view is used. Therefore, an omnidirectional
camera with a wide field of view is effective for a self-
localization [7]. An omnidirectional camera in this paper
has a hyperboloid mirror (Figure 1). The omnidirectional
camera can be regarded as a pinhole camera. Self-
localization and scene reconstruction methods using an
omnidirectional camera have been proposed [8–10].

Among previous monocular stereo methods, some
approaches have used correspondences of feature points
[2,3,8–12], straight lines [13–15], or both features [1].
Point-based methods have the benefit of a fast
calculation by a linear solution (eight-point algorithm
[16], five-point algorithm [2], etc.). However, the number
of feature points is insufficient in textureless scenes
(such as an indoor environment shown in Figure 2). On
the other hand, line-based methods are available for tex-
tureless scenes. Textureless scenes contain anthropogenic
objects. Many anthropogenic objects consist of a linear
shape. Therefore, line correspondences are obtainable in
textureless scenes.

Our proposed method for the textureless scene recon-
struction is based on SfM using line correspondences.
Lines which consist of anthropogenic objects are often

*Corresponding author. Email: yamashita@robot.t.u-tokyo.ac.jp

Advanced Robotics
2012, 1–14, iFirst Article

ISSN 0169-1864 print/ISSN 1568-5535 online
� 2012 Taylor & Francis and The Robotics Society of Japan
http://dx.doi.org/10.1080/01691864.2013.751160
http://www.tandfonline.com

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

ok
yo

] 
at

 1
6:

00
 0

6 
Fe

br
ua

ry
 2

01
3 



mutually parallel. Parallel lines can be extracted from an
omnidirectional image easily and constantly because of
its wide field of view. Parallel lines provide valuable
constraints for camera movement estimation. Therefore,
the proposed method uses constraints obtained from par-
allel lines. As previous methods, SLAM using parallel
lines and their vanishing point (VP) [17], SfM in urban
environment (building scene) [18], rotation estimation by
video compass [19], and so on have been proposed.
However, the computation complexity of these methods
increases as the number of viewpoints or lines increases
[17,18]. In addition, some previous methods have been
based on the assumption that the camera movement is
only a horizontal movement [18,19]. Our proposed
method estimates 3D camera movements using corre-
spondences of parallel lines and nonparallel lines among
no fewer than three images.

Although there are linear computation algorithms for
a line-based SfM using a trifocal tensor [20,21], it is
only for image triplets. A bundle adjustment [22] is used
in many previous methods to estimate the camera move-
ment among more than three images. A bundle adjust-
ment is a framework of the camera movement estimation
based on reprojection error minimization. The Leven-
berg–Marquardt algorithm provides a solution of the
error function minimization in a bundle adjustment.

However, the algorithm often falls into a local minimum
[13,14]. Line-based EKF SLAM [15] is proposed. Nev-
ertheless, it is known that there is a problem of the error
accumulation of the camera movement estimation in
EKF SLAM.

The proposed line-based SfM can estimate 3D cam-
era movements of more than three viewpoints simulta-
neously. The constraints obtained from parallel lines are
useful for reduction in the DOF of the camera movement
estimation. Using the constraints, estimation of the rota-
tion matrices and the translation vectors is divided into
two procedures. Each procedure is solved as a 1 DOF
problem without regard to the number of viewpoints and
features. Consequently, the calculation cost is extremely
low, and it can avoid falling into a local minimum. The
proposed method can obtain the global minimum easily.
The effectiveness of our proposed method is demon-
strated in experimentally obtained results.

2. Framework of parallel line-based sfm

The prerequisite in our proposed method is that at
least six line correspondences (three parallel lines and
three nonparallel lines) exist between omnidirectional
images. The image sequence must include at least
three images. Parallel lines are extracted easily from a
man-made structure in an indoor environment because
an omnidirectional camera has a wide field of view.
Therefore, the assumption is proper for general indoor
environments.

The procedure of our proposed method is described
below (Figure 3). Lines and feature points are extracted
and tracked along an omnidirectional video. At each
viewpoint, parallel lines and the VP are detected from
these lines. A vector in the direction of the VP is calcu-
lated. The vector is called a ‘VP axis’ in this paper.
Pseudo-lines, which are created from a couple of feature
points, are regarded as nonparallel lines.

The estimation of a rotation and a translation is sepa-
rated in the proposed method. These separated estima-
tions are divided into two procedures.

Figure 1. An omnidirectional camera equipped with a hyperboloid mirror and the acquired image.

Figure 2. Example of a textureless scene (corridor).
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In the first procedure of the rotation estimation, a
rotation that makes the direction of the VP axes at all
viewpoints the same in the world coordinate system is
calculated. In the second procedure, a rotation about the
VP axis is estimated. When a rotation between two
viewpoints is determined, rotations at the other view-
points are calculated by minimizing a quartic function
about the rotation angle. The minimum value of a quartic
function is calculated uniquely. Therefore, a 3D camera
rotation movement can be estimated by solving a prob-
lem with 1 DOF about a rotation angle between two
arbitrary viewpoints without regard to the number of
viewpoints and features.

In the first procedure of the translation estimation,
translations on the plane perpendicular to the 3D direc-
tion of the VP axis are estimated. When the translation
direction between two viewpoints is determined, transla-
tions at the other viewpoints are calculated uniquely by
solving a simultaneous equation. Therefore, the estima-
tion is a problem with 1 DOF about the translation direc-
tion on the plane between arbitrary two viewpoints. In
the second procedure, translations along the VP axis are
estimated. In this procedure, when a translation along
VP axis between two viewpoints is determined, transla-
tions at the other viewpoints are calculated as a transla-
tion minimizing a quartic function about the translation.
Therefore, the estimation is also a problem with 1 DOF
about the translation along VP axis between arbitrary
two viewpoints.

The proposed method estimates 3D camera move-
ments by solving three problems with 1 DOF. The calcu-
lation cost is extremely low and it is easy to avoid
falling into local minimum. Moreover, the proposed
method can obtain the global minimum solution easily.

Locations and directions of 3D lines are estimated
simultaneously with camera movement. For a dense 3D
reconstruction, edge points are measured using the esti-
mated camera movement. A mesh model is constructed
from the measurement results of lines and edge points.
Textures obtained from omnidirectional images are added
for mesh surfaces.

3. Omnidirectional camera coordinate system

The coordinate system of an omnidirectional camera is
shown in Figure 4. A hyperboloid mirror reflects a ray
from the camera lens to image coordinates (u; v). In this
paper, the reflected ray is called a ‘ray vector.’ The
extension lines of all ray vectors intersect at the focus of
the hyperboloid mirror. The ray vector r is calculated
using the following equations.

r ¼ r̂
k r̂ k

; (1)

r̂ ¼
k(u� cx)px
k(v� cy)py
kf � 2c

2
664

3
775; (2)

k ¼
a2 f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ f 2

p� �
a2f 2 � b2(u2 þ v2)

; (3)

Figure 4. Coordinate system of the omnidirectional camera.

Figure 3. Procedures used for our proposed method.
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where, cx and cy are the center coordinates of the omni-
directional image, px and py are pixel size, f is the focal
length of a camera lens, and a, b, and c are hyperboloid
parameters. In the proposed method, these parameters
are calibrated in advance.

4. Feature detection and tracking

4.1. Feature point tracking

The proposed method needs at least three nonparallel
lines in addition to three parallel lines. In textureless
scenes, many parallel lines are perpendicular to the
floor. However, there are often insufficient nonparallel
lines for camera movement estimation, although an
omnidirectional camera has a wide field of view
(Figure 5(a)). Therefore, the proposed method uses
feature points.

Feature points are tracked along an omnidirectional
video by KLT tracker [5]. Pseudo-lines are created from
a couple of feature points. Pseudo-lines are regarded as
nonparallel lines. Examples of feature points and pseudo-
lines are shown in Figure 5(b) and (c). Pseudo-lines in
Figure 5(c) are curved because a straight line is projected
as a curved line in an omnidirectional image.

4.2. Line tracking

Straight lines are extracted from distorted omnidirec-
tional images. The proposed method obtains edge points

using a Canny edge detector [23]. Examples of edge
point detection are shown in Figure 6(a) and (b).

To separate each line, corner points are removed as
shown in Figure 6(c). Corner points are detected using
two eigenvalues of the Hessian H of the image. The
Hessian matrix is defined as

H ¼ Ixx Ixy
Ixy Iyy

� �
; (4)

where, the derivatives Ixx, Ixy, and Iyy are calculated by
taking differences of neighboring edge points. If the ratio
of eigenvalues is sufficiently high, then the edge point is
regarded as line-like. The ratio is set to 10 using the
trial-and-error method.

A least-squares plane is calculated from ray vectors
of segmented edge points. If the edge segment consists
of a straight line, then these ray vectors are located on
the same plane (Figure 7). Therefore, an edge segment
which has a small least-squares error is regarded as a
straight line. The proposed method can extract straight
lines, even if an edge segment resembles a curve in an
omnidirectional image. If over half the edge points of the
edge segment i satisfy the following equation, then the
segment is determined as a straight line (Figure 6(d)).

(ri; j
Tni)

2\lth: (5)

Figure 5. Creation of pseudo-lines.

Figure 6. Line extraction procedure. Panels (b), (c), and (d) portray enlarged views of the red rectangle in panel (a).
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Therein, lth is a threshold. ri; j is a ray vector to the
edge point j from the mirror focus included in the line i.
ni is the normal vector of the least-squares plane calcu-
lated from the line i. ni is a unit vector. The vector is
called ‘NV’ in this paper. In the detection, edge points
which do not constitute the line are rejected as noises by
RANSAC [24]. The threshold lth is determined from the
image resolution.

Lines are tracked along the omnidirectional image
sequence. The proposed method obtains sampling points
located on a straight line. Sampling points are extracted
at constant intervals (Figure 8(b)). Edge segments are
extracted in the next frame (Figure 8(c)). The points
extracted in Figure 8(b) are tracked to the next frame by
KLT tracker (Figure 8(d)). The edge point closest to the
tracked point is selected as a corresponding edge point
(Figure 8(e)). The edge segment with the maximum
number of corresponding edge points is regarded as a
corresponding edge segment (Figure 8(f)). If an edge

segment corresponds to several lines, then a line having
a larger number of corresponding edge points is
selected.

An aperture problem [25] exists in matching the
point search on the line. However, it is not difficult for
the proposed method to obtain the corresponding edge
segment because it does not require point-to-point
matching. By continuing the processes explained above,
straight lines are tracked along the omnidirectional image
sequence.

4.3. Detection of parallel lines and a VP

Parallel lines and their associated VP are detected from
tracked lines. A VP axis vcj and NVs n

cj
i for parallel

lines i at the viewpoint cj satisfy the following equation.

vcj Tncj
i ¼ 0: (6)

Figure 8. Searching for a corresponding edge segment in the subsequent frame.

Figure 7. Relation between a straight line and ray vectors.
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Here, the superscript of the vector signifies its refer-
ence coordinate system. The reference coordinate system
of the vector without a superscript is the world coordi-
nate system. Three lines are necessary for the parallel
line detection from an image. The proposed method
selects three lines randomly from tracked lines. A vector
v
cj
rand that minimizes Ev in Equation (7) is calculated

using the least-squares method.

Ev ¼
Xnl
i

vCj

rand

T
ncj
i

� �2

: (7)

In that equation, nl is the number of lines. If selected
lines satisfy the following equation in the entirety of an
input image sequence, then these are regarded as parallel
lines.

Ev\pth; (8)

where, pth is a threshold. Lines that are regarded as
mutually parallel are integrated. A line group that has
the maximum number of lines is used for the following
process as parallel lines. The VP axis vcj is calculated
from integrated parallel lines as a vector v

cj
rand that mini-

mizes Ev in Equation (7).

5. Parallel line based SfM

5.1. Estimation of camera rotation and line direction

The camera rotation estimation process is divided into
two procedures. In the first procedure, the method calcu-
lates a camera rotation matrix that makes the direction of
VP axes among all viewpoints the same. In the second
procedure, a rotation about the VP axis is estimated
using at least three lines. These lines must have a
different 3D direction from parallel lines.

5.1.1. Vp direction matching

This procedure requires VP axes, which should have the
same 3D direction in the world coordinate because a VP

lies at an infinite distance from the viewpoint, theoreti-
cally. Therefore, the proposed method calculates a rota-
tion matrix R

cj
m satisfying the following equation.

vc0 ¼ Rcj
m
Tvcj : (9)

In that equation, R
cj
m is a rotation matrix that makes

the direction of the VP axis vcj the same as that of the
VP axis vc0 at the initial camera coordinate system. Here,
the initial camera coordinate system is equal to the world
coordinate system in this paper. R

cj
m is calculated as a

rotation about an axis mcj using the Rodrigues rotation
formula. The rotation axis mcj and angle hcj are calcu-
lated by the following equations. A relation between mcj

and hcj is shown in Figure 9.

mcj ¼ vc0 � vcj ; (10)

hcj ¼ arccos (vc0 Tvcj ): (11)

The 3D directions of parallel lines and the VP axis
vc0 are the same. Therefore, the vector vc0 also represents
a 3D direction of parallel lines in the following
explanation.

5.1.2. Estimation of rotation about the vp axis

In the second procedure, a rotation matrix about the VP
axis vc0 is estimated. This procedure requires at least
three lines. The 3D direction of these lines must not be
equal to the VP axis vc0 .

In the proposed method, the only remaining
unknown parameter of 3D rotation is rotation R

cj
v about

the VP axis vc0 because the other two parameters are
obtainable from the constraints of the VP. Therefore, this
procedure estimates a rotation matrix R

cj
v , namely, the

rotation angle /cj (Figure 10).
The camera rotation matrix Rcj between the initial

viewpoint c0 and a j-th viewpoint cj is defined using two
rotation matrices as the following equation.

Figure 9. Relation among the rotation axis mcj and VP axes vc0 and vcj .
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Rcj ¼ Rcj
mR

cj
v : (12)

The camera rotation matrix Rcj and 3D line direction
di satisfy the following equation.

Rcj Tncj
i

� �T
di ¼ 0: (13)

In that equation, n
cj
i is the NV of the line i at the

viewpoint cj. di is a unit vector. The NVs in the world

coordinate system Rcj Tn
cj
i is perpendicular to the 3D line

i. When a rotation angle /cj is given, the 3D direction di
of the line i is calculated by cross product of NVs at
viewpoint c0 and cj (Figure 11).

di ¼ nc0
i � (Rcj Tncj

i ): (14)

Using the 3D line direction, a rotation matrix Rck

between the initial viewpoint c0 and the other viewpoint
ck is calculated by solving the following equation.

erot(/
ck ) ¼

Xnl
i

(Rck Tnck
i )

Tdi

		 		2! min; (15)

where, nl is the number of nonparallel lines. Although
the function is nonlinear, it is easily solvable because
erot(/

ck ) is just a quartic function about /ck . Conse-

quently, if a rotation angle /cj at a viewpoint cj is given,
then rotation angles /ck at the other viewpoints ck are
determined. The proposed optimization of rotations is
represented as the following equation.

Erot(/
cj) ¼

Xnc
k

erot(/
ck ) ! min; (16)

where, nc represents the number of viewpoints. In the
proposed method, the rotation estimation is a search
problem with 1 DOF about the rotation angle /cj without
regard to the number of viewpoints and features.

In the following explanation, v expresses the VP axis
vc0 or 3D direction of parallel lines.

5.2. Estimation of camera translation and line location

Camera translations are estimated using two procedures.
In the first, translations on the plane perpendicular to
parallel lines are estimated. In the second, translations
directed along parallel lines are estimated. As is true also
for rotation estimation, these two procedures of the trans-
lation estimation are solvable as problems with 1 DOF.

5.2.1. Translation on a perpendicular plane

In the first procedure, translations on a plane perpendicular
to parallel lines are estimated. This procedure requires at
least three parallel lines. Translations on the plane and 3D
locations of parallel lines are optimized simultaneously.

Here, the method introduces basis vectors a and b
(a?b; a?v, and b?v). A unit vector gi;cj from the

viewpoint cj to the parallel line i is calculated using
Equation (17). The vector gi;cj is perpendicular to parallel

lines as

gi;cj ¼ v� (Rcj Tgcji ): (17)

Using these vectors, a and b elements of the true
translations can be estimated. With a translation vector
tp;cj between the initial viewpoint c0 and a viewpoint cj,
the location li of parallel lines i and a vector gi;cj satisfy

the following equation. The relation among these vectors
is shown in Figure 12.

dcji gi;cj þ tp;cj � li ¼ 0: (18)

In that expression, dcji is a fixed number representing
the depth of the line at the viewpoint. dcji is calculated as

dcji ¼ (tp;cj � li)
Tgi;cj

gTi;cjgi;cj
: (19)

Figure 10. Rotation about the VP axis vc0 .

Figure 11. The 3D line direction calculation.
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Here, the translation tp;cj is expressed as Equation
(20),

tp;cj ¼ a coswcj þ b sinwcj ; (20)

where, wcj denotes the translation direction from the ini-
tial viewpoint c0 to the viewpoint cj. The absolute scale
is unknown in the SfM approach. Consequently, the dis-
tance between these two viewpoints is set to 1 in the
proposed method. When the direction wcj is given,
the locations of parallel lines are calculated using the
following equation.

li ¼
fc0i gi;c0 þ fcji gi;cj þ tp;cj

2
; (21)

where, fc0i and f
cj
i are fixed factors representing the depth

of the line from each viewpoint. Fixed factors fc0i and fcji
are calculated as factors satisfying the following
expression.

kfc0i gi;c0 � fcji gi;cj � tp;cjk2 ! min : (22)

Using 3D locations of parallel lines, translations at
the other viewpoint ck are calculated by minimizing the
following equations.

et1(k
ck
a ; k

ck
b ) ¼

Xnl
i

kdcki gi;ck þ tp;ck � lik2; (23)

tp;ck ¼ kcka aþ kckb b: (24)

When the line location li, namely, the translation
direction wcj is given, Et1 (k

ck
a ; k

ck
b ) is solvable as a simul-

taneous equation about kcka and kckb . Therefore, transla-
tions on the plane vertical to parallel lines are optimized
by minimizing the following function about wcj .

Et1(w
cj ) ¼

Xnc
k¼1

et1(k
ck
a ; k

ck
b ): (25)

Consequently, Equation (25) is solvable as a search
problem with 1 DOF about the translation direction wcj

on the plane is perpendicular to parallel lines.

5.2.2. Translation along the vp axis

In the second procedure of the translation estimation,
translations along the parallel line direction are esti-
mated. This procedure requires at least three nonparallel
lines. The camera translation vector tcj is represented as

tcj ¼ tp;cj þ xcj tv; (26)

where, xcj represents the distance of translation along
parallel line direction. Translations and nonparallel line
locations are optimized by minimizing the sum of repro-
jection errors in Equations (27)–(29).

et2 ¼
Xnl
i

1� qi;cj
Tg0i;cj

� �2

; (27)

qi;cj ¼
l0i � tcj þ scji di

k l0i � tcj þ scji di k
; (28)

scji ¼ (tcj � l0i)
Tdi

di
Tdi

: (29)

In those expressions, qi;cj is a unit vector crossed at a
right angle to the nonparallel line i from the viewpoint
cj. g0i;cj is a unit vector from the viewpoint cj to the non-

parallel line i. g0i;cj is calculated using the same proce-

dures as those described in Eq. (17). The relation
between these vectors is shown in Figure. 13. If no
errors exist, then these two vectors qi;cj and g0i;cj will be

Figure 12. Relation among 3D direction of parallel lines, basis vector, 3D location of the parallel line, a vector gi;cj, and the
translation on the plane.
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the same. However, in fact, these have different direction
because of various errors. The angle error is almost iden-
tical to a reprojection error.

When xcj , namely, translation from the initial view-
point c0 to the viewpoint cj, is determined, 3D line loca-
tions l0i are calculated in the same way as Equation (18).
Using the locations, Equation (27) at the other viewpoint
ck is solvable as a quartic function about xck . Therefore,
the translation estimation is a search problem with 1
DOF about xck . The optimum translations are estimated
by minimizing the following equation.

Et2(x
cj) ¼

Xnc
k¼1

et2(x
ck ): (30)

The proposed method can measure straight lines
using the processes described above. Moreover, edge
points are reconstructed to measure environments den-
sely. The edge point reconstruction is based on [26].

6. Experiments

We demonstrate the proposed camera movement estima-
tion using simulation data. All experiments are done with
off-line processing. The CPU is an Intel Core i7 975
(3.33GHz). In this experiment, the values of NVs ni;cj
and VP axes vcj are given. It is known which lines are
parallel. The camera movement includes a 3D rotation
and translation.

We first verified that the proposed method can
estimate the camera movements from 6 lines (three paral-
lel lines and three nonparallel lines). The number of
viewpoints is 10. The true values of NVs are given in
this experiment. The position relation between the view-
points and lines is shown in Figure 14. The red, yellow,
and orange axes show the camera coordinate system at
each viewpoint. Parallel lines are shown as green. Other
lines are represented as blue. The estimation errors of
camera movement and line measurement were within the
rounding error.

A local minimum naturally exists in the proposed
method. However, around the ground truth, Figure 15
shows that the evaluation values of Equations (16), (25),
and (30) are sufficiently low compared to other values.
Figure 15 shows an example of the evaluation value in
the rotation estimation. For that reason, local minimum
avoidance is easy for the proposed method. An example
of a computation time on the rotation and translation
estimation by the proposed method is shown in
Figure 16. The Figure shows that the computation time
is proportional to the number of viewpoints.

We verified the robustness of the proposed method
with noisy data. In this experiment, noisy NVs are given.
The noise implies an angle error between a given vector
and the true one. The noise follows a normal Gaussian
distribution. We evaluated estimation errors of the
camera rotations and translations using noisy data
including 0.01–1.28 deg angle errors on average. Input
data are 40 lines including 20 parallel lines acquired at
20 viewpoints. At each noise level, 100 trial runs were
conducted.

The estimation results are presented in Figure 17.
The rotation error in Figure 17(a) represents angle errors
between the axis of estimated camera coordinate system
and the true one. The translation error in Figure 17(b)
represents the percentage of the distance error between
the estimated camera location and the ground truth to
translation distance. These values are the average of 100
times trial runs.

Rotation estimation error was within the given noise.
The translation estimation error was within 1% against
translation distance when the given noise is within
0.16 deg. According to our camera calibration, the pro-
posed method can extract lines from an omnidirectional
image (the image size is 800 � 600 pixels) within
0.05 deg errors. Therefore, these results show that the
proposed method performs well in noisy data.

We compared the accuracy of the camera movement
estimation using the proposed method with that of a
common SfM using a bundle adjustment method. A bun-
dle adjustment method is well known as an optimization
of the camera movement. In this experiment, a common
SfM optimizes the camera movement using feature
points and lines that are the same as those of the
proposed method. This experiment is demonstrated in a
virtual environment as shown in Figure 18(a) to obtain
ground truth of the camera movement. Simulated omni-
directional images depending on the camera movement
are created from the structure and color information of
the environment (Figure 18(b)). The image size is
800 � 600 pixels. The created 51 images are used as
the input image sequence. In this experiment, the given
information is these images only. Feature points and
lines are detected automatically from the images. The
NVs and VP axis are calculated from the detected lines.

Figure 13. Reprojection error of a straight line.
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Not only feature points but also NVs are used for the
optimization by a bundle adjustment. The initial value
for a bundle adjustment is obtained using a framework
with eight-point algorithm and RANSAC [24].

The results of camera movement estimation are
shown in Figure 19 and Table 1. We compare the recov-
ered camera movements with the ground truth by align-

ing their movement distances and initial poses. In this
experiment, the ground truth of the initial camera orien-
tation and location are known because the experiment
was done in a virtual environment. The estimated camera
movement by the proposed method (green marks in
Figure 19) is close to the ground truth (blue marks in
Figure 19). The reprojection error of the proposed
method is within 0.5 pixels. Therefore, the result shows
that the proposed method can obtain the global mini-

Figure 14. The 3D camera movement and line position in simulation.

Figure 15. Evaluation value example in rotation estimation.

Figure 16. Computation time with the number of viewpoints.

Figure 17. Estimation errors with noisy data.
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mum. Although the same features are used for the exper-
iments, camera movement estimation error of a common
SfM is larger than the proposed method (Table 1). A
bundle adjustment can obtain the optimal solution on the
ideal situations. However, nonlinear optimizations, such
as a bundle adjustment, often fall into a local minimum
in the course of experimentally obtained results.

Figure 20(a) shows our verification of the proposed
method using real images in a textureless scene. Using a
mobile robot equipped with an omnidirectional cam-
era,800 images were acquired. The movement distance is
about 12m. The image size is 800 800 � 600. An input
image and a parallel detection result are, respectively,
shown in Figure 20(b) and (c). The computing time of
the line tracking was about 100ms per frame, KLT
tracker was 10ms per frame, and the parallel lines detec-
tion was 35ms per frame.

The result of the camera movement estimation and
line measurement is shown in Figure 21. The computa-
tion time is about 5min. An average of the reprojection
errors of lines is within 0.5 pixels. These results show
that the proposed method can estimate the camera move-
ment and measure lines precisely. The modeling result of
the textureless scene is shown in Figure 22. The model-
ing method is based on [27]. The corridor shape can be
reconstructed using the proposed method. However,

Figure 18. Virtual environment for evaluation of camera movement estimation.

Figure 19. Camera movement estimation results obtained using simulated images.

Table 1. Comparison of camera movement estimation results.

Proposed SfM Common SfM

(a) Rotation errors
Average [°] 0.119 0.177
Maximum [°] 0.298 0.350

(b) Translation errors
Average [%] 0.357 1.74
Maximum [%] 0.425 3.23
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Figure 20. Detection result of parallel lines from omnidirectional images of a textureless scene.

Figure 21. Results of camera movement estimation and line measurement in a textureless scene.

Figure 22. Modeling result of textureless scene.
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although parallel lines are detected, it is difficult to con-
struct correct shapes of border of the wall and the floor.
Correct patches are removed or false patches remain
attributable to dead angle of an omnidirectional camera,
and the difference during tracked frames of lines.
Improvement of the problem is an important task for our
future work. These experimentally obtained results show
that the proposed method is effective for the reconstruc-
tion of a textureless scene.

7. Conclusion

In this paper, we proposed a parallel line-based SfM for
textureless scenes. Camera rotations and translations are
estimated as a reasonable problem with 1 DOF using the
constraints from parallel lines. Therefore, the global opti-
mal solution is obtainable easily. Experiments underscore
the effectiveness of the proposed method.

As future works, the robustness of the line detection
should be improved. Illumination change makes the line
detection unstable. Moreover, we should generate a
framework of a parallel line-based SfM for a long image
sequence. The proposed method requires lines corre-
sponding along all images in an input image sequence.
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