Collision avoidance in multi-robot systems based on multi-layered reinforcement learning *

Yoshikazu Arai a, *, Teruo Fujii b, Hajime Asama b, 1, Hayato Kaetsu b, Isao Endo b
a Faculty of Software and Information Science, Iwate Prefectural University, Aza-Sugo 152-52, Takizawa, Takizawa-mura, Iwate 020-0173, Japan
b The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan

Abstract

It is important for a robot to acquire adaptive behaviors for avoiding surrounding robots and obstacles in complicated environments. Although the introduction of a learning scheme is expected to be one of the solutions for this purpose, a large size of memory and a large calculation cost are required to handle useful information such as motions of robots. In this paper, we introduce the multi-layered reinforcement learning method. By dividing a learning curriculum into multiple layers, the number of expected situations can be reduced. It is shown that real robots can adaptively avoid collision with each other and to obstacles in a complicated situation. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Collision avoidance; Reinforcement learning; Multi-layered learning; Local communication; Mobile robot

1. Introduction

To accomplish various and complicated tasks by multiple robots, Distributed Autonomous Robotic Systems (DARS) [1–3] have been studied actively. Collision avoidance is one of the most important functions of the mobile robots to carry out cooperative tasks in such systems. One of the most important abilities of the robots to realize robust collision avoidance is recognition of other robots. In the conventional works [4–6], collision avoidance behaviors are achieved in the form of planned paths on the basis of the information measured by ranging sensors. It is, however, difficult to recognize the moving objects only by those ranging data. In order to recognize the moving robots, the most effective way is to acquire their motion information by local communication. For this purpose, we have developed the local sensing device called “LOCISS (LOcally Communicable Infrared Sensory System)” [7]. By the LOCISS, each robot can recognize other robots and obstacles by communicating valuable information in the working environment. Based on this system, we can design and implement an algorithm for collision avoidance between two robots as predetermined behavioral rules [8]. For multi-robot systems, however, it is difficult to design appropriate rule sets by hand coding because complicated situations, in which three or more robots and obstacles exist in the short range, should be taken into account. In this paper, we introduce reinforcement learning as an adaptive behavior acquisition method in such complicated cases. We expand
this method into the multi-layered learning method to reduce the size of required memory space and CPU power and implement it onto actual robots. This is a kind of structured process in which each situation for learning is rather simplified in intermediate steps. The concept and the detailed procedures of the adaptive behavior acquisition and multi-layered learning method are presented in this paper, after the description of the rule-based collision avoidance. Finally, the acquired behaviors are verified through collision avoidance experiments using actual robots.

2. Rule-based collision avoidance using LOCISS

Each robot should detect the surrounding objects to avoid collision with them. For avoidance of moving objects such as robots, it is particularly important to recognize their motion. The LOCISS is a device which accomplishes local communication among multiple robots using infrared light. Using the LOCISS, robots can recognize multiple moving objects simultaneously. Since the LOCISS transmits the robots’ motion information, that is, moving direction and speed as well as unique ID number, each robot can recognize other robots’ motion easily and discriminate other robots and obstacles by receiving these information. When Robot-1 receives the ID number of Robot-2, it can recognize Robot-2 as shown in Fig. 1(a). When a robot receives its own ID number, it can recognize that the object is an obstacle because the transmitted signal is reflected by the obstacle as shown in Fig. 1(b).

The omnidirectional mobile robot which was developed at RIKEN [9] is shown in Fig. 2. The LOCISS is
mounted on the top of the robot. This system has eight transmitters and receivers located radially as shown in Fig. 3. The sensor number is assigned from 0 to 7 as starting from the heading of robot's motion. Every robot transmits these numbers as sensor codes by all transmitters to show its moving direction. Therefore, the robot can know the positional relation to surrounding objects as well as motion of robots by these information.

When surrounding objects are detected, robots should select appropriate behaviors to avoid them. In this section, a method selecting an avoiding behavior based on predefined rules between two objects is described. Behaviors are defined on the assumption that the robot moves at its maximum speed toward its goal when it detects no objects. Generally, a robot changes moving direction and speed to avoid objects which are on its path. The direction can be changed to the left or the right and the speed can be changed by accelerating, stopping and decelerating. However, the robot cannot avoid objects by acceleration because it moves at maximum speed according to the above assumption. Therefore, when two robots move in the same direction and one of them approaches behind another at faster speed, one has to adjust its own speed to another. This behavior is defined as "following". According to the above consideration, five kinds of behaviors, that is, "turning left/right", "stopping", "following" and "ignoring", are defined for the collision avoidance (Fig. 4). "Ignoring" behavior means to take no reaction even when collision warning is detected.

Two different sets of collision avoidance rules, i.e., for a robot and an obstacle, should be defined by using the above mentioned behaviors. The rule set for a moving robot is shown in Fig. 5(a). It is represented as a matrix for 64 patterns of situations which are defined by the combination of moving directions of two robots (8×8). The row S_r denotes the number of the sensor which received data from the surrounding robot and the column S_c denotes the sensor code which was transmitted from the other robot. When two robots approach each other into the communicable area of the LOCISS as shown in Fig. 5(b), Robot-1 receives the sensor code "7" of Robot-2 from sensor no. "1". In this case, Robot-1 refers to the row of "1" and the column of "7" in this rule matrix and applies "stopping" behavior. In the same manner, Robot-2 takes "ignoring" behavior on the row of "7" and the column of "1".

The rule set for a stationary obstacle is shown in Fig. 6(a). It is represented as a matrix for eight patterns of situations which are defined by the robot's moving direction. The row S_r shows the number of the sensor which received data from the surrounding obstacle. For example, when the robot approaches an obstacle
as shown in Fig. 6(b), the robot receives its own data as well as its own ID number from sensor no. "7". In this case, the robot recognizes that the detected object is an obstacle and applies "turning left" behavior referring to the row of "7" in this rule matrix.

When a robot applies a rule, the robot keeps taking the behavior while there are no changes of received data from the sensors. If received data are changed, it means a change of situation between the robot and the object. The robot takes the corresponding behavior based on the rule according to the change of received data. By repeating this procedure, the robot can go toward its goal by avoiding collisions.

3. Adaptive behavior acquisition

In the rule-based collision avoidance, it is difficult to give rules to robots when the number of robots increases, because the recognized situation becomes complicated and the combinatorial number of situations becomes very large. In order to avoid collision in such situations, it is necessary to introduce learning schemes to let the robot acquire adaptive behaviors by itself. We have introduced reinforcement learning for this purpose because it can execute without any teaching signals and large costs for calculation. The procedure of adaptive behavior acquisition based on reinforcement learning is shown in Fig. 7.

The avoiding behavior is defined as a combination of avoiding direction and speed. A score is introduced for each avoiding behavior in each situation specified by the input from the LOCISS as shown in Fig. 8.

Let S_{ij} be the score for an avoiding behavior which is defined by a combination of moving direction i and speed j. Then, the selecting ratio r_{ij} for the behavior is calculated by normalizing S_{ij} for scores of all the behaviors in the situation as

$$r_{ij} = \frac{S_{ij}}{\sum_m \sum_n S_{mn}}. \quad (1)$$

Using the selecting ratio, the robot selects the avoiding behavior in a probabilistic way. This means that the
behavior which has larger score is selected with higher probability.

The robot executes the behavior and evaluates it based on the result of execution using the function $E(t)$. Whenever a behavior is selected and executed, the score for the behavior is calculated by adding the newest evaluation value $E(t)$ incrementally, as

$$S_{\text{new}} = S_{\text{old}} + E(t).$$

(2)

As shown in Fig. 9, the behaviors are evaluated based on three criteria at time t, i.e., the summation of the distances from the robot to stationary objects $d_w(t)$, the summation of the distances to other robots $d_r(t)$ and the distance to the goal $d_g(t)$. Here, it is assumed that the distance to the goal can be calculated by the position data based on the dead-reckoning. The total evaluation function $E(t)$ is expressed as:

$$E(t) = \alpha \Delta d_w(t) + \beta \Delta d_r(t) - \gamma \Delta d_g(t),$$

(3)

where

$$\Delta d_w(t) = d_w(t) - d_w(t - \Delta t),$$

$$\Delta d_r(t) = d_r(t) - d_r(t - \Delta t),$$

$$\Delta d_g(t) = d_g(t) - d_g(t - \Delta t),$$

where $\Delta d_w(t)$, $\Delta d_r(t)$ and $\Delta d_g(t)$ are differences of the distances for Δt. α, β and γ are weighting coefficients for each criterion. Hence, the reward means the positive evaluation value, and the punishment means the negative value in the context of the reinforcement learning methodology.

In case the robot collides with surrounding objects by executing selected behavior, the score of the selected behavior is set to zero unconditionally for disabling the behavior. By repeating this procedure, the scores for suitable behaviors in the situation become large and the learning is proceeded.

To show the validity of the proposed method, a learning experiment was conducted in a simulation environment, which is shown in Fig. 10(a). There are two robots in the environment and the goal of each robot exists on the other side of each. The robot can move in eight directions in every 45° at discrete speed, that is, from 0 to 30 cm/s by every 10 cm/s, keeping its orientation constant. The robots approach each other

Fig. 10. Coverage of learning.
face to face to go toward their goals. Initial score values are set to be equal for the behaviors to all the directions on a speed and to be proportional to the speeds. \(\alpha \), \(\beta \) and \(\gamma \) are set to 50, 50 and 100, respectively.

Fig. 10(b) shows the transition of the ratios of selected avoidance behaviors. As a result, at about 800 learning steps, the behaviors converged into the following three behaviors, which had the largest three probabilities:
- Go straight at 10 cm/s.
- Turn right 45° at 10 cm/s.
- Turn left 45° at 10 cm/s.

In the learning steps from 0 to 500, ratios of three behaviors were very small because ratios of other behaviors with faster movement were large in this region. Although ratios of some behaviors grew drastically, these behaviors led to collision and their ratios were reduced to zero in order not to repeat collision. It is reasonable that behaviors with slower movement are learned to avoid the robots.

4. Multi-layered learning

To implement the proposed learning scheme onto a real robot, a memory large size is required for the storage of the score set because the number of situations is very large and the number of scores is in proportion to it. Fig. 11 shows the parameters used to accomplish adaptive behavior acquisition in this paper. The robot ID is used to discriminate robots and obstacles. If the recognized object is a robot, the behavior of the robot, that is, the moving direction and the moving speed should be considered. The direction of the detected object and the robot's own moving speed are used to recognize the relation between the object and the robot. The relative direction of the goal is important to show the direction in which the robots should go. The number of scores is represented by the product of the ranges of these parameters and is about \(1.8 \times 10^{15} \). When the score is represented by 1 byte, the size of the score set becomes unaffordable amounts, i.e., about \(1.8 \times 10^9 \) Mb. To reduce the size of the required memory and to make the learning process more structured, the concept of the multi-layered learning is introduced.

4.1. Concept of multi-layered learning

In the multi-layered learning method, the learning curriculum is divided into multiple layers. By limiting the number of parameters minimum for each layer, the number of situations in each layer is reduced drastically and the number of situations in whole layers is represented not as the product but as the summation of numbers in every layer. In this method, the result of the precedent learning layer must be reflected in the layers downstream because the learning has to be represented by an accumulation of experiences in situations which become complicated layer by layer. Therefore, the avoiding behavior which is selected in the precedent layer should be used as one of the inputs to the next layer.

4.2. Configuration of controller

Fig. 12 shows the flow of multi-layered learning. In this paper, the curriculum is divided into four layers, that is, movement toward goal, avoidance of a single object, avoidance with sensor groups and avoidance of multiple objects. In this figure, selectors of behaviors are represented as controllers in each layer. Namely, the aim of the learning is to construct these controllers.

The aim of the first layer is to acquire the behavior to go toward goal. There are no objects around the robot. The robot can go toward its goal without any interferences, recognizing the direction in which the goal exists.

The aim of the second layer is to avoid a single object. Only one object, that is, an obstacle or a moving
it is possible to reflect information from the sensor in this direction strongly on the result of learning in this layer. Inputs to this layer are three pairs of avoiding behaviors selected by controllers C_{oi} for three sensor groups.

The fourth layer is the final layer. The aim of the fourth layer is avoiding multiple objects with all the sensing information. Inputs to this layer are three avoiding behaviors selected by controllers C_{sj} for each sensor group in the third layer.

4.3. Improvement for size of memory space

The number of situations recognized in each layer using this method is as shown in Table 1. In the first layer, the number of recognized situations is defined by the robot's own moving direction (8) and speed (4), and should be 3.2×10^4. In the second layer, a motion of the detected robot which is recognized by its moving direction (8) and speed (4), or an existence of detected obstacle (1) is considered to recognize the surrounding situation. The number of situations recognized by each sensor is defined by this kind of consideration for the detected object and avoiding behaviors from the controller in the first layer.

<table>
<thead>
<tr>
<th>Layer</th>
<th>The number of situations</th>
</tr>
</thead>
<tbody>
<tr>
<td>First layer</td>
<td>8×4 $= 3.2 \times 10^4$</td>
</tr>
<tr>
<td>Second layer</td>
<td>$(8 \times 4 - 1) \times 32 \times 8 = 8.4 \times 10^3$</td>
</tr>
<tr>
<td>Third layer</td>
<td>$32 \times 32 \times 32 \times 3 = 9.8 \times 10^4$</td>
</tr>
<tr>
<td>Fourth layer</td>
<td>$32 \times 32 \times 32 = 3.3 \times 10^4$</td>
</tr>
<tr>
<td>Total</td>
<td>1.4×10^5</td>
</tr>
</tbody>
</table>
mean. General assumptions for the experimental setup are that the robot is simulated in the environment and the performance of the score is used to improve the performance of the robot. The performance of the proposed learning method is evaluated by comparing the performance of the proposed learning method to the performance of a baseline method.

5.2. Collision avoidance

The proposed method is effective in this kind of complex environment where the robot must avoid collisions with other objects. The proposed method is evaluated by comparing the performance of the proposed method to a baseline method. The performance of the proposed method is evaluated by comparing the number of collisions between the robot and other objects to the number of collisions between the baseline method and other objects.

5.3. Construction of score set

The proposed method is effective in this kind of complex environment where the robot must avoid collisions with other objects. The proposed method is evaluated by comparing the performance of the proposed method to a baseline method. The performance of the proposed method is evaluated by comparing the number of collisions between the robot and other objects to the number of collisions between the baseline method and other objects.

5.4. Experimental

The proposed method is effective in this kind of complex environment where the robot must avoid collisions with other objects. The proposed method is evaluated by comparing the performance of the proposed method to a baseline method. The performance of the proposed method is evaluated by comparing the number of collisions between the robot and other objects to the number of collisions between the baseline method and other objects.
real robots are the same as for the simulation environment described in the previous section.

In the environment for the experiment (shown in Fig. 16), there were four robots and a wall as an obstacle. Two pairs of robots were set face to face at a distance of 4.0 m. The lateral distance between two pairs was 2.0 m. The distance between a wall and Robot-3, 4 was 1.5 m. Goals of the robots were set at the start position of the counterpart robot in each pair.
Fig. 16. Environment of collision avoidance using a real robot.

Fig. 17 shows the trajectory in the experiment. This figure is drawn by plotting positions of each robot at intervals of 1 s. It is confirmed that four robots take left directions to avoid other robots. The symbols from A to H are added to explain situations of avoidance with the log of communication as shown in Fig. 18. In this figure, arrows mean the flow of received information by the robot from other robots. The filled area in the axis means that the robot receives its own ID, that is, the robot detects an obstacle. Results of two avoidance sequences are explained as examples. The former is the sequence from A to D (Fig. 17). The latter is the sequence from E to H (Fig. 17).

Fig. 19(a) shows an enlarged view of the trajectory from A to D in Fig. 17. At point A, Robot-2 moves in the left forward direction by receiving information from Robot-1 (Fig. 19(a) A). At point B, it is confirmed that Robot-2 moves approximately along the center line between the Robot-1 and Robot-3; Robot-2 detects these robots by receiving information from both (Fig. 19(a) B). At point C, Robot-2 avoids Robot-3 by moving along a parallel path based on communication from Robot-3 because Robot-1 has already gone away (Fig. 19(a) C). At point D, Robot-2 goes toward its goal because no robots are detected at all (Fig. 19(a) D).

Fig. 19(b) shows an enlarged view of the trajectory from E to H in Fig. 17. In this figure, it is confirmed that Robot-4 detects an obstacle by receiving its own ID at points E, F and G. At point E, Robot-4 can avoid Robot-3 without collision with the wall (Fig. 19(b) E). At point H, Robot-4 goes toward its goal ignoring detection of Robot-3 because there are no risks of collision at this moment (Fig. 19(b) H).

Consequently, the collision avoidance using real robots is successfully accomplished by the proposed

Fig. 18. Log of communication between robots.
method. It is confirmed that the proposed method is useful in multi-robot system.

6. Conclusion

We propose a new collision avoidance method for actual multiple robots based on reinforcement learning. The robot can reflect many information acquired by local communication on a behavior selection and select adaptive behaviors in a complicated situation. By dividing the learning curriculum into multiple layers, it is possible to reduce the required size of memory space and to implement the learning scheme for collision avoidance to actual robots. It is shown that a robot can avoid collision with surrounding robots and obstacles in a realistic environment through the experiment with four robots and a wall. For future work, the combination of the method with global path planning should be discussed to solve deadlock problems which could frequently occur when the robots work in an environment with complicated topography.

References

Yoshikazu Arai received B.E. and M.E. degrees in Information and Computer Sciences from Toyo University, in 1993 and 1995, and a Ph.D degree in Production Engineering from Saitama University, in 1998, respectively. He is currently a Research Associate of the Faculty of Software and Information Science at Iwate Prefectural University. His research interests are distributed autonomous robotic systems. He received a Best Paper Award at the 4th International Symposium on Distributed Autonomous Robotic Systems (DARS’98) in 1998. He is a member of IEEE, JSME and RSJ.

Teruo Fujii received B.E., M.E. and Ph.D degrees in Naval Architecture and Ocean Engineering from the University of Tokyo in 1988, 1990, and 1993, respectively. He served as an Associate Professor of Glove Engineering at the Institute of Industrial Science, University of Tokyo from 1993 to 1995. He is currently with the Biochemical Systems Laboratory at the Institute of Physical and Chemical Research (RIKEN). His research interests cover distributed autonomous robotic systems and Microbiochemical systems. He is a member of AAAS, IEEE, and INNS.

Hajime Asama received B.E., M.E., and Ph.D. degrees from the University of Tokyo in 1982, 1984, and 1989 respectively. He joined the Chemical Engineering Laboratory of the Institute of Physical and Chemical Research (RIKEN) in 1986, and is currently a senior scientist of the Department of Research Fundamentals Technology and Biochemical Systems Laboratory, and the leader of the Extreme Conditions Mechatronics Team of RIKEN. He was also a visiting professor of the Cooperative Research Center of Saitama University in 1998. He received the Promotion of Advanced Automation Technology Award in 1992, the JSME Robomoc Award in 1995, the JSME Best Poster Award in 1996, the RoboCup-97 Engineering Challenge Award and the RoboCup-98 Japan Open JSAI award as a member of the UTTORI United Team. He played an editorship of “Distributed Autonomous Robotics Systems” and its second volume which were published by Springer Verlag, Tokyo in 1994 and 1996, respectively. His main interests are distributed autonomous robotic systems, cooperation of multiple autonomous mobile robots, maintenance robots, and intelligent bioprocess systems. He is a member of RSJ, JSME, IEEE, the New York Academy of Science, etc.

Hayato Kaetsu studied at the Science University of Tokyo from 1968 to 1971. He joined the Institute of Physical and Chemical Research (RIKEN) as an Engineer, in 1971, and is currently a Senior Engineer of the Biochemical Systems Laboratory at RIKEN. His research interests are distributed autonomous robotic systems. He is a member of JSME, SICE and AESJ.

Isao Endo received B.E., M.E. and Ph.D degrees in Chemical Engineering from the University of Tokyo, in 1965, 1967 and 1970, respectively. He served as a research scientist from 1970 to 1983, as a senior scientist from 1983 to 1985, all of the Chemical Engineering Laboratory at the Institute of Physical and Chemical Research (RIKEN). He is currently a chief scientist of the Biochemical Systems Laboratory at RIKEN. He is also a visiting professor of the Department of Production Engineering at Saitama University. His research interests are robotics, biochemistry, bioprocess engineering and interdisciplinary. He received a Distinguished Paper Medal from The Society of Chemical Engineering, Japan, in 1978, the Ichimura Prize in Industry – Meritorious Achievement Prize from the New Technology Development Foundation (The Ichimura Foundation), Japan, in 1993, and a Honorable Dr. of Engineering from Helsinki University of Technology, Finland, in 1994. He is a regional editor of “The Bioprocess Engineering” (Springer Verlag, Berlin) and “The Bioseparation Engineering” (Kluwer Academic, Inc.). He is a member of the New York Academy of Science, ACS, AICE, AAAS and Engineering Academy of Japan.