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DISTRIBUTED GUIDANCE KNOWLEDGE
MANAGEMENT BY INTELLIGENT DATA
CARRIERS

D. Kurabayashi,* K. Konishi,** and H. Asama***

Abstract

. The authors built a device and algorithm to implement au-
tonomous robots that can enhance efficiency through autcnomous
knowledge acquisition and sharing. They also propose a quantita-
tive —aluation algorithm of task execution by autonomous mobile
rot In the robotic system, the intelligent data carrier (IDC)
provides knowledge of guidance for autonomous mobile robots. An
IDC summarizes fragments of knowledge from individual robots and
reports the best direction to a destination that a robot wants to go.
Based on a stochastic model, the authors establish a function to
evaluate effectiveness of knowledge management by the IDCs. They
also describe an algorithm to arrange layout of IDCs by relaxed
problem solution.
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1. Introduction

Currently, researchers are trying to create a robotic system
that can function in any general environment. Realization
of autonomous task execution would be especially advan-
tageous in hazardous environments. Most robotic systems
require a model environment in order to execute tasks effec-
tive  Autonomous robotic systems should create models
of the environment by themselves. However, such tasks are
not easy for current autonomous robots because they have
only limited ability to sense and thus survey the environ-
ment. In such cases, the method of knowledge acquisition
and sharing becomes very important.

Some researchers have proposed local communication
methods for enhancing communication between robots [1-
4]. In previous related studies, only robots kept the knowl-
edge. Let us consider what takes place on the ground: ants
forage effectively by pheromone trails, dogs claim territory
by smell. Social creatures improve the efficiency of their
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actions by storing information in the environment. Simula-
tion studies by Drogoul and Feber (5] have suggested that
pheromone trails are very effective for completion of itera-
tive transportation tasks to be performed by autonomous
agents. This kind of data storage and communication
gystem can be applied by creating model environments
for robotic systems for the sharing of knowledge and for
cooperation.

We have proposed a device that enables local com-
munication; we refer to the device as an “Intelligent data
carrier” (IDC) (Fig. 1). We have developed not only such a
device but also algorithms to enhance the efficiency of task
execution performed by autonomous robots via knowledge
sharing and acquisition through the intelligent data carrier
system in particular environments.

Figure 1. An overview of local communication by the IDC.

This work focuses on multiple robot guidance system
using IDCs. Each robot can work without a global map
of the work area by sharing the information of the map
through IDCs that are arranged in the work area. We de-
note an algorithm via which robots autonomously acquire
and share knowledge for guidance. Simulation results show
that the IDC can navigate robots effectively. We introduce
the hardware and algorithm as Part 1.

There is, however, no algorithm for arranging IDCs
such that each robot works the most effectively. In or-
der to provide the algorithm for placing IDCs, this article
proposes a mathematical model of behaviour of multiple
robots with IDCs. The aim of this study is to provide
an algorithm such that multiple robots arrange IDCs au-
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tonomous under the unknown environment. It is, however,
difficult to provide such an algorithm. Therefore, as a first
step in providing such an algorithm, this article deals with
the IDCs arrangement problem under the known environ-
ment in part 2. The IDCs arrangement problem considered
here is to find the optimal arrangement such that each
robot can reach the directed destination in the work area.
The work area is formulated as a graph and a matrix, and
the problem of finding the optimal arrangement of IDCs
is formulated as the problem of minimizing the maximum
eigenvalue of the matrix. A numerical example shows that
the optimal arrangement of IDCs can be obtained quickly.
This article is organized as follows. Section 2 explains
IDCs and the robot guidance system. We propose an algo-
rithm for autonomous robots to acquire and share knowl-
edge of guidance. Section 3 provides the mathematical
model for the behaviour of robots with IDCs in the work
area. We create a mathematical model to analyze the
ehaviours of robots and to evaluate the efficiency of the
proposed algorithm. In Section 4, the IDCs arrangement
problem is formulated. We denote an algorithm and a
numerical example of the problem.

Part 1: Distributed Guidance System for Au-
tonomous Robots

2. Autonomous Knowledge Acquisition and Shar-
ing

2.1 Intelligent Data Carrier System

We have developed an intelligent data carrier (IDC) [6-7]
to reduce the traffic of global communication by providing
local communication links and local information manage-
ment functions. By reading information and writing it into
the IDCs, robots can use IDCs as media for inter-robotic
communication.

Figure 2. The prototype of the IDC system. (a) A tag. (b)
A reader/writer. (c) Cover and portable system.

The IDC system consists of portable information stor-
age (tags) and read-write devices carried by the robots
(Fig. 2). Tags are usually referred to as an IDC. A tag has
its own CPU, memory, and battery. A user can download
and execute original program into the tags. The specifica-
tions of the IDC are shown in Table 1. By placing the IDCs
in specific locations in a particular environment, robots can
allocate functions to act as agents for information storage
and management (Fig. 2(c)). The communication range is

up to 3.0 [m].
Table 1
Specifications of the IDC
Media Electromagnetic Wave
Frequency 290, 310 [MHz]
Memory 32 bytes
Modulation ON/OFF keying
Data Rate 1200 [bps]
Power Source a Li-ION battery (3.6V)
Size tag: 110 x 65 x 25 [mm)]
reader/writer: 195x130x50 [mm]

2.2 Problem Settlement

In this work, we consider iterative transportation tasks
(e.g., [8]). A robot has to carry objects to given desti-
nations. We posit an environment in which several des-
tinations are located. When a robot achieves the desired
destination, it receives instructions regarding the next des-
tination and then continues with the task at hand.

We assume that robots do not have maps, because a
fixed map, made by humans, may decrease the flexibility
of autonomous robotic systems. We consider adaptability
to unknown environments crucial. We assume that a robot
consists of the following characteristics.

e A robot does not have a map and does not estimate its
global position.

e A robot can sense walls and distinguish paths, junc-
tions, and destinations. It can also distinguish
branches at junctions.

e A robot can remember the last visited destination and
count, in steps, the duration of running time.

A robot cannot understand its global position, but it
can understand the local situation around it.

In this example, we assume that the transportation
task is as follows.

e A robot is given only the ID number of a destination.
When a robot arrives at the destination, it receives
another destination ID at random.

e The work area is a maze-like environment that consists
of square cells and walls (Fig. 3).

® A robot can move to neighbouring cells, but only one
step at a time.

e We do not consider cases of collisions among robots.
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[0] A destination
A junction

Figure 3. An example of a work area.
2.5 .ulgorithm to Acquire and Share Knowledge

In this section, we propose an algorithm to build knowl-
edge for guidance autonomously. A robot should select
feasible branches at junctions, branches that lead to the
shortest path to its current destination, for effective trans-
portation is the goal. We set IDCs at junctions to facilitate
autonomous robots’ decisions. Robots can store and share
their fragments experience by the IDCs. A robot does not
need to estimate its global position if a robot can obtain
sufficient knowledge from an IDC.

As we assumed, a robot does not know its global
position. Thus we propose an algorithm to locate where
branches connect at junctions to expected destinations.
This proceeds according to the last visited destination and
entered branch. For example, when a robot, which has
started destination 1, enters a junction through a southern
branch, we can expect the southern branch may lead us to
destiration 1. ‘

. describe the data structure of an IDC in Fig. 4. At
the initial state, no valid data are recorded. When a robot,
enters a communication area of an IDC at a junction, it
reports the branch of entry, the ID number of the most
recently visited destination, and running step measured
from the destination to the IDC.

Branch  Status Recorded Steps
19 [step] |
Destination 1] 8 {step] |
Branches S Path }—{ Destination 115 [sep]
(Distinguished by =
the cardinal polnts) ; - Destination 3[21 fstep)

Figure 4. Data structure in an IDC.

When the IDC has already received data about the
same destination in the same branch, it compares the
current running step with a former one. If the new one is
shorter than the former, the record is renewed.

When a robot wants to go to destination 1, it should
choose a branch leading to the fewest numbers of steps
from the destination. In the example of Fig. 4, the robot
should choose the W (western) branch. We implemented an
algorithm of probabilistic branch selection. The procedure
of the algorithm is as follows.

1. When a robot cannot communicate with an IDC at a
junction, it chooses a branch at random.

2. A robot whose destination is j approaches a junction
that has m branches. We describe recorded steps from
destination j in branch { € m as ¢;;. We can find four
items of data, tyy = 8, twz = 19, tg; = 15, ts3 = 21,
in the example shown in Fig. 4.

3. When the IDC has no record of destination j, the
robot chooses a branch at random.

4. When the IDC has one or more branches that contain
records about destination j, it calculates s;5 = ;%,- If
branch 7 has no record about destination j, set 8,4 = 0.

5. Calculate probability p;; to choose branch i as in
equation (1). Ppj, denotes a fixed probability that a
robot chooses a branch randomly.

8--
pij =(1 —Pmln)—z':%sij' + &:ﬁﬂ (1)
3

2.4 Simulation Results

We verify the effectiveness of the proposed algorithm by
simulations. We evaluate the number of achieved desti-
nations in constant steps. We assume the environment
shown in Fig. 3 and make simulations with or without
IDCs at the junctions. A robot works for 1,000 steps. We
set Ppip = 0.10. We set IDCs in all junctions in the case
of applying IDC and the proposed algorithm.

Fig. 5(a) shows results by single robot. We can see
that the proposed algorithm with IDCs achieved about
600% more destinations than without IDCs, although we
did not give robots any knowledge about the environment
in advance.

Fig. 5(b) and 5(c) compare of simulations by a single
robot and four robots. The environment of Fig. 5(b) hasno
IDC, but that of Fig. 5(c) has IDCs at all junctions. The
thin line in both figures denotes the number of achieved
destinations by single robot, and the thick line illustrates
the average number of four robots.

When robots cannot use IDCs, the thin and thick lines
are almost the same. When robots can obtain and share
knowledge of guidance by IDCs (Fig. 5(c)), the average
of the four robots is about 10% higher than the result of
the single robot. Four robots can acquire knowledge for
guidance much faster than a single robot does. Those re-
sults suggest that the proposed algorithm and IDC system
realized implicit cooperation among autonomous robots
without explicit communication nor a priori knowledge.
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Figure 5. Comparison of task execution. (a) Single robot.
(b) Four robots, without IDC. (c) Four robots, with IDC.

2.5 Implementation and Demonstration

We applied the IDC system and the proposed algorithm to
an actual robotic system. We attached the IDC system to
an omni-directional autonomous mobile robot [9], shown
in Fig. 6. The system was developed by the authors.
This robot has its own computer with an MMX Pentium
(200MHz), 16MB memory, and an ISA bus (Table 2). It
is equipped with infrared sensors [10], which are located in
the silver circle at the top; a gyro is placed on the robot
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so that it knows its orientation. It runs at 0.04[m/s] with
four Pb batteries.

IR Sensors

M Reader/Writer

Figure 6. An autonomous omni-directional robot.

Table 2
Specifications of Mobile Robots
Robot Size 0.42 x 0.42 x 0.70 [m]
CPU MMX Pentium 200 [MHz]
Sensor IR sensors, a gyro
Running Speed 0.04 [m/s]
Batteries 12V 5Ah x 4

We configured an experimental environment that was
surrounded by walls (Fig. 7). There were two junctions
in the environment. The robot kept its distance from the
walls by reactive motions dictated by the infrared sensors.
The infrared sensors were also used to locate deadends and
junctions. We placed two IDCs at each junction and four
IDCs at each deadend (Fig. 7(b))

3.0([m)
s £
|Deadend i uncson B| Dejtnation 1
= \‘ S
Destinatign 0 Y unction A Deadend |
] =

Bl 1DC (For deta stiruge)
B3 IDC (For notification of sres No.)

Figure 7. The experimental environment.
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The robot ran for 40 steps (about 25 minutes) per
experiment. We conducted experiments with two IDCs,
one IDC, and without IDC. Fig. 8 indicates trajectories of
a robot in a train diagram. The “©" in the figure repre-
sents the achievement of a destination. We evaluated the
achieved number after 40 steps (Fig. 9). The robot driven
by the proposed algorithm improved motion by utilizing
knowledge from IDCs in the junctions. The experimental
robot achieved six destinations. The robot without access
to an IDC achieved only three destinations, because it
had to choose a branch randomly at each junction. The
effectiveness of the proposed algorithm can be increased if
robots are allowed to run for more steps, because robots
can make mistakes at the beginning, when each IDC has
not yet accumulated knowledge.
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Figure 8. Comparison of trajectories of the robots.
(a) With IDC. (b) Without IDC.
8
—0— with IDC
61 =< without IDC )
4-

000 O OO
4

Number of achieved target

40

Step

Figure 9. Number of achieved targets.

The experimental results suggest that the proposed
algorithm and system can perform in an actual robotic
system.

2.6 Discussion

Although we assume only fixed (static) environment, ap-
plications in dynamic environments are demanded. Adap-
tation of the proposed algorithm to dynamic environments
is still open to problems, because each independent IDC
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has to decide the validity of its information. The authors
have proposed a heuristic algorithm [11] by which an IDC
decides whether it should renew its current data or not. In
the algorithm, we apply a logistic function, which derives
probability to delete data according to steps reported by
robots. In the proposed algorithm [11], an IDC decides
whether it deletes current data or not according to the
following procedures and equations.

1. A robot r starts from previous destination ¢ and pro-
ceeds to a new destination j. After ¢, steps from
destination 4, it meets IDC k and reports the steps.
When the IDC & has knowledge about both i and 7, we
denote them d; and dj, respectively. When the IDC &
does not have both, skip step 2.

2. According to current data of IDC k, we expect that
the robot r can reach IDC k by d; steps and will arrive
at j after d; steps when there are no changes in the
environment. So we compere ¢, with d; and d; to
calculate probability p4.; to erase the IDC’s current
knowledge. We apply logistic function (2) to calculate:

e (te—(di+dy+d?))
Pia =K 1 + emr—(dtd;+ )

2

Equation 3 determines m, which results in ps; = 0.01
when ¢, = d; + d;:

log99
d

3

m=

3. When the IDC does not erase its knowledge, it obtains
data from and suggests a direction to the robot as in a
former algorithm.
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Figure 10. A heuristic algorithm [11] for dynamic environ-
ments.

We use simulations to verify the effectiveness of this
algorithm. In the simulations, we set K = 0.5 and
Pmin = 0.01, and applied 10 robots. As a dynamic envi-
ronment, we exchange locations of destinations in Fig. 3:
1—42,2—-3,3-0,0— 1. We execute each simulation
for 10,000 steps. We set four conditions, where we exchange
destinations 1, 5, 10, and 20 times (during 10,000 steps),
respectively. Figure 10 compares of achieved destinations.
The algorithm for fixed environment (proposed in Section
4) performs very well when locations of destinations are
hardly exchanged. However, in dynamic environments its



performance becomes quite low. In the condition where
we exchange destinations 20 times, it achieves fewer des-
tinations than robots did by random motion. In contrast
to the result, the heuristic algorithm introduced in this
section can maintain its performance where locations of
destinations are frequently exchanged.

The proposed algorithm also has applicability to an
environment in which IDCs are not located in all junctions.
In other words, the proposed system can function flexibly
if some IDCs are broken.

In the next section, we analyze performance when there
are some junctions without IDC tags in a map. Based on
the analysis, we calculate optimal layout of IDC tags in
Section 4.

Part 2: Evaluation and Arrangement of the Pro-
posed System

. Performance Evaluation by a Stochastic Model

3.1 Formulation

In this section, we formulate the effects of knowledge
sharing and establish a method of evaluating autonomous
robotic systems with the IDC system. We estimate ideal
performance of knowledge sharing with IDCs as a perfor-
mance index of the proposed algorithm. We calculated the
expected number of steps needed to reach the given desti-
nations. In order to analyze the behaviour of robots with
IDCs, a stochastic model was introduced. The positions of
robots were described by a state equation.

First, let us consider the cases lacking IDCs. We can
assume that the work area of robots is divided by grids,
as shown in Fig. 11(a). The work area itself is described
by an undirected graph, as shown in Fig, 11(b). The
stochastic model is given based on the graph, as follows:

1 2 3 5

4
Ordered
Destination

{a)

(b)

Figure 11. Example of evaluation model. (a) Layout of a
work area. (b) Undirected graph.
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z(t +1) = Az(t) ()

z(t) = [z1(t)z2(t) - - - za ()T (8)
In the above equations, z; denotes the probability that

a robot is in the ith node of the graph at step ¢. Therefore,
z; must satisfy 0 < x < 1. A = (a;;) denotes the state
transition matrix and a;; describes the probability that
the robot in the jth node moves into the ith node. The
robot that arrives at the given destination, stops, and stays
there. We assume here that these robots disappear from
the work area. Hence, if the given destination is Ith node:
ap=0i=0,1,---,n (6)
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In any case, the maximum eigenvalue of A is smaller
than 1, and it is clear that z — 0 as ¢ — oo.

Next, let us consider the case that employs IDCs. In
the node with an IDC, a robot can obtain information
about a branch to a desired position; therefore, such robots
move exactly into the node that is close to the ordered
destination. In other words, such robots will move into the
next node with a probability 1.

[01000]
10000
A=|0}o001
00100
00000]

(8)

3.2 Evaluation Fungtion

Here, A; is a transition matrix that indicates transition of
a robot seeking destination k. We calculate expected steps
Ej that it will take to reach destination k.

E, = 322, cTz(t)
= T Yooy Ab2(0)
c=[11...1)

()

where z(0) indicates initial conditions, and 3°7 z;(0) = 1.

As a single work area may have several destinations, |
we evaluated the average of expected steps when a work
area has m destinations:
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We created a model for evaluation by employing a
simple Malkov model. A robot could proceed back and
forth on the model even when in the middle of a corridor.
Actual robots do not perform useless movements. We
introduce a directed graph to avoid the movements (Fig.

i

rigure 12. Arrangement of a work area,

3.3 Performance Evaluation

The performance of the proposed system depends on the
IDC layout. We considered 28 combinations for six junc-
tions in the map (Fig. 3). We evaluate performance of
transportation in each case by the use of simulations. We
compare the averaged number of steps to reach given desti-
nations. Figure 13 offers a comparison of the ideal number
of steps calculated by the proposed method with the ac-
tual number of steps obtained by simulation during 10,000
steps. The vertical axis shows averaged steps needed to
reach given destinations. The horizontal axis indicates
combinations of IDC layout possibilities. We sorted the
combinations according to ideal steps.

A robot driven by the proposed algorithm, described
in Section 4, had to acquire knowledge for guidance au-

ymously because IDCs have no data at the beginning of
the task. The comparison shows how much the overhead
of autonomous knowledge acquisition is.

120
(NoIDC) ~—=— Autonomous information acquisition
—o— Evaluation of ideal steps
100+
« | (1IDQ)
80°
a (21IDCs) (6 IDCs)
% 604
(31DCs) (5IDCs)
40 -
{4 IDCs) \
20 l&:&-%‘
0
Layout of IDCs

Figure 13. Evaluation of the algorithm to acquire guidance
information by autonomous agents.

The robot in simulations payed +28% steps on average
to reach a desired destination. The standard deviation, o,
was 0.173. We evaluated that the proposed robotic system
with IDCs pays +28% steps for autonomous knowledge
acquisition and sharing.

Figure 13 also illustrates the robustness of the pro-
posed system. The proposed system has two aspects of
robustness. One is the robustness against failures of robots
because the environment itself keeps knowledge. Even if
a new robot is applied when some robots are broken or
move to other places, it can perform the same as the for-
mer robots can.. The other aspect concerns the failures of
IDCs. IDCs are distributed and work independently; we
can see the performance when we remove some IDCs at
junctions in the environment shown in Fig. 3. If one of six
IDCs is broken, the system still achieves more than 75% of
destinations. Even if half of six IDCs are removed, the sys-
tem retains about 41% achievement of destinations, which
is about three times as much as the case without IDCs.
Additionally, we only have to replace a broken IDC with a
new one to restore the performance of the system because
robots autonomously construct guidance knowledge by the
proposed algorithm.

4. IDCs Arrangement Problem

This section deals with the IDCs arrangement problem. It
is best that we allocate IDCs in all nodes; however, we have
to choose only some nodes to put IDCs because there are
not enough IDCs. Therefore, IDCs should be arranged so
that each robot can reach the directed destination as soon
as possible.

The original arrangement problem takes combinatorial
order calculation time, which is hard to solve. In this
section, we introduce relaxed form so that we obtain results
in a polynominal time.

4.1 Problem Formulation

It is important to evaluate the fitness of arrangement of
IDCs. In this work, the fitness of arrangement of IDCs
is considered as quickness of convergence of z(t) in (4).
The quickness of convergence z depends on the maximum
eigenvalue of A, Thus, the IDCs arrangement problem
considered here is finding the arrangement of IDCs that
minimizes the maximum eigenvalue of A.

We assume that there are X IDCs and m nodes on
which IDCs can be put. Then, there are ,,Cx ways to
arrange the IDCs. As mentioned in Section 3, the state
transition matrix A depends on the arrangement of IDCs,
and therefore it is necessary to find the best state transition
matrix A out of ,,, Cy candidates, which we describe as a set
A. Hence, the IDCs arrangement problem is formulated as
follows:

Minimize A(A) subjectto A€ A (11)

where A(+) denotes the maximum eigenvalue.



4.2 Relaxed Problem

The optimization problem described by (11) is combinato-
rial problem that is difficult to solve. In order to overcome
combinatorial difficulties, we introduce the relaxed prob-
lem [12]. The following problem is the relaxed problem of
(11):

Minimize A(4) subjectto A € A, (12)
f A= (ay),
) . bij=ai;; V¢ N,
Az‘Aea“":i)ﬁ=IV€N,’ (13)
=1
| 0<a;<1 )

where A is an index set of candida'be‘s for the node where .

IDC is put. The relaxed problem described by the above
equations can be solved quickly by the method based on
the interior point method [13]

It is clear that the following equation is satisfied be-
cause A € A:

Aﬂél& M4) < inf M(4) (14)

Therefore, the lower bound of A(A) and approximate
optimal solution can be obtained quickly.

After solving the relaxed problem, we have to estimate
the optimal solution of (11) from the solution of (12). Let
A* denote the optimal solution of the relaxed problem
(12). The approximate optimal solution can be obtained
by finding A € A that is close to A®. There is no guarantee
that approximate optimal solution obtained in this way is

"le best.

Step 1. Derive relaxed problem (12) from original
problem (11).

Step 2. Obtain A by solving relaxed problem (12).

Step 8. Find A € A that is close to A.

The state transition matrix A is usually given with
an unknown error. For example, when a robot finds an
unknown obstacle, A must contains a model error. Thus,
A naturally contains error AA as (15):

A= Ao+ A4A (15)
where Ay denotes the ideal state transition matrix, which
is unknown.

Recall equation (11). The state transition matrix A is
usually given with an unknown error. Let A} denote the
optimal solution derived by ideal state transition matrix
Ap; A® indicates 8 solution derived by A that contains
model error, and A* means the relaxed solution of (12). If
the following inequalities are established:

IAA") = A(45) < e (16)
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A(&3) - M(45)l < ¢ an

é<e

(18)

Then we can estimate the optimal solution of (11) from
the solution (12) with the tolerance e.

Let us consider the IDCs arrangement problem as
shown in Fig. 14. There are two IDCs that may put on
(a), (b), (c), or (d). Fig. 15 shows the graph of Fig. 14.
Then the state transition matrix is:

®
|1 [e]
@ @ O

@ Destination

Figure 14. Numerical example: Two IDCs are put on two
junctions among (a)—(d).

@ Destination

Figure 15. Graph exprécsion of the working field.
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