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Cooperative Transport by Multiple Mobile Robots
in Unknown Static Environments Associated
With Real-Time Task Assignment
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Abstract—This paper deals with a task-assignment architecture
for cooperative transport by multiple mobile robots in an unknown
static environment. The architecture should satisfy three features:
deal with a variety of tasks in time and space, deal with a large
number of tasks compared with the number of robots, and de-
cide behavior in real time. The authors propose the following ap-
proach: We consider the unit of task (task instance) as the job
that should be done in a short time by one robot. Based on envi-
ronmental information, task instances are dynamically generated
using task templates. The priority of task instances is evaluated dy-
namically based on the number of robots and the configuration in
the workspace. In addition, we avoid generating too many task in-
stances by suppressing object motion. The main part of the archi-
tecture consists of two real-time planners: a priority-based task-as-
signment planner solved by using a linear programming method,
and motion planners based on short-time estimation. The effective-
ness of the proposed architecture is verified by a cooperative trans-
port simulation in an unknown environment.

Index Terms—Cooperative transport, dynamic task domain,
multiple mobile robets, real time, task assignment.

1. INTRODUCTION

SYSTEM for handling flexible materials is in high de-

mand at places such as construction sites and distribution
centers. Many researchers (including the authors) have tried to
realize such a system by means of the cooperation of multiple
mobile robots [1}-[15]. This is because the robots can be dis-
tributed freely according to the various types of the objects. The
focus of these studies has been on the control and manipula-
tion processes. At places such as the above-mentioned ones,
however, robots have to detect changes in the geometry of the
surroundings on demand. However, the sensing process takes
a considerable amount of time because of the limited ability

Manuscript received March 12, 2001; revised March 28, 2002. This
paper was recommended for publication by Associate Editor L. Parker and
Editor S. Hutchinson upon evaluation of the reviewers’ comments. This paper
was presented at the [EEE/RSJ Intemational Conference on Intelligent Robots
and Systems, Kyongju, Japan, October, 1999, and at the 1EEE Intemational
Conference on Rebotics and Automation, San Francisco, CA, April 2000.

N. Miyata is with the Digital Human Laboratory, National Institute of
Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
(e-mail: n.miyata@aist.go.jp).

J. Ota and T. Arai are with the University of Tokyo, Tokyo 113-8656, Japan
(e-mail: ota@prince.pe.u-tokyo.ac.jp; arai@prince.pe.u-tokyo.ac.jp).

H. Asama is with the Chemical Enginecring Laboratory, Institute of
Physical and Chemical Research (RIKEN), Saitama 351-0198, Japan (e-mail:
asama@cel.riken.go.jp).

Digital Object Identifier 10.1109/TRA.2002 803464

RO

=
”4'7//////////5 ‘

¥ Removing

Fig. 1. Cooperative transport in an open environment,

of each robot’s sensor. Hence, to cope with unexpected situa-
tions and achieve the final goal of the robot group (to trans-
port a given object to a certain configuration), it is necessary
to plan and execute various tasks including the sensing process
as well as the manipulating process (Fig. 1). For example, in
order to handle an object, robots must recognize their own posi-
tions based on known landmarks. They must then search around
their surroundings adequately in order to detect unexpected sit-
uations as soon as possible. If a robot finds a movable object
like a trashcan or a door in its way, it has to change the object’s
path or remove the obstacles. When robots find a moving ob-
stacle (e.g., a human), they have to approach it and instruct it to
get out of their way.

In this paper, these various required actions of robots are
called “tasks.” When we focus on a task-assignment architec-
ture, there are three parts to consider (Sections I-A.1, I-A.2 and
I-A.3). First of all, robots have inadequate information about
their working space at the beginning of the whole work. The
task will be generated as a result of their action. From the view-
point of the “characteristics of a task™ in such work, the task
assignment planner should have the ability to deal with the fol-
lowing two aspects (Section I-A.1 and I-A.2).

1) Dynamic Change of Tasks: There are several kinds of
requirements for the robots to achieve their main purpose of
moving an object to a certain configuration, and not all of them
are always needed. Fox: example, a trashcan in the robots” way
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must be displaced at the time it is detected. That is, tasks change
dynamically according to the translation of the robot group.
Even though the required kind of task is the same, tasks that
arise in a different space are different in quality. For example,
searching an area that was previously checked by someone else
is different from observing an area that has never been observed.
Tasks, therefore, should be quickly abstracted, reflecting the sit-
uation that the robots are facing.

2) Too Many Tasks for Robots: Along with the change of
the tasks mentioned in Section 1-A.1, the total number of task
changes sometimes exceeds the amount of work that can be done
by the available robots. These tasks should be selected and exe-
cuted in the appropriate order. When determining an appropriate
execution order, it is necessary to consider the inherent charac-
teristics of each task against other different kinds of tasks. It is
also necessary to select and execute a cooperation task that can
secure an adequate number of robots from the available ones. In
addition, it is also important to prevent an overflow of task-in-
stance generation because it will lead to the bankruptcy of the
task assignment system.

On the other hand, these tasks should be solved when the
robots are moving in the working area. Therefore, from the
viewpoint of the planner of robots who move and work, they
should be realized.

3) Behavior Planning in Real Time: There are several styles
to transfer an object. One simple way is to push the object
without connecting the robots and the object. For example,
Kimura ef al. dealt with object manipulation by pushing in
space and considering a dynamic manipulability margin {1].
Mataric ef al. realized a box-pushing task using multiple
behavior-based mobile robots (2]. This style of transport is,
however, not applicable directly to a general environment and
manipulation because of its high dependence on the floor status.

Another style of transport is to use mobile manipulators.
Khatib used two mobile manipulators, controlling the inner
force between them [3]. Osumi introduced a passive joint
into the manipulators to absorb the robots’ positioning error
[4]). Desai proposed collaborative motion planning for the
mobile base and manipulator part {S). Research for this style of
transport mainly focuses on how to coordinate the motion of the
base and that of the manipulator under limitations. Though this
style of transport has the advantage of dexterous manipulation,
the control system becomes complicated.

The rest of the studies utilized wheeled robots with a simple
end-effector. Stilwell presented a transport system with many
ant-like homogeneous robots {6] and discussed how to distribute
the load among them [7]). Hashimoto ef al. realized the transfer
of a palletized object with 2 master-slave robot system [8]. They
also proposed a dynamic control method with couplers between
an object and each robot [9]. Kosuge et al. presented a method to
estimate and control the object motion in a decentralized robot
system based on information obtained by each robot’s torque
sensor [10]. They also extended their method to the cooperation
between robots and humans [11]. Wang er al. realized the coop-
erative transport by pushing using a simple mechanism for each
robot’s arm to avoid too much internal force [12]. The focus
of these studies has been on control problems in manipulation,
such as methods to control internal forces. In contrast to the
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above, some investigations (including the authors’) have pro-
posed an algorithm to change the robots’ distribution in cooper-
ative transport according to the surroundings [13}-[15]. These
studies focused on how to reflect information about the sur-
roundings in the planning but not on the process to get it.

As for the task assignment method for multiple mobile robots,
numerous trials have been carried out. One approach is to assign
a task based on negotiation through communication [16]-[19].
However, this approach takes much time in negotiation and is
not appropriate for motion decisions in real time.

Another approach is to assign a task using behavior-based
robots [20]-{23]. In the case of the first three, it is difficult to
express mutual dependency among tasks in terms of the order
(or timing) in which they must be executed. The last one is dif-
ficult to deal with the task that requires several robots to move
at once. Therefore, these methods are not applicable directly to
the real-time cooperative transport system that we are discussing
here. The optimal allocation problem has also been studied in
the research field of the Job-shop Scheduling Problem. How-
ever, most of them present difficulties of application to a dy-
namic task domain with frequent change.

Therefore, the aim of our research is to construct a task-as-
signment architecture that can be applied to tasks for coopera-
tive transport having the three characteristics described above.

The contents of this paper are as follows. In Section II, we
show the profile of the proposed task-assignment architecture.
In Section III, the contents of the task template and task as-
signment algorithm are explained. Section IV describes how the
tasks are implemented for simulations and an experiment. The
effectiveness of the proposed architecture is verified by cooper-
ative transport simulations in Section V and by an experiment
in Section VI. We conclude the paper in Section VII.

In this problem, we assume that the robots can communicate
among themselves.

II. TASK ASSIGNMENT

A. Architecture of Task Assignment

Just as surroundings might change, required tasks might also
change, as shown in Section I-A.l. Therefore, it is of no use
to spend much time on planning optimal motion based on the
estimation of detailed behavior. Rather, it is necessary to assign
tasks and plan each robot’s motion in real time according to the
brand new sensory information.

We believe that cooperative transport can be expressed and
achieved by limited kinds of tasks. Let us divide a time axis into
a short sampling period and consider the unit of task as a detailed
action that should be done by one robot in one or several periods
of time (we call this a task instance).

Once the task instance is assigned, detailed motion can be
planned for each task in the motion planners embedded in the
architecture. Any algorithm can be used for the motion planner
that is already in use, or a newly developed one. Then, the point
of the task assignment problem is to determine which task in-
stance to select for each robot. If an assignment candidate can
be evaluated appropriately, optimal combinations of each robot
and a task instance are derived fast in the form of what we call
an “assignment problem.”
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Fig. 2. Architecture of the task-assignment system.

When evaluating candidates, the constant factor and the dy-
namic factor should be considered. The constant factor is the
execution order that is determined by the characteristics of the
task. For example, some kind of task should be executed before
another task to make sure that the executed results affect the sit-
uation properly. Dynamic factors consist of two indices. One is
the index that reflects whether there is an adequate number of
robots for cooperation. The other is the one calculated based on
the time and spatial distribution of task instances and robots.

Accounting for the above, we propose the architecture shown
in Fig. 2. This architecture works in the following manner:
Step 1-Step 7 will be repeated at a constant sampling rate.

Confirmation of the number of robots that are avail-
able for a new assignment.

Integration of the environmental information re-
ceived from each robot.

Task-instance generation by inputting environ-
mental information into the task template.

Task assignment based on dynamic priority.
Motion planning for each task.

Step 6) Deletion of unassigned task instances.

Step 7) Execution by each robot.

The designer should prepare a “task template” and a “motion
planner” independently for each task. The former is to generate
task instances by estimating the kind and amount of required ac-
tion in the next sampling cycle (the kinds of tasks, the priority,
and the number of robots) based on the environmental informa-
tion. Details of the task templates are provided in Section I1I-B.

Step 1)
Step 2)
Step 3)

Step 4)
Step 5)

The latter is to plan the detailed motion of the robots that
are assigned to the task during the next sampling cycle. For ex-
ample, as the motion planner for a task such as “handling an
object,” we can apply our previous work on transport [15]. Be-
tween the motion planners exists a contrivance to suppress the
object’s translation depending on the progress of other tasks.

As we mentioned at the end of Section I, communication
among the robots is basically assumed to be feasible. If the
communication from a certain robot fails in Step 1, the robot
is regarded as not existing. That is, the number of the available
robots decreases during that sampling cycle.

B. Problem Solution by the Proposed Method

Here, we explain how this architecture solves the three char-
acteristics described in Section 1.

For dynamic change of tasks, task instances are generated in
each cycle by inputting environmental information into the task
templates that are prepared for each task. This enables us to
express the dynamic change in the kind and volume of the task.

For too many tasks for robots, task-instance generation and
assignment are performed with a dynamic calculation of priority
based on the inherent execution order and the environmental
information. Unassigned instances are deleted once but could be
generated afresh and assigned. This means that our architecture
offers the mechanism to solve problems sequentially from the
basis of the executable ones.

In addition, utilizing the aspect that the tasks arise along with
the translation of the robot group, the motion planners suppress
the object’s translation depending on other tasks’ progress. This
will work to suppress the generation of too many task instances
meaninglessly.

For behavior planning in real time, required action is ex-
tracted in the form of a task instance that can be performed in a
short time by one robot. We also offer the way to calculate each
instance’s priority. This enables us to formulate the task assign-
ment problem as an “assignment problem.” Dividing the time
axis into a small period of time also simplifies the motion plan-
ning problem by reducing the cost of estimating a complicated
motion. Therefore, the planning can be made in real time.

As for the sampling cycle, a shorter sampling cycle is more
preferable from the viewpoint of the response of the robot
system to the change of the surroundings. On the other hand,
each sampling cycle should be long enough to plan how to
behave in the next cycle, to transmit this result to all the robots,
and each robot to operate its hardware element to achieve the
assigned task. It should be determined, therefore, as short as
possible, satisfying the constraint to exceed the summation of
the following: the time to calculate, the time to communicate,
and the time to operate hardware elements to achieve minimum
number of tasks.

Continuity and consistency of the physical motion of the
robot group is basically considered and guaranteed in the
motion planners. In addition to this, a certain kind of task is
preferred to be stably assigned to the same robot for a while;
that is, we should avoid meaningless switches of the assigned
task (a chattering) and a deadlock consequent on the chattering.
Our system, therefore, allows two kinds of task instances
from the viewpoint of the time to be completed: the one that
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takes one sampling cycle and the one that takes more than one
sampling cycle.

11I. TASK TEMPLATE AND ASSIGNMENT ALGORITHM
A. Task in Assignment

As explained in Section I, we regard various required
actions of robots as “tasks.” In cooperative transport, typical
examples of tasks are the following: ¢1) handling an object;
12) recognizing own position by measuring known landmarks;
13) searching around; and #4) displacing movable objects. In
order to execute each task, a robot controls itself to *“act” and
to “sense.” Therefore, these tasks can be classified into three
groups according to a robot’s “acting” and “sensing™ ability:
group 1 requires only “acting” (¢1); group 2 requires only
“sensing” (12, 13); and group 3 requires both of them (¢4). This
means that if there is no restriction among those groups, a robot
can perform a task from group 1 and one from group 2 at the
same time.

B. Task Template

Task templates are used to generate task instances by
inputting sensory information. Each instance is in the form
corresponding to one robot. These instances are assigned to free
rabots that have finished the instances already assigned to them.
In the process of instance generation, therefore, task templates
refer to the number of those free robots (Ngreeroh) to determine
the total number of instances to generate. N eeroh might change
every sampling time according to the surroundings. The way
to determine each factor of the task template will be explained
in Section IV.

C. Assignment Algorithm Using Priority

We introduce integer variables whose value is equal to 1 or 0,
according to whether a certain instance is assigned to a certain
robot or not. Then, the task assignment problem is formulated
as an extended form of what we call “assignment problem” and
can be solved in real time. On the other hand, as shown in Sec-
tion I11-A, the required ability of a robot differs from task to task,
and sometimes two kinds of tasks are assigned to one robot if
those tasks do not conflict in terms of a robot’s ability. Thus,
we use two variables: S;; for the ability to sense; and A,; for
the ability to act. In the case of the task instance that requires
both abilities, constraints are added to assign those instances to
the same robot. Here, we show the value and meanings of these
variables.

1, iftask instance 1 is assigned to
Aij(or Si;) = { robot j's "Sensing" (or "Acting")

0, otherwise

When there exist too many task instances compared to the

number of available robots, the system should execute task in-
stances with a higher priority level prior to the ones with lower
value. Even if some task instances are in a Jower priority level,
the assignment system also has to assign as many robots as pos-
sible. If the tasks are important, robots must be assigned inde-

|Task 'Imelate |

— Generation and Deletion

(a)
— Requm:d basic ability of a robot
(b) - (sensing/action/sensing+action)

— Generauon Policy
Generation Condition
Method and number At most -
to generate { At least * Nmm
©

— Requlmd time to be completed
(1 cycle / not pre-determined)

— Priority condition to be completed
l—— Constant part —Priority level  ececerecreceninienas P
— Variable part
e
ffect of the number of the robot team
adequate -+« Csurp
in short +++Clack
nEﬂ'ect of the configuration
merit against the robot team -- - Ceanfig-rob
merit against the robot -« + Ceonfig-task

Fig. 3. Task template.

pendently of whether there is an adequate number of robots to
cooperatively execute all the instances of the same task.
Therefore, we propose an algorithm that relaxes the con-
straints from the lower priority level until it becomes solvable
and optimizes the performance index PI (1). Here, we use the
branch-and-bound method to solve the equation

Ninstance Nfresrob

Pl = wi; Xi; ¢))
i j
where
Ninstance  total number of task instances;
Nfreerob the number of free robots;
X,'j Si_-,' or A;j.

The weight coefficient w;; refers to the evaluation value of
the status in which the robot 7 does the task instance i. Based
on the dynamic part of the priority defined in the corresponding
template, it is calculated as follows:

Wiy =Co - Caum-i - Cmnﬁg-taak-i +Ci- Coonﬁg—robij

C — Csurpa when Ngeerah > Nmin
num Clack, otherwise

where Cp, C are the weight coefficients (Cg = 100.0, C; =
1.0 in the simulation of this paper), and Np;, is the minimum
number of task instances to be generated [Fig. 3(b)].

Because of the effect of the constraint equation, a task in-
stance with a high priority level will be assigned to a robot
without fault. On the other hand, the assignment system can still
try to assign as many robots as possible to a task in a lower pri-
ority level by the effect of the performance index if Chacx or
Ceonfig—task-ij has a high value. Therefore, it is possible to cope
with a case in which there are too many task instances against
the number of available robots.
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TABLE 1
TASK TEMPLATES FOR IMPLEMENTED TASKS
Search Arcund Displace Obstacle Handling
(a) Basic . " . .
ability sensing sensing + action action
Condition | When the information When lhef: ren:iovab‘lje g;:i:';::’;:mf
tel i object is found inside
{0 generate | is older than T,y the circle to consider goal configuration
(b) Nmax The following'i'nﬁ,,mb The number of the nﬁ' eerob
removable obstacle
Nomin The number of the group
of cells which meet the The number of the 2
above condition removable obstacle
term 1 cycle not pre-determined I cycle
) When the obstacle is
Conditicn tq _— removed out of the —_
(esminate handling path
d) P 1 2 3
Csurp 1.0 1.0 4.0
© Cluer 8.0 8.0 1.0
Ceonfig-ron | @ X (distance between | a X(distance between | o X(distance between
() robot i and the center robot / and the center robot i and the center
of the area that of the obstacle that of the position to
corresponds to the corresponds to the grasp that corresponds
task-instance j) task-instance ;) to the task-instance j)
Ceonfig-tusk Average timer count 1.0 1.0

vhere

~ { 1 : no occlusion
as

10: with occlusion

IV. IMPLEMENTATION OF TASK

In this section, we explain three kinds of tasks, “search
around,” “displace movable object,” and “handle an object.”
These are implemented for the transport simulation in Section V
and for the transport experiment in Section V1. Table I shows
the contents of the task templates for these three tasks.

On implementing these tasks, we assume the following:

* robots can detect the attributes of a nearby obstacle (dis-
tance to obstacles, obstacles’ shape) inside the limited
stretch of their sensing area;

* robots can judge whether the detected object is removable
or not based on the attributes.

First, we explain how to define the priority level, which ex-
presses the relationship of the execution order [Table 1(d)). In
transport work, a “handle an object” task most directly con-
tributes to achieve the goal configuration. However, in order to
“handle an object” safely without colliding with obstacles, it is
required to “displace movable objects” first. This requires mov-
able objects to be “searched” before being displaced. Therefore,
the priority level was determined as shown in Table 1.

Below is the explanation of each task. As the example of how
to define other factors of task templates, we express the process
to settle the parameters for the “displace movable object” task
in detail in Section [V-B. A similar process is followed for other
tasks.

A. “Search Around’ Task

If the working environment changes, newer information
about a certain area is credible and preferable. To generate task

instances, it is necessary to derive the area to be searched. The
area should be divided into smaller parts that can be searched
by one robot. For this purpose, a work area is divided into
small cells and a timer is set to each cell. The timer counts
the elapsed time since the area was last searched to express
how old the information is. From the limited area around the
transport object, we take out cells whose timer shows time
exceeding a threshold [gray cells in Fig. 4(c)]. The cells are
divided into several groups that can be searched by one robot
in one cycle and one task instance will be generated for each
group. When deriving the above groups of cells, we divide the
limited area around the transport object in a radial pattern and
generate the histogram by counting the number of the included
gray cells [Fig. 4(a)]. To treat adjacent cells as the same group,
the histogram is converted into a sequence of 1 or 0, and the
contraction and extraction operation is executed [Fig. 4(b)).

B. "Displace Movable Objects ” Task

We assume that the object is small enough to be displaced by
one robot. The detected removable object will be treated as the
one which should be displaced if it is within the circle with a R,
radius around the center of the handling object.

The span of execution until the instance is deleted is set to
“indefinite.” This is because the robot that is once assigned this
task goes on displacing the same object until the robot declares
the completion of its task.

Here, we show how to set the dynamic part of the priority. As
for the factor related to the number of robots, Corp < Clack
because it is necessary to assign as many robots as possible to
clear the path even if the number of robots is smaller than the
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Fig. 4. How to generate task instances in the “search around” task.
(a) Histogram generation. (b) Histogram contraction and extraction.
(c) Adjusted to robots’ searchable area.

number of removable objects. The actual value is determined
by trial and error based on this guide of parameter design (the
same parameters in other tasks are also determined similarly by
trial and error). With regard to the factor related to the time and
spatial configuration (Ceonfig-robs Ceonfig— task), the parameters
are determined as shown because of the following reasons: it is
preferable to assign the nearest robot to save time to clear the
path, and it is necessary (o clear the vicinity of the transport ob-
ject first before continuing manipulating it. To mainly focus on
the task assignment method in this paper, we use a very simple
strategy for paths to displace objects. A robot first approaches a
removable object, and then displaces it vertically to the path of
the handling object. The robot continues trying to displace the
object until the object is no longer in the area that can be swept
by the motion of the handling object. The other robots manip-
ulate the handling object from the current configuration to the
goal (or subgoal) without changing its orientation. If there are
several removable obstacles, the removing path is adjusted so
that the final destinations do not overlap with each other (Fig. 5).

C. “Handle an Object” Task

Here, we assume that an object is put on a truck and that
robots handle the object by pushing or pulling it, generating ad-
equate strength of two-dimensional force in a horizontal plane.

Direction of
Handling Path

:,/\

)
] g

ATRAN
S

A Box g Adjustment
% a/l’;— "—' - Swep[:Area . ?f the path
y ; Ared {0 freat,
Z : as opstacle
é ',“ ® &?ling ",'

Fig. 5. Displacing path in the “displace movable cbjects” task.

We regard handling the object at each grasping position within
one cycle as a task instance.

As for the motion planner of this task, a handling object path
is planned as follows, given the prior goal configuration. Before
the start, the goal configuration is added to the subgoal list.

Step 1) Update target subgoal if needed by checking
whether the handling object reaches the cument
target subgoal.

Make the path that connects the current configura-
tion and the target subgoal.

If unremovable objects lie in the swept area that
is generated by moving the object from the current
configuration to the next target subgoal in a beeline,
adjust the path by adding a subgoal to avoid it in the
direction vertical to this.

Obeying the above algorithm, a direction to manipulate is de-
termined. Robots handle the object at constant speed, in prin-
ciple, along this direction until the object reaches the next sub-
goal configuration. In the case that the following conditions are
satisfied, the mechanism that suppresses moving works and the
object is expected to stay still:

1) when some of the robots are executing the “displace mov-
able objects” task on the path;

2) if any part of the area that should be searched remains

unsearched in a “search around” task executed in the pre-
vious cycle.

Step 2)

Step 3)

V. COOPERATIVE TRANSPORT SIMULATION

A. Contents of Simulations

In order to show the efficiency of the proposed method, coop-
erative transport simulations were carried out in the environment
with unknown obstacles. Simulations are made for two robot
groups that differ only in the total number of robots: group A has
four robots and group B has two robots. A simulation for robot
group A in another configuration is also made. Other simulation
conditions as well as the environment are the same (Table 1I).
Most of these conditions, including the sample rate, are given
here so that they reflect those in the experiment in Section VI.
Robots estimate whether the observed obstacle is removable or
not by its size.

The proposed architecture can be implemented in the fol-
lowing two styles from the viewpoint of “who plans:”
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TABLE 11
SIMULATION CONDITIONS

the shape of the object a 1.2 x 0.6-[m| rectangle

the shape of the movable object a 0.6(w)x0.4(d}-[m] box

~the shape of the robots circle with a 0.2-[m] radius

sensing area of the robots a sector with a 1.5-[m] radius

and a 20-degree interior angle

maximum speed (handling) 0.1 [m/s]

maximum speed (running alone) | 0.2 [m/s]

division of work space for sensing | a 0.2x0.2-m| rectangle
sampling time 3.0 [s]

w(d) B7.0s

R RS

el ;’%; ?"' %‘:ﬁ?
(f) 139.0 s

(e) 99.0s
. : Displace Movable Object

@ : Handle & Search (grasping the object)
() Handle & Search (apart from the object)

Fig. 6. Results of Simulation |—four robots.

+ one of the robots collects and integrates the other’s envi-
ronmental information. It plans the motion of the whole
group and then communicates the results to other robots;

* all the robots have the same planning architecture. They
exchange and integrate environmental information among
themselves. Each robot plans the motion of the whole
group and executes the corresponding part for itself.

Here, we implemented our system as the former style.

B. Simulation Results (Time Transition)

Simulation results are shown in Figs. 6-8. In each picture,
a sector of each robot is its sensing area. A group of small
squares in gray color shows the area that needs to be searched,
which is used in generating “search around” task instances (see
Section IV-A for details). The smallest circle indicates the goal
position of the object.

In Simulation 1, robot group A (with four robots) achieves the
whole task as follows. At the beginning, they continue handling
the object while searching around. After one of the robots finds
the obstacle, two of the four robots leave the object and go on

775

_(e) 132.0s (f) 184.0 s

Fig. 7. Results of Simulation 2-two robots.

T
2 wall (fixed obstacle] |

i (f) 16805

(e} 111.0s

Fig. 8. Results of Simulation 3—four robots when an irremovable object exists.
to the “displace movable objects” task at 48 s [Fig. 6(b)]. While
these robots are removing the obstacles, the rest of them con-
tinue transferring [Fig. 6(c)-(d)]. They finish removing obsta-
cles, and then go back to the object to “handle” again [Fig. 6(e)].
Finally, all robots rejoin and “handle an object” until they reach
the goal [Fig. 6(f)]. In the case of robot group B (with two
robots) in Simulation 2, the process is different. After they find
obstacles, two of the robots (that is, all the robots in a group)
leave the object and go on to the “displace movable objects”
task [Fig. 7(b)-(c)] at 54 s. While two robots are removing ob-
stacles, the object stays still. Even if one of the rabots goes back
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2 CI 8 45.0 s
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5: "Scarch Around” msk
D: "Displace Movable Objeets” tek
H: "Handle an Objeet” tsk
with {j = mstance that should be done at least

Fig. 9. Dynamically generated task instances.

to the object, it is impossible for only one robot to move the
object. Therefore, the robot waits for another robot in order to
move the object [Fig. 7(d)]. Finally, the other robot comes back
to the object [Fig. 7(e)]. All the robots begin to “handle an ob-
ject” again and reach the goal [Fig. 7(f)].

Fig. 8 shows the result of Simulation 3: The transport by robot
group A under the existence of an unremovable object. At 3 s,
robot 2 finds the unremovable object, and robots must change
the transport path. The transport path being changed to avoid
collision can be observed in Fig. 8(b).

Fig. 9 shows the dynamically generated task instances during
the execution in Simulation 1.

From these simulation results, the following is shown:

+ though the total execution time is different in Simulation |
and Simulation 2 (by robot groups A and B, respectively),
the robots’ motion is planned to achieve the goal configu-
ration in both cases;

+ as for the one-step calculation time, it took about 0.11 s in
Simulation 1 (four robots) and about 0.07 s in Simulation
2 (two robots) using SPARCstation20;

+ Fig. 9 shows that various task instances which differ in
kind and quality are generated as their work progresses;

* in Simulation 2, robot group B includes an inadequate
number of robots for the required number of tasks, and
we can see the strong effect of the factor of the number of
robots. As shown in Fig. 7, robots abandon the task they
are undertaking (searching and handling) and do another
task (removing an obstacle).

» in Simulation 1, we can see the strong effect of lh_c factor
of the surroundings more often than that of the factor of
the number of robots. As shown in Fig. 7(c)-(d), though
they can afford to be assigned task instances to remove an
object, they are first assigned the task instances to search
around;

» as a result of the mechanism to suppress moving, the fol-
lowing series of actions was often observed in both groups:

mpliance

Fig. 10, Experimental setup.

moving to search for the obstacles; stopping to observe the
area that remains unsearched; and starting to move again
[e.g., Fig. 9 from (1) to (2)]. This means that the area that
needs to be searched does not continue increasing by a
failure in the search task.

These show that the proposed architecture can be applied to
an unknown environment where the number of task instances
often exceeds the number of available robots.

In the simulation, the spillover of task instances was solved as
time passed in the appropriate order of execution according to
the number of available robots. This is due to the proposed dy-
namic priority-based approach which functions as the following
three steps: 1) the generation of the task instances can be con-
trolled by suppressing the object motion, the center of the robot
group; 2) a task instance with higher priority will be selected
and assigned earlier; and 3) even if the instance has low pri-
ority at the beginning, the priority will become higher as time
advances if the instance remains important. This approach does
not function appropriately in the case that 1) does not stand and
the number of the task instances increases faster than the robots’
execution, which is likely to occur if extended to the dynamic
environment. In that case, additional mechanism to suppress the
generation of task instances is necessary.

VI. EXPERIMENT

A cooperative transport experiment is carried out to show that
the proposed method works effectively for the real robot system
with which the error in positioning or measuring and the satura-
tion of communication are associated. The experimental setup
includes two real robots and a removable object whose position
is unknown beforehand.

A. Experimental System

Fig. 10 shows the experimental system. Task-assignment
planner and motion planners are implemented on a host com-
puter (SPARCstation20) and the robots are connected with it
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TABLE 111
EXPERIMENTAL CONDITIONS

the shape of the object a 1.2x0.6-[m| rectangle

the shape of the movable object a  0.6(w)x0.4(d)=<0.8(h)-

[m] box

the size of the robots 0.4(w)x0.5(d)x0.7(h)-

[m]

sensing area of the robots a sector with a 2.0-[m| ra-
dius and a 20-[degree] in-

terior angle

maximum velocity of the robots 0.1 [m/s°]
division of work space for sensing a 0.2x0.2- m| rectangle
sampling time of the host computer | 3.0 [s]

by wired ethemet LAN. Each robot controls itself on the basis
of the received command (task and target position) and then
reports the environmental information it has acquired.

We used two omnidirectional mobile robots, ZEN, developed
by RIKEN. An object to transport is put on a truck and the robots
handle the truck by pushing or pulling. Therefore, at least two
robots are needed for handling.

Based on the authors’ previous work [15], we introduce a
compliance unit for the robot’s hand that enables the robot to
avoid generating too much internal force on the object as a
result of positioning error. A stroke of the compliance unit is
+25 [mm)]. In addition, to change the grasping state easily, a
stick-type slider that moves up and down is put on this comphi-
ance unit. Each robot inserts its stick slider into one of the holes
of the object to “grasp” and takes it out of there to “release”
(Fig. 10).

As for environmental recognition, we put a mark on the side
of a movable object and give robots its size and the meaning
(the corresponding model of the object) beforehand. Each robot
can, therefore, acquire the relative position and attributes of the
object, respectively, and can estimate whether it can be removed
or not by measuring the mark with its charge-coupled device
(CCD) camera.

Expenimental conditions are shown in Table I1I. The min-
imum radius of the sensing area is determined on the basis of
the size of the mark. The maximum radius is determined so as to
keep the success rate over 50%. The sample rate is determined
based on the necessary time in the environmental recognition
process using the CCD camera: the time to turn its head to the
target position; and the time to capture the image and to derive
the position information from it.

B. Experimental Results and Discussion

Cooperative transport was realized in an unknown static en-
vironment by a real robot system on which the proposed archi-
tecture is implemented.

Fig. 11 includes snapshots of the experiment. Fig. 12 shows
the configuration of the robots, the handling object, and the
movable obstacle. Generated and assigned task instances at each
cycle are shown in Fig. 13,

Robots start to transport after being given the map in
Fig. 12(a) beforehand. Both of the robots “searched around”
[Fig. 11(a)]. At 3 s, robot 1 found the movable object
[Fig. 11(b)]. At this time, the detected object was not included
in the area to be treated as an obstacle. From 12 s, the robots

‘ (e) 36 s

Fig. 11.  Experimental results.

started and continued moving (that is, handling) for 3 s. Then.
the detected object came to be regarded as an obstructing
object, and the “displace movable object” task instance was
generated [Fig. 12(c)]. After finishing the search of the urgent
area, robot 2 left the object and went on to the “displace mov-
able objects” task. While robot 2 was displacing the obstacle
[Fig. 11(c)-(g)], robot 1 stayed still just “searching around”
and waited for robot 2 to handle the object together. At 51
s, robot 2 finished “displacing movable object” and declared
that fact [Fig. 12(d)]. At 54 s, robot 2 was assigned to “search
around,” and went back to the handling object to “handle”
again. Robot 1 corrected its positioning error because of the
dead reckoning by measuring the landmark put on the handling
object [Fig. 12(e)], and grasped the object at 72 s [Fig. 11(h)].
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(b) Detected movable object

a) Given_map and inijtial
c(cn!ﬁguration gf the robots

alpoknn

M\I - :I :

(e) Loci before 72]s] (f) Configuration at 120 [s]

(Dead reckoning error correction)

Fig. 12. Loci of the robots and the objects. (2) Given map and initial
configuration of the robots. (b) Detected movable object. (¢) Configuration
at 12 s. (d) Loci before 54 s. (¢) Loci before 72 s (dead reckoning error
correction). (f) Configuration at 120 s.

Both of the robots went on handling until a total of 120 s passed
from the beginning [Fig. 11(i), (j)]. Because of the lack of
feedback concerning the displacement of the compliance unit
of each robot’s hand, the displacement was about 17 mm from
the center along the vertical direction to the handling path.

Though the duration of the experiment was not enough to
complete the given goal configuration [Fig. 12(f)], the results
show a basic process of transport associated with the task
assignment.

As we mentioned at the beginning of this section, a real robot
system involves error in the sensing process. From Fig. 13, we
can see that the robots detected the same object twice. The
measurement differed at each time. To prevent the robots from
treating them as different objects, we set an area around the al-
ready detected object and checked the possibility of duplica-
tion in this experiment. This also suggests the robustness of our
real-time replanning system against the failure in finding un-
known objects at a glance. Even if a robot fails, there is a high
possibility that it will find them in the next or another cycle. In
addition, such an aspect can also solve the differences between
measured and real configurations [e.g., in Fig. 12(b)] by revising
them as the transport goes on.

Finally, two robots could communicate with each other effec-
tively without saturation as they were planning motion and exe-
cuting. It took about 0.03 s in calculation and also about 0.03 s
in communication on average for each sampling cycle. These

time h:::{pat::ac role of objc_cl
kask instances| ¢ach robot| motion|
5] |© S @ @)robl rob2| 1a1us | gy} found
0 the obstacle.
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6[4]o]o|2|®H|OH] stop!
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Fig. 13.  Generated task instances and the assigned results.
results show that the proposed architecture can be used in a real
robot system.

Here, we discuss the relationship between the complexity
of the problem and the calculation time. As mentioned in
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Section HI-C, the assignment algorithm is implemented using
the branch-and-bound method in the simulations and the
experiment in this paper. This kind of 0-1 integer programming
is essentially NP-complete, however, the calculation time can
be reduced to be polynomial using the approximate solution
method such as pivot-and-complement method [24). The
calculation time is experimentally revealed to be ap;iroximately
O(n*7) using a SPARC4/370, where n means the number of
variables [25]. Roughly estimating, up to about six robots can
be used in this experimental setup on the following assump-
tions: the approximate solution method is used to solve the
problem; the calculation cost is proportional to the fourth power
of the number of variables » (at worst n & mn,41, X Njpstance
where 710, means the number of all the robots in the group);
the communication cost is proportional to the number of robots;
and the sampling time is equal to 3 s, which was determined
based on the hardware constraints.

Next, discussion is about the effect that our architecture
allows the long-period type of task. In the present implementa-
tion of the task, once the robot is assigned a “displace movable
objects” task instance, it goes on displacing until the object
is moved out of the handling path. This works well to avoid
deadlock and chattering between this task and, for example, a
“handle an object” task. From another point of view, however,
it means that our system is slow in the change of the assignment
strategy according to the surroundings when the long-period
type of task instance is assigned. To deal with this aspect, it
is necessary to add the upper-level process that monitors the
progress of the task execution to evaluate the strategy of the
robots as a group.

Here, we show how to design the parameters, Cqurp and Cack,
that define the task assignment strategy according to the number
of the robots. First of all, several typical situations are supposed.
Variation of the following elements should be examined: the
number of the available robots; the disposition of the robots;
and the object and other environmental conditions related to the
surroundings. The designer should first determine the preferable
assignment result for each situation. Then the designer calcu-
lates the values of the variables for each situation, so that the
given preferable assignment is realized. To know the range of
the variables, it is better to calculate several combinations of
the variables for each situation. The final values are determined
to satisfy all the situations derived above.

VII. CONCLUSION AND FUTURE WORK

This paper proposed a task-assignment method for coopera-
tive transport by multiple mobile robots in an unknown static
environment.

* We dealt with the task to be assigned by dividing a robot’s
actions into small units so that one unit would be per-
formed by one robot in a short period of time. By inputting
sensor information to the “task templates,” tasks needed at
each cycle are dynamically generated as task instances.

* Each assignment candidate is evaluated from the fol-
lowing two points of view: whether the number of robots
available for cooperation, and the time and spatial distri-
bution of task instances and robots, are adequate.

This enables us to formulate a task assignment problem at each
cycle that we call an “assignment problem.” Then, the problem
can be solved in real time.

This task assignment process will be repeated at a constant
sampling rate. Each assignment process is associated with mo-
tion planning independently for each task. Thanks to the divi-
sion into small periods of time, the motion-planning process
only needs a simple estimation.

The resuits of the transport simulation and the experiment
showed the validity of the proposed assignment algorithm.

Though our assignment method has been developed to deal
with a static environment, it could be applied to a dynamic
environment by extending the task definition: for example, by
adding information to each motion planner on how toreact when
the moving object is found. Such an extension is one of the most
essential issues in developing real robot system.
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