Advanced Robotics, Vol. 18, No.: 10, pp. 1001-1024 (2004)
© VSP and Robotics Society of Japan 2004,
Also available online - www.vsppub.com

Full paper

Inevitable collision states — a step towards safer robots?

THIERRY FRAICHARD !** and HAJIME ASAMA?

" Nan’onal Research Institute in Computer Science and Control, INRIA Rhéne-Alpes Research Unit,
ZIRST, 655 avenue de I'Europe, Montbonnot, 38334 Saint Ismier Cedex, France
2 Research into Artifacts, Center for Engineering, University of Tokyo, Tokyo, Japan

Received 22 June 2004; accepted 25 July 2004

Abstract—An inevitable collision state for a robotic system can be defined as a state for which, no
matter what the future trajectory followed by the system is, a collision with an obstacle eventually
occurs. An inevitable collision state takes into account the dynamics of both the system and the
obstacles, fixed or moving. The main contribution of this paper is to lay down and explore this
novel concept (and the companion concept of inevitable collision obstacle). Formal definitions of the
inevitable collision states and obstacles are given. Properties fundamental for their characterization are
established. This concept is very general, and can be useful both for navigation and motion planning
purposes (for its own safety, a robotic system should never find itself in an inevitable collision state).
To illustrate the interest of this concept, it is applied to a problem of safe motion planning for a
robotic system subject to sensing constraints in a partially known environment (i.e. that may contain
unexpected obstacles). In safe motion planning, the issue is to compute motions for which it is
guaranteed that, no matter what happens at execution time, the robotic system never finds itself in
a situation where there is no way for it to avoid collision with an unexpected obstacle.

Keywords: Safety; navigation; motion planning; sensing constraints; collision avoidance.

1. INTRODUCTION

The configuration (a set of independent variables that uniquely determines the
position and orientation of every point of the system [1]) space of a robotic system
is the appropriate framework to address path planning problems where the focus
is on the geometric aspects of motion planning (no collision between the system
and the fixed obstacles of the workspace) [1, 2]. The state (a set of variables such
that the knowledge of these variables at time Io together with the knowledge of the
controls applied to the system for ¢ > ¢, completely determines the behavior of the
system for any time ¢ > #, [3]) space, on the other hand, is more appropriate when
it comes to address trajectory planning problems where the dynamics of the system

*To whom correspondence should be addressed. E-mail: thierry.fraichard @inrialpes. fr

1002 T. Fraichard and H. Asama

5*. v § Collision states

w L Tw Inevitable collision states

Figure 1. Collision states versus inevitable collision states.

is taken into account [4, 5. Similarly, the time-state space is appropriate to address
trajectory planning problems involving moving obstacles [6—8].

In the configuration space, the notion of forbidden or collision configurations,
ie. configurations yielding a collision, is well-known and so is the notion of
configuration obstacles, i.e. the set of configurations yielding a collision between
the system and a particular obstacle [1]. Transposing these notions in the state
space, it is straightforward to define collision states and state obstacles (idem in the
time-state space).

However, be it in state space or time-state space, it takes a simple example such
as the one depicted in Fig. 1 to illustrate the interest of extending these notions so
as to take into account the dynamics of the system by introducing the concept of
inevitable collision states.

Considering Fig. 1, let P be a point mass that can only move to the right with a
variable speed. A state of P is characterized by its position (x, y) and its speed v. If
the workspace W features a wall, the states whose position corresponds to the wall
are obviously collision states. On the other hand, assuming that it takes P a certain
distance d(v) to slow down and stop, the states corresponding to the wall and the
states located at a distance less than d(v) left of the wall are such that, when P is
in such a state, no matter what it does in the future, a collision will occur. These
states are inevitable collision states for P. Clearly, for P’s own safety, when it is
moving at speed v, it should never be in one of these inevitable collision states, The
size of the inevitable collision states region, i.e. the grey region located to the left of ..
the wall, depends on the distance d(v) which in turns depends on the current speed
of P. Assuming that d(v) varies linearly with v, the complete set of inevitable
collision states is a prism embedded in the state space S of P (Fig. 2).

In general, an inevitable collision state for a given robotic system can be defined
as a state for which, no matter what the future trajectory followed by the system is,
a collision eventually occurs with an obstacle of the environment. Similarly, it is
possible to define an inevitable collision obstacle as the set of inevitable collision
states yielding a collision with a particular obstacle.

Except for a brief mention of it in Ref, [9], this concept does not seem to
have been considered before by the robotics community. A close idea can be
found in [10]: it introduces braking prisms, i.e. subsets of the configuration space

Inevitable collision states — a step towards safer robots? 1003

/Collision states

Inevitable collision states

S e IS

Figure 2. Full representation in the xyv state space S of P of the inevitable collision states
corresponding to the situation depicted in Fig. 1.

associated with a given state of a robotic system and known to contain the braking
trajectory corresponding to a given braking policy (picked up from a restricted set
of braking policies). A configuration without any braking prism included in the free
configuration space must be avoided because it would yield a collision no matter
which braking policy is used. In a similar vein, Ref. [11] describes a trajectory
planning scheme for a robotic system with a limited field of view. It characterizes
robust states as states for which the robotic system can safely stop simply by braking
even when placed in a environment with unknown moving obstacles (basically, the
field of view is shrunken according to the moving obstacles’ maximum possible
speed). Also, inevitable collision states are to some extent related to the danger zone
concept that can be found in the Air Traffic Control literature [12, 13]. Outside such
danger zones, evasive maneuvers are provably safe.

All these approaches share the same principle: one or several evasive maneuvers
are defined, and every state for which no such evasive maneuvers (usually braking
maneuvers) are collision-free is labeled as being dangerous and is avoided. In a
sense, the inevitable collision state concept encompasses all these approaches. It
is general, it takes into account the dynamics of both the robotic system and the
obstacles (fixed or moving, known or unknown), and it considers maneuvers other
than braking maneuvers (as a matter of fact, it considers all possible maneuvers).
We therefore believe that it is a concept worth exploring and that it can be very
useful be it for motion planning or navigation purposes.

Consider navigation first (by navigation, we basically mean the problem of
determining the elementary motion that the robotic system should perform during

1004 T. Fraichard and H. Asama

the next time-step). The primary concern of navigation is to ensure the safety of the
robotic system. In a environment featuring moving obstacles, this safety concern
is critical, and it is important to take into account both the dynamics of the robotic
system and the future behavior of the moving obstacles. A number of research
papers have addressed these issues recently [10, 14—19]. In this framework, the
interest of the inevitable collision state concept is obvious. By design, inevitable
collision states integrate the dynamics of both the robotic system and the obstacles,
fixed or moving,. .

When it comes to motion planning, the inevitable collision state concept is also
useful. Consider the problem of planning motions for a robotic system moving in a
partially known environment. The system is subject to sensing constraints (a limited
field of view) and it moves in an environment containing obstacles; some of them
are known beforehand, while others are not (imagine a surveillance robot, it has a
map of the building it must patrol, but it does not know a priori the position of the
small furniture or if people are moving around). Based on the a priori information
available, a nominal trajectory for the robotic system can be computed. However,
what if, at execution time, the robotic system finds itself in a situation where an
unknown obstacle is detected so late that avoiding it is impossible. The issue
here is to compute safe motions, i.e. motions for which it is guaranteed that, no
matter what happens at the execution time, the robotic system never finds itself in a
situation where there is no way for it to avoid collision with an unexpected obstacle.
This issue is related to the dependency that exists between motion planning and
navigation, dependency which is usually ignored by motion planning systems (with
the exception of Ref. [11]). We show by an example how this issue can be addressed
using the inevitable collision state concept and how safe motions (in the sense given
above) can be planned.

The main contribution of this paper is to lay down and explore the concept of
inevitable collision states. To begin with, a formal definition of what inevitable
collision states and inevitable collision obstacles are is given. Properties that are
fundamental for their characterization are established (Section 3). To illustrate the
use of these properties, a basic example is studied (Section 4). Finally, an example
of an application of the inevitable collision state concept to safe motion planning is |
given (Section 5).

2. NOTATIONS AND PRELIMINARY DEFINITIONS

Before defining the inevitable collision states and obstacles, useful definitions and -
notations are introduced. Let A denote a robotic system. It is assumed that its
dynamics can be described by a differential equation such as: § = f(s, u), where
s € & is the state of A, 5 its time derivative and ¥ € U a control. S and U,
respectively, denote the state space and the control space of A. Let ¢ € ® denote
a control input, i.e. a time-sequence of controls. ¢ represents a trajectory for .A.

Inevitable collision states — a step towards safer robots? 1005

Starting from an initial state sq (at time 0) and under the action of a control input ¢,
the state of A at time ¢ is denoted by ¢ (sp, ¢).

Given a control input ¢ and a state so (at time 0), a state s is reachable from 50
by @ iff 3, ¢(so, £) = 5. Let R(so, @) denote the set of states reachable from 50
by ¢. Likewise, R(so) denotes the set of states s reachable from 50, 1.e. such that

A, s € R(sg, P):

R(so, ¢) = {s € S|3t, p(s0,t) = 5},
R(so) = {s € S|13¢, s € R(s0, P)}.

Introducing ¢! (s, #) to denote the state s such that ¢ (s, t) = sp, it is possible
to define R~ (sp) (respectively, R~!(so,)), as the set of states from which it is
possible to reach sq (respectively, to reach sg by ¢):

R_l(s()v ¢) = {S € Slat’ ¢(S, t) =Sy <& ¢_l(5’0, t) = s}s
R (s0) = {s € S|3p, s € R™!(s0, §)}-

Let W denote the workspace of .4 (W = R? or R?); it contains a set of obstacles
that are defined as closed subsets of W. Let WB denote such an obstacle. When
WB is moving, WB(t) represents the subset of W occupied by WB at time ¢.
When WB is fixed, the time index is omitted: V¢, WB(t) = WB(0) = WB. In
the configuration space, every obstacle has an image called a configuration obstacle
which is the set of configurations yielding a collision between the robotic system
and the obstacle considered [1]. Likewise, every obstacle has an image in the
state space: the set of states yielding a collision between the robotic system and
an obstacle WB(z) determines the state obstacle of WB(t) which is denoted B(z).
B(t) = {s € S|A(s) N WB(t) # @}, where A(s) denotes the closed subset of W
occupied by A in state s. Once again, when W is fixed, the time index is omitted.
A state s is a collision state at time ¢ iff 38, s € B(t). In this case, s is a collision
state at time ¢ with B.

The rest of the article places itself in the state space framework. For the sake of
simplicity, state obstacles are called obstacles only and the time index is indicated
only when necessary. ‘

3. INEVITABLE COLLISION STATES AND OBSTACLES

Based on the definitions and notations introduced in the previous section, the
inevitable collision states and the inevitable collision obstacles are formally defined.

DEFINITION 1 (Inevitable Collision State). Given a control input ¢, a state s is
an inevitable collision state for ¢ iff 3¢ such that ¢ (s, ¢) is a collision state at time ¢.
Now, a state s is an inevitable collision state iff V¢, 3¢ such that ¢ (s, ¢) is a collision
state at time ¢. Likewise, s is an inevitable collision state with B for ¢ iff 3¢ such
that ¢ (s, ¢) is a collision state at time ¢ with B. Finally, s is an inevitable collision
state with B iff V¢, 3¢ such that ¢ (s, 1) is a collision state at time ¢ with B.

1006 T. Fraichard and H. Asama

DEFINITION 2 (Inevitable Collision Obstacle). Given an obstacle B and a control
input ¢, ICO(B, ¢), the inevitable collision obstacle of B for ¢ is defined as:

ICO(B, ¢) = {s € S|s is an inevitable collision state with B for ¢}

= {s € S|3t, ¢(s, ¢) is a collision state at time ¢ with 3)
= {s € S|3t, ¢ (s, 1) € B(1))}.

Now, ICO(B), the inevitable collision obstacle of B, is defined as:

ICO(B) = {s € S|s is an inevitable collision state with B}
= {s € S|Y@, 3t, ¢ (s,) is a collision state at time ¢ with)
= {s € S|V¢, 3t, ¢(s, 1) € B)}.

Based upon the two definitions above, the following property can be established.
It shows that ICO(B) can be derived from the ICO(B, ¢) for every possible control

input ¢.
PROPERTY 1 (Control Inputs Intersection).

ICOB) = [{ICO(B, ¢).
o

Proof.
s € ICO(B) & V¢, 3t,¢(s, t) is a collision state at time ¢ with B
& Yo,s € ICO(B, ¢)
% s €[)ICOB, ¢). O
®

Assuming now that 3 is the union of a set of obstacles, B = |, B;, the following
property can be established. It shows that ICO(B, ¢) can be derived from the
ICO(B;, ¢) for every subset B;.

PROPERTY 2 (Obstacles Union).
ico (U B;, ¢) = JIco,, ¢).
i i

Proof.

s € ICO(U B;, ¢) & 3Jt, @ (s,) is a collision state at time ¢ with U B;
i i

& 3B;, 3t, ¢ (s, t) is a collision state at time ¢ with B;
& 3AB;, s € ICO(B;, @)
& s e Jicow, ¢). O

Inevitable collision states — a step towards safer robots? 1007

Combining the two properties above, the following property is derived. It is the
property that permits the formal characterization of the inevitable collision obstacles
for a given robotic system.

PROPERTY 3 (ICO Characterization). Let B = | J; B;,

Ico®B) =) U ICO(B;,).
¢ i

Proof.

IcoB) = ﬂICO(B ¢) =M JIco®,. ¢). m
¢ i

Consider Property 1 (and Property 3), it establishes that ICO(B) can be derived
from the ICO(B, ¢) for every possible control input ¢. In general, there is an infinite
number of control inputs which leaves little hope of being actually able to compute
ICO(B). Fortunately, it is possible to establish a property which is of a vital practical
value since it shows how to compute a conservative approximation of ICO(BB) by
using a subset only of the whole set of possible control inputs.

PROPERTY 4 (ICO Approximation). Let T denote a subset of the set of possible
control inputs ®:

IcoB) c [(ICO(B, ¢).
I

Proof.

ICOB) = () ICO(B, ¢)
I

= ﬂlcoas $)N ﬂzcoas $)
C ﬂICO(B ®). O

The interest of these properties to characterize inevitable collision obstacles
appears in the next sections.

4. BASIC CASE STUDY

The purpose of this section is to illustrate on a simple (and not necessary realistic!)
example the notions introduced earlier. A more realistic example is dealt with later
in Section 5.

1008 T. Fraichard and H. Asama

Narth 1

I
4

R(s0, ¢n) R(30, Pne)

Uy,

3o

R=1(30, Pne) R™1(0, ¢n)

Figure 3. Reachable states for the 'Nori:h, North-East’ system.

4.1. ‘North, North—-East’ system

We consider the case of a planar point A that can move in two directions only (North
and North-East) at constant unit speed (Fig. 3). A state of Aiss = (x, y) € R? and
a control u can take two values: either u, = /2 (North direction) or u,. = w/4
(North-East direction). This simple system has only two possible constant control
inputs: ¢, and ¢,., they respectively correspond to motions in the North and North—
East directions. Since both ¢, and ¢ are constant, it means that once .4 has started
to move in a given direction, it cannot change its motion direction anymore.

R(so), i.e. the set of states reachable from an initial state So, is easily defined in
this case: it is the union of two half-lines starting at sy and extending respectively
in the North and North-East directions: R (sg) = R(s0, Pn) U R(S0, Pre). Likewise,
R(so), i.e. the set of states from which So is reachable, is the union of two
half-lines starting at so and extending respectively in the South and South-West
directions: R~"(sp) = R~ (50, #n) U R~ (50, ¢ne) (Fig. 3).

The next sections' show how to determine the inevitable collision obstacles
corresponding to the ‘North, North-East’ system. We proceed step by step by
considering fixed obstacles first and then moving obstacles. In each case, we address
point obstacles first before moving to arbitrary obstacles.

4.2. Fixed obstacle

4.2.1. Point obstacle. Let B be a fixed point obstacle. According to Property 1,
ICO(B) is derived from the characterizations of ICO(I, @) for every possible
control input ¢. ICO(B, ¢) is trivially equal to R™'(B, ¢) and the following

Inevitable collision states — a step towards safer robots? 1009

Uun B = ICO(B)
A e

ICO(B, ¢ne) / ICO(B, ¢n)

’
’

Y

. |

Figure 4. Inevitable collision obstacle for a fixed point obstacle.

derivation is made (Fig. 4):

ICO(B) = ICO(B, ¢,) N ICO(B, ¢e)
=RB, ¢) NR™YB, Pre)
=B,

which makes sense: unless A is already in collision with B, A can always avoid
collision with B. The state corresponding to B is the only inevitable collision state.

4.2.2. Linear and arbitrary obstacle. Let us now assume that B is a fixed linear
obstacle extending from point B, to point B,. B is the union of a set of fixed point
obstacles: B = | J; B;. Now, ICO(B) is derived using both Properties 1 and 2:

ICO(B) = ICO(B, ¢) N ICO(B, ¢re)
= ICO (U B, ¢,.) nIco (U B. ¢.,e>
= (J1co®,, ¢ n|J1COB,, pue).

Consider Fig. 5, | J; ICO(B;, ¢,) is the region swept by ICO(B;, ¢,) for every
point B; between B, and B, (idem for | J; ICO(B;, ¢uw)). The intersection between
these two regions yields a simple triangular region which is ICO(B). Sure enough,
when A is anywhere inside this region, no matter what it does, it eventually crashes
against B. Likewise, it is possible to characterize JCO(B) for fixed obstacles with
arbitrary shape (Fig. 6).

Note on Property 3. It is important to note that the obstacle union is nested
within the control input intersection in Property 3. Accordingly, computing the in-
evitable collision obstacle of a set of distinct obstacles does not reduce to comput-
ing the union of the inevitable collision obstacles for each obstacle independently
(Fig. 7). In other words, to determine whether a state is an inevitable collision state,

1010 T. Fraichard and H. Asama

Une

y

‘ Ui ICO(Bi, ¢n)
I

Figure 5. Inevitable collision obstacle for a fixed linear obstacle.

ICO(B)

Une

U{ ICO (Bis ¢nc)

v

‘ Ui ICO(Bi, én)

Figure 6. Inevitable collision obstacle for a fixed arbitrary obstacle.

Figure 7. Inevitable collision obstacle for two fixed linear obstacles.

Inevitable collision states — a step towards safer robots? 1011

it is necessary to compute the inevitable collision obstacle of the union of the whole
set of state obstacles B; considered then as a single obstacle.

4.3. Moving obstacle

4.3.1. Point obstacle. Let B be a moving point obstacle. Recall that B(t) gives
the position of B at time ¢. In order to characterize ICO(B), we consider B as
the union | J, B(¢) and we proceed step by step as we did in the fixed obstacle
case. Given a control input ¢, let us characterize ICO(B, ¢) first: ICO(B, ¢) =
U, ICO(B(), ¢). Now, according to Definition 2, ICO(B(t), ¢) is the set of states
s such that if A starts from s (at time 0) and is subject to the control input ¢, it
reaches B(f) (at time t). Such a state s belongs to R~ (B(z), ¢) and it is actually the
unique solution of the equation ¢ (s,¢) = B(t) < s = ¢~ 1(B(t), 1). In conclusion,
ICO(B, ¢) =, #~1(B(2), 1) and we have:

ICO(B) = ICO(B, ¢y) N ICO(B,)
= ICO (U B(), ¢.,) niIco (U B(@), ¢ne)
= o). ¢ n| JIcOB(), ue)
= U o (B@), 1) N U b (B(2), 1).

Consider Fig. 8 where it is assumed that B has a linear motion at constant velocity.
For both control inputs ¢, and @,., ICO(B, ¢) is a linear curve starting from B(0)
whose slope depends upon the relative velocities of A and B. The application of
Property 1 yields ICO(B) = B(0).

4.3.2. Arbitrary obstacle. Let us now assume that B is a moving obstacle of
arbitrary shape. B is the union of a set of moving point obstacles and we can write:
B =J; U, Bi(¥). ICO(B) is derived as before:

ICO(B) = ICO(B, ¢) N ICO(B, ¢,)

$ne (Bt), t1)

B(ts) \ B(t1)

¢71(B(t1), 1)
B(0) = ICO(B)

#R-Y(B(0), bb)

l— T ICO(B, bne) ICO(B, ¢,) R™Y(B(0), #n)

Figure 8. Inevitable collision obstacle for a moving point obstacle.

1012 T. Fraichard and H. Asama

Un I1CO(B)
A l/"-ne

Ui ICO(Bi, ¢ne)—*
U; ICO(Bi, ¢n)

B(0) = U, Bi(0)

Figure 9. Inevitable collision obstacle for a moving arbitrary obstacle.

= ICO (U U B;(1), aﬁn) N ICO(U U B;(1), ¢nc)

i

= U UICO(B (£), a) N U U ICO(Bi(1), fne)

—UU¢ (Bi (1), f)ﬂUU%e (Bi (1), 1).

Figure 9 depicts the inevitable collision obstacle obtained for an arbitrary obsta-
cle with a motion at constant velocity similar to that of the point obstacle in Sec-
tion 4.3.1. Whenever A is inside the region /ICO(B) at time 0, no matter what it
does in the future, it eventually collides with 5.

This simple example has illustrated how, thanks to the inevitable collision state
concept, it is possible to characterize forbidden regions of the state-space: the
inevitable collision obstacles. This characterization takes into account the dynamics
of the robotic system and also the future behavior of the moving obstacles.

5. SAFE MOTION PLANNING APPLICATION

The purpose of this section is to demonstrate how the inevitable collision state
concept can be used to address safe motion planning problems.

5.1. What is safe motion planning ?

Consider the problem of planning motions for a vehicle A moving in a partially
known environment that contains a set of fixed obstacles whose position is a priori
known. It also contains unexpected obstacles, fixed or moving, whose position is not
known beforehand. Finally, A is subject to sensing constraints, it has a limited field
of view. In a given state s, A perceives only a subset FoV(s) of its environment
(Fig. 10, left). In this framework, what does planning a safe motion mean? Safe
motions were defined earlier as motions for which it is guaranteed that, no matter
what happens at the execution time, the vehicle never finds itself in a situation
where there is no way for it to avoid collision with an unexpected obstacle. At the
execution time, an unsafe situation occurs when an unexpected obstacle suddenly

Inevitable collision states — a step towards safer robots? 1013

Figure 10. The field of view of A (left) and its boundary (right).

appears in the field of view of A and it is too late for A to brake or engage into an
evasive maneuver. In other words, an unsafe situation occurs when an unexpected
obstacle appears and .A suddenly finds itself in an inevitable collision state.

At planning time, it is by definition impossible to characterize the inevitable
collision states with respect to the unexpected obstacles. This characterization
can be done with respect to the known obstacles only. However, it is possible to
exploit the fact that unexpected obstacles appear on the boundary of the field of
view only. When A is in state s, it is possible to compute the boundary of the field
of view with respect to the a priori known obstacles. This boundary has two parts:
the part corresponding to the known obstacles and the part corresponding to the
limit of the field of view, e.g. the dotted curve in the right-hand side of Fig. 10.
Let dFoV(s) denote this part. What can be done then is to consider dFoV(s) as a
potential unexpected obstacle and to determine whether s is an inevitable collision
state based on this assumption (it is precisely the approach taken in Ref. [11]).

This is the key to safe motion planning. A safe motion is a sequence of safe states
where a safe state s is defined as a state which is not an inevitable collision state
with respect to the known obstacles (whether visible or not) and with respect to
dFoV (s) treated as an unexpected obstacle, in other words:

DEFINITION 3 (Safe State). s is safe state iff s ¢ ICO(B; U S(3FoV(s))),
where S(3FoV (s)) represents the image of dFoV (s) in the state space S.

In the definition above, it is worth noting that a priori knowledge about the
unexpected obstacles is required in order to compute ICO(S(3FoV(s))). Indeed,
recall that the inevitable collision obstacle associated with a given obstacle is
different if the obstacle is fixed or moving. Such preliminary knowledge determines
the characteristic of S(8FoV(s)) which in turn determines ICO(S(3FoV(s))). It
may be assumed, for instance, that the unexpected obstacles are always fixed. It
could also be assumed that the unexpected obstacles are moving. In such case,
additional information is required regarding their potential moving direction, speed
range, future behavior, etc. (it is the case in Ref. [11] where the moving obstacles

1014 T. Fraichard and H. Asama

Figure 11. The field of view of 4 placed in a roadway-like environment.

are assumed to move freely in every direction up to a maximum speed). Once this
information is available, it can be used to compute ICO(S(3FoV(s))).

Thanks to its generality, the inevitable collision state concept permits us to deal
with situations as complex as the one depicted in Fig. 11: .A moves in a roadway-like
environment with known fixed obstacles (the limits of the roadway) and unexpected
moving obstacles (the other vehicles). It is assumed that the moving obstacles obey
the highway code and therefore follow the environment lanes at prescribed speeds
(this is the a priori knowledge). In such a situation, dFoV(s) is split in a number
of parts with different characteristics depending on the location of the boundary
part with respect to the environment lanes. In Fig. 11 for instance, the part ab
(respectively, bc) corresponds to potential moving obstacles travelling to the left
(respectively, to the right). The part cd corresponds to a fixed obstacle (the limits of
the roadway).

The next sections present a worked-out example of safe motion planning for a
car-like vehicle in a partially known environment with fixed obstacles only. The
problem is defined in Section 5.2. Section 5.3 presents the computation of the
inevitable collision obstacles and Section 5.4 details the safe motion planning
algorithm.

3.2. Statement of the problem

Let us consider a robotic system .4 whose shape is a disk of radius » 4. A moves
like a car-like vehicle and its dynamics follows a bicycle model. A state of A is
defined by the 4-tuple s = (x, ¥, 6, v) where (x, y) are the coordinates of the rear
wheel, 6 is the main orientation of A and v is the linear velocity of the front wheel
(Fig. 12). A control of A is defined by the couple (uf, u®) where ut is the steering
angle and u” the linear acceleration. The motion of A is governed by the following

Inevitable collision states — a step towards safer robots? 1015

i

i

1
T

Figure 12. The car-like vehicle A (bicycle model).

S(8FoV (s))
V
e EAWE
OFoV (s) % A(zo, yos 6o, vo)
TFoV
S R WB2

w

Figure 13. A in its workspace W (left), and the corresponding two-dimensional (6 = 6, v = vgp)
slice of its state space S (right).

differential equations:

% = vcosf cos uf
y = vsinf cos u®
0 = vsinuf /b
v =u",
with |[u¥| < Epax and |u®| < u?,,. b is the wheelbase of A.

A moves on a planar workspace W cluttered up with a set of fixed polygonal
obstacles WB;. Part of the obstacles are a priori known while the others are not.
A is equipped with an omnidirectional sensor with a limited range rgoy.

The state space S of A is four-dimensional. It is not attempted to compute the
inevitable collision obstacles in the full four-dimensional state space. Instead, the
structure of S is exploited and the inevitable collision obstacles are computed in
two-dimensional slices of S only. The slices considered are slices with constant
@ and v. Such slices are interesting because it is straightforward to compute, for
such a slice, the state obstacles B; and S(3FoV(s)), i.e. the image in S of the
boundary of the sensor field of view. Since A is a disk of radius r 4, B; is obtained by
isotropically growing WB; of r 4 [20]. Accordingly, B; is a generalized polygon, its
boundary is made up of straight segments and circular arcs of radius r 4. Likewise,

1016 T. Fraichard and H. Asama

S(0FoV (s)) is obtained by shrinking 8 FoV (s) of r 4. It is, therefore, a disk of radius
rrov — 74 (Fig. 13).

5.3. Inevitable collision obstacles

A prerequisite to safe motion planning is to have a characterization of the inevitable
collision states for A or, similarly, a characterization of the inevitable collision
obstacles. The car-like vehicle A is unfortunately much more complicated a system
than the ‘North, North-East’ one. Chiefly, the fact that the number of possible
control inputs for A is infinite makes it difficult to use Property 1 directly in order
to compute the inevitable collision obstacles.

Fortunately, it is possible to take advantage of Property 4 in order to compute a
conservative approximation of the inevitable collision obstacles (conservative in the
sense that the actual inevitable collision obstacle is included in the approximated
one). To do so, only a finite subset Z of the whole set of possible control inputs ® is
considered. The subset Z selected contains the control inputs ¢ of arbitrary duration
with constant steering angle u® and constant linear acceleration u®:

I={(¢ € ®VT e R*,Vt € [0, T), p(t) = (uf, u")}.

As far as A is concerned, it corresponds to simple evasive maneuvers with fixed
wheel orientation and changing velocity (constantly accelerating or decelerating).
It includes the braking trajectories, i.e. trajectories where A’s velocity becomes and
remains null, but not only. It also includes trajectories where A brakes and move in
reverse.

Let ICOz(B) denote (7 ICO(B, ¢). ICO7(B) is the conservative approximation
of ICO(B). The characterization of ICO7(B) is done in the next sections. Once
again, we proceed in a step by step manner by considering different families of
control inputs ¢. First, 7 is split into two subsets Zg and Zy corresponding,
respectively, to control inputs for which A is moving straight, i.e. uf = 0, and
control inputs for which A is turning, i.e. u¥ # 0. Then, the set of control inputs I;
is introduced. It is the set of control inputs for which A is turning with the steering
angle uf. .

Sections 5.3.1 and 5.3.2 detail how to compute /COz;(B) and ICOI; (B), respec-
tively. Then, Section 5.3.3 presents how to determine ICOz(B).

5.3.1. Computing ICO7,(B) (A is moving straight). As mentioned earlier in
Section 5.2, it is not attempted to compute the inevitable collision obstacles in the
full four-dimensional state space S. Two-dimensional slices of S are considered
instead: slices of constant orientation 6 and velocity v. In such a (8, v) slice, the
obstacles are represented by generalized polygons.

Let us first consider the (8, v) slice and a particular point B; of an obstacle B. The
set of control inputs Zs is further split into two subsets Z{ and I, respectively,
corresponding to control inputs for which A is accelerating, i.e. 4’ > 0, and

Inevitable collision states — a step towards safer robots ? 1017

[[) R
B
?Bi ‘ Bi
d(v):
ICOL4(By) : [1C01-(By)
{
I I 1 1C01,(B)
”l A ”l A ”x A
* J N A G x J)

Figure 14, ICOz,(B) when A is moving straight. Point obstacle case and A accelerating (left).
Point obstacle case and A decelerating with a braking distance d(v) (middle). Generalized polygonal
obstacle case and A accelerating or decelerating (right).

decelerating, i.e. u” < 0. When .A is moving straight and accelerating, it eventually
crashes into B; as soon as its orientation points towards B;. Accordingly, ICOI; (B;)
is simply the half-line starting from B; in the —@ direction (Fig. 14, left). Now, when
A is moving straight and decelerating, it eventually crashes into B; iff its orientation
points towards B; and its distance to B; is less than d(v), the minimum braking
distance of A: d(v) = v2/2u® with Umax the maximum linear deceleration.
Accordingly, ICO1-(B;) is simply the segment of length d(v) starting from B; in
the 6 direction (Fig. 14, middle). Finally, ICOx, (B,), which is the intersection
between ICOI; (B;) and ICOI; (B;), reduces to ICOIS— (Bi), i.e. the segment of
length d(v) starting from B; in the —@ direction.

Let us consider now the whole obstacle B = U; Bi. Computing ICOz,(B) is
straightforward. As per Property 2, it is, therefore, the union of ICO,(B;) for
every point B; of B. It is, therefore, the convolution between B and the segment
of length d(v) and direction —8. More precisely, it is the Minkowski Sum between
B and the segment of length d(v) starting from (0, 0) in the —8 direction (Fig. 14,
right). The Minkowski sum of two sets A and B in a vector space is equal to
{a+b:ae A be B)[21]. WhenBisa generalized polygon, ICO1,(B) is also
a generalized polygon [20]. An efficient algorithm to compute the Minkowski Sum
between generalized polygons can be found in Ref. [1].

3.3.2. Computing ICOIi (B) (A is turning). Computing IC01$ (B) is achieved

in a way similar to that of the straight motion case. Ii is split into two subsets I§+
and If._, respectively, corresponding to control inputs for which A is accelerating,
i.e. u” 2> 0, and decelerating, i.e. u® < 0. -

Let us first consider the (8, v) slice and a particular point B; of an obstacle B.
When A is turning with the steering angle u¢ and accelerating, it follows a circle
of radius b/tanué. A eventually crashes into B; as soon as the circle it follows

1018 T. Fraichard and H. Asama

IGOL (B)

S J \o Jg J

Figure 15. 1C014 (B) when A s turning. Point cbstacle case and A accelerating (left). Point obstacle
T

case and A decelerating with a braking distance d(v) (middle). Generalized polygonal obstacle case
and A accelerating or decelerating (right).

intersects B;. A straightforward geometric analysis shows that ICOI? (B;) is the

circle of radivs b/ tan u* tangent to 13; with a tangent orientation at B; of 6 (Fig. 15,
left). Now, when A is turning with the steering angle u* and decelerating, it
eventually crashes into B; iff it is on a collision course and its distance to B; is
less than d(v). Accordingly, ICOI;- (B;) is the circular arc of radius b/ tan u* and
arc length d(v) starting from B; in the —@ direction (Fig. 15, middle). Finally,
ICOI; (B;), which is the intersection between ICOI$+ (B;) and ICOI;- (B;), reduces
to ICOI;- (B;), i.e. the circular arc of radius b/ tanu* and arc length d(v) starting
from B; in the —@ direction.

Let us consider now the whole obstacle B = | J; B;. As in the straight motion case,
ICOI; (B) is the Minkowski Sum between B and the circular arc of radius b/ tan u®
and arc length d(v) starting from (0, 0) in the —@ direction (Fig. 15, right). Once
again, when B is a generalized polygon, ICOI§ (B) is also a generalized polygon.

3.3.3. Computing ICOz(B). The two previous sections have characterized the
inevitable collision obstacles for different subsets of Z, the whole set of control
inputs considered. The final characterization of the inevitable collision obstacles is

determined using:

ICOz(B)= (] ICOx(B),
Xe(Zs.T})

which amounts to compuuing the intersection between a set of generaiized poiy-
gons. Such intersection computation can be carried out efficiently using software
packages such as LEDA [22]. Figure 16 depicts the result obtained for a single lin-
ear obstacle and Fig. 17 for two distinct linear obstacles (see the note on Property 3
in Section 4.2.2).

Inevitable collision states — a step towards safer robots? 1019

r N[T

B
%I COz(B)

(. 7\ J

Figure 16. ICOx (B) for a number of control input families X of T with different 4% values (left).
ICOz(B) (right).

ICO4(B)

z

7

Figure 17. ICOx (B) for a number of control input families X of T with different u® values (left).
1CO7(B).

Note that what is actually represented on the right-hand side of Figs 16 and 17
is only a two-dimensional slice of ICO7(B). Recall that ICOz(B) is defined in the
four-dimensional state-space of A. The slice depicted is the (§ = /2, v) slice.
When A has an orientation 7 /2 and a velocity v, it inevitably crashes against B as
soon as it is located in the region /COz(B) depicted. The slices for other values of
6 and v are obtained similarly.

3.4. Safe motion planning

Thanks to the results presented above, it is now possible to determine whether a state
is safe or not. As far as solving the motion planning problem at hand is concerned,
it was decided to use a classical motion planning scheme based on the Rapidly-
Exploring Random Tree algorithm [23]. Such an algorithm explores the state-space
by incrementally expanding a tree rooted at the initial state. The tree is expanded
through elementary motions in randomly selected directions. Such an algorithm is
very efficient at exploring high-dimensional spaces.

1020 T, Fraichard and H. Asama

Figure 18. The Rapidly-Exploring Random Tree algorithm [23].

The top part of Fig. 18 sketches one step of the planning algorithm: a state s, is
picked up randomly and the closest node of the tree is found, say sc. An elementary
trajectory is then computed in the direction of s, and it is checked for safety. If it is
safe, the state at the end of this elementary trajectory, say s,, becomes a new node
of the tree. The process is repeated until the goal state is reached. The bottom part
of Fig. 18 depicts the result of this kind of exploration.

Figure 19 presents some preliminary safe motion planning results obtained for the
car-like vehicle A. The field of view of A is a rectangular area (visible at a state
along the result trajectories). '

In the left part of Fig. 19, the trajectory obtained is collision-free only (the sensing
constraints and the possible presence of unexpected fixed obstacles is not taken into
account). In the right part of Fig. 19, the trajectory obtained is collision-free too but
it is also safe, i.e. it is a sequence of safe states (in the sense of Definition 3). It
does take into account the limits of the field of view and the possible presence of
unexpected fixed obstacles.

Remember that the exploration scheme is random. It accounts for the strange
twists and turns of the trajectories obtained. However, it can be noticed that the safe
trajectory does not graze the obstacles (especially near the end of the two walls).
This makes sense — suppose you have to pass the cormner of a wall. The wall
prevents you from seeing what is on the other side of the corner. So, if you believe
that there may be unexpected obstacles on the other side, you have two strategies
possible:

Inevitable collision states — a step towards safer robots? 1021

Figure 19. Safe motion planning results.

(i) Graze the corner while slowing down so that when you pass the corner, your
speed is slow enough for you to stop before hitting a possible unexpected
obstacle.

(ii) Stay away from the corner so as to have a better view of what is on the other
side. In this case, you do not have to slow down.

In our experiments, the goal was to optimize the time of the trajectory. It naturally
resulted in a solution trajectory following the second strategy and the trajectory
obtained is safe. At execution time, no matter how many unexpected fixed obstacles
are placed in the environment, it is guaranteed that, when such an unexpected
obstacle is detected, .4 is not in an inevitable collision state, it can avoid the
unexpected obstacle.

Future experiments will concern the safety with respect to unexpected moving
obstacles. In this case, it is necessary to have some a priori knowledge about the
moving obstacles, e.g. the maximum speed they can have, their expected motion
direction, etc. This information is required to compute the inevitable collision
obstacle corresponding to the moving obstacles (cf. Section 5).

6. DISCUSSION AND CONCLUSIONS

This paper has introduced the novel concept of inevitable collision states for a given
robotic system, i.e. states for which, no matter what the future trajectory followed
by the system is, a collision eventually occurs with an obstacle of the environment.
An inevitable collision state takes into account the dynamics of both the robotic
system and the obstacles, fixed and moving.

The main contribution of this paper was to lay down and explore this novel
concept (along with a companion concept, that of inevitable collision obstacle).

1022 T. Fraichard and H. Asama

A formal definition of what inevitable collision states and obstacles are was given.
Properties that are fundamental for their characterisation were established. This
concept is very general and we believe it can be useful both for navigation and
motion planning purposes. An example of its application to safe motion planning
was given. However, there are still a lot of issues to be addressed.

For a start, like its configuration space counterpart, the inevitable collision state
concept faces the ‘curse of dimensionality’, i.e. the complexity of characterizing the
inevitable collision states of high-dimensional robotic systems. The approximation
property is but a partial answer to this complexity problem. This approximation
property raises the question of the quality of the approximation obtained by
considering a particular subset of the whole set of possible future trajectories for
the robotic system at hand. It is true that if the approximation is too coarse, you
might end up with most states being labeled as inevitable collision states. It may
or may not be an issue depending on the problem at hand. For instance, in the
safe motion planning problem presented in the article, should most of the states be
inevitable collision states, it might indicate that the on-board sensing device has too
small a range or that the evasive maneuvers selected are not appropriate.

Property 3 gives a general characterization of the inevitable collision states
concept. However, it does not yield a general method to compute the inevitable
collision states for arbitrary systems. Thus, for the two examples addressed in the
paper, i.e. the ‘North, North-East’ system and the car-like system, an appropriate
characterization of the inevitable collision states was performed. It was exact for the
‘North, North-East’ system and approximate for the car-like system. In the latter
case, by considering two-dimensional slices of the four-dimensional state space of
the car-like system, it proved possible to efficiently compute the inevitable collision
states within such a two-dimensional slice. Ad hoc characterizations might allow
to consider complex robotic systems. However, it could be interesting (at least
from a theoretical point of view) to design such a generic inevitable collision states
computing algorithm.

Acknowledgements

This work was partially supported by the Japan Society for the Promotion of Science
and Lafmi, the French—-Mexican Computer Science Laboratory. An earlier version
of this work appeared in Ref. [24].

REFERENCES

1. J.-C. Latombe, Robot Motion Planning. Kluwer, Dordrecht (1991).

2. T. Lozano-Perez, Spatial planning, a configuration space approach, /EEE Trans. Comput. 32,
108-120 (1983).

3. K. Ogata, Modern Control Engineering. Prentice-Hall, Englewood Cliffs, NJ (1990).

4. J. Canny, B. Donald, J. Reif and P. Xavier, On the complexity of kynodynamic planning, in:
Proc. Symp. on the Foundations of Computer Science, White Plains, NY, pp. 306316 (1988).

10.

11.

12.
13.
14.
15.
16.
17.
18.

19.

20.

21.
22.

24,

Inevitable collision states — a step towards safer robots? 1023

P. G. Xavier, Provably-good approximation algorithms for optimal kinodynamic robot motion
plans, PhD Thesis, Cornell University (1992).

. Th. Fraichard, Dynamic trajectory planning with dynamic constraints: a ‘state-time space’

approach, in: Proc. IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, Yokohama, Vol. 2,
pp. 1394-1400 (1993).

- Th. Fraichard, Trajectory planning in a dynamic workspace: a ‘state-time’ approach, Adv.

Robotics 13, 75-94 (1999).

. D. Hsu, R. Kindel, J.-C. Latombe and S. Rock, Randomized kinedynamic motion planning with

moving obstacles, in: Proc. Workshop on the Algorithmic Foundations of Robotics, Hanover,
NH, pp. 233-255 (2000).

. S. LaValle and J. Kuffner, Randomized kinodynamic planning, in: Proc. JEEE Int. Conf. on

Robotics and Automation, Detroit, MI, Vol. 1, pp. 473-479 (1999).

T. S. Wikman, M. S. Branicky and W. S. Newman, Reflexive collision avoidance: a generalized
approach, in: Proc. IEEE Int. Conf. on Robotics and Automation, Atlanta, GA, Vol. 3, pp. 31-36
(1993).

R. Alami, T. Siméon and K. Madhava Krishna, On the influence of sensor capacities and
environment dynamics onto collision-free motion plans, in: Proc. IEEE-RSJ Int. Conf. on
Intelligent Robots and Systems, Lausanne, pp. 2395-2400 (2002).

A. R. Pritchett, Pilot performance at collision avoidance during closely spaced parallel ap-
proaches, Air Traffic Control Q. 7, 47-75 (1999).

R. Teo and C. Tomlin, Computing danger zones for provably safe closely spaced parallel
approaches, J. Guid. Dyn. Control 26, 434-443 (2003).

R. Simmons, The curvature-velocity method for local obstacle avoidance, in: Proc. IEEE Int.
Conf. on Robotics and Automation, Minneapolis, MN, pp. 3375-3382 (1996).

D. Fox, W. Burgard and S. Thrun, The dynamic window approach to collision avoidance, IEEE
Robotics Automat. Mag. 4, 23-33 (1997).

P. Fiorini and Z. Shiller, Motion planning in dynamic environments using velocity obstacles, Int.
J. Robotics Res. 17, 760-772 (1998).

N. Y. Ko and R. Simmons, The lane-curvature method for local obstacle avoidance, in: Proc.
IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, Victoria, BC, pp. 1615-1621 (1998).
O. Brock and O. Khatib, High-speed navigation using the global dynamic window approach, in:
Proc. IEEE Int. Conf. on Robotics and Automation, Detroit, MI, pp. 341-346 (1999).

F Large, S. Sekhavat, Z. Shiller and C. Laugier, Towards real-time global motion planning in
a dynamic environment using the NLVO concept, in: Proc. IEEE-RSJ Int. Conf. on Intelligent
Robots and Systems, Lausanne, pp. 607-612 (2002).

J.-P. Laumond, Obstacle growing in a non-polygonal world, Information Process. Lett. 25, 41-50
(1987).

S. Skiena, in: The Algorithm Design Manual, pp. 395-396. Springer-Verlag, Berlin (1997).
Algorithmic Solutions Software GMBH, LEDA: Library of Efficient Data types and Algorithms.
http://www.algorithmic-solutions.com/enleda.htm

. S. Lavalle, Rapidly-exploring random trees: a new tool for path planning, Research Report 98-

11, Department of Computer Science, Iowa State University (1998).
Th. Fraichard and H. Asama, Inevitable collision states. a step towards safer robots? in: Proc.
IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV, pp. 388-393 (2003).

1024 T. Fraichard and H. Asama

ABOUT THE AUTHORS

§| Since January 2003, Thierry Fraichard has been a Research Associate in the
e-Motion team of Inria Rhone-Alpes and the Gravir laboratory (CNRS Mixed
Research Unit 5527). From December 1994 to December 2002, he was a member
of the Sharp project of Inria. He received his PhD in Computer Science from
the Institut National Polytechnique de Grenoble in April 1992 for his dissertation
i on ‘Motion planning for a nonholonomic mobile in a dynamic workspace’.
From December 1993 to November 1994, he was a Postdoctoral Fellow in the
Manipulation Laboratory of the Robotics Institute at Carnegie Mellon University
in Pittsburgh, PA. In 1997, he took part in the organization of the IEEE-RSJ International Conference
on Intelligent Robots and Systems (Secretary, Member of the Programme Committee and Local
Arrangements Committee). From November 2000 to January 2001, then again in November 2001,
he was a Tan Chin Tuan Fellow in the Intelligent Systems Laboratory of the Nanyang Technological
University in Singapore. From September to December 2002, he was a JSPS Fellow in the Distributed
Adaptive Research Unit of the Riken Institute in Tokyo. His research focuses on motion autonomy
for vehicles with a special emphasis on motion planning for non-holonomic systems, motion planning
in dynamic workspaces, motion planning in the presence of uncertainty and the design of control
architectures for autonomous vehicles.

\| Hajime Asama received MS and DS degrees in Engineering from the University
of Tokyo in 1984 and 1989, respectively. He worked at RIKEN (The Institute of
i Physical and Chemical Research, Japan) as a research associate, a research sci-
entist, a senior research scientist and a senior scientist from 1986 to 2002, and
i became Professor of RACE (Research into Artifacts, Center for Engineering), the
 University of Tokyo in 2002. He received JSME Robotics and Mechatronics Divi-
sion Robotics and Mechatronics Award in 1995, JSME Robotics and Mechatron-
ics Division Robotics and Mechatronics Academic Achievement Award in 2000,
JIDPO Good Design Award in New Frontier Design Category in 2002, among others. He was editor
of the second and fifth volume of Distributed Autonomous Robotics Systems, which were published
by Springer (Tokyo) in 1994, 1996 and 2002 respectively. He is a member of IEEE, RSJ, ISME, SICE
and the New York Academy of Science, among others. His main interests are distributed autonomous
robotic systems, cooperation of multiple autonomous mobile robots, emergent robotic systems, intel-
ligent data carrier systems and service engineering.

