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In this current research, we are developing an au-
tomatic navigation system for outdoor vehicles. Es-
pecially, in this paper we propose self-localization
method based on the information stored in Informa-
tion Assistant (IA) devices and range sensor informa-
tion. IA is a sort of clectronics device with wireless
communication function based on RF-ID and stored
local environment map. The vehicle reads reference
data from distributed IAs in the environment and
compares such data and scanning range data by us-
ing Laser Range Finder (LRF). A probabilistic calcu-
lation is introduced to match the sensory information
and environment-embedded information. We had the
experiment for verifying the validity of our localiza-
tion method using outdoor vehicle.

Keywords: information assistant, range data, outdoor ve-
hicle, self-localization

1. Introduction

Transportation system by using Automated Guided Ve-
hicle (AGV) introduced in plants and harbor container
yards are expected to utilize to the other applications,
which require autonomous operation with or without nav-
igation tracks. Thus, it is important that vehicles recog-
nize their location and positioning in the outdoor environ-
ment, i.e., self-localization. In the research field of mobile
rabots, technical developments related to self-localization
method [ 1, 2] have been proceeded. A typical example is
to utilize highly precise gyro-sensor and Real-Time Kine-
matics GPS (RTK-GPS) which can measure within an er-
ror of several centimeters [3]). However, there is a possi-
bility that large-scale structured shelters such as buildings
in the working environment may compromise measure-
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ment precision of GPS.

Other approaches utilize visual sensors such as cameras
or range sensors to detect landmarks and match them to
pre-provided map information for self-localization [4,5].
They implement matching process using environmental
objects such as walls or poles projecting from the environ-
mental plane. However, such conditions may not be sat-
isfied due to object non-uniformity, e.g., fences, hedges,
trees, and bushes.

Recently, Simultaneous Localization And Mapping
(SLAM) using a probabilistic approach based on sensor
information and self-motion [6,7, 8] has been focused.
Guivant et al. proposed a vehicle with a laser range finder
for mapping outdoor landmarks [9], but, this method re-
quires environmental information to be collected previ-
ously. Localization may be possible by comparing envi-
ronmental information to sensor information, but it is not
practical to manage all information (map, shape of the ob-
ject, path layout and so on) in a vehicle if the running en-
vironment is too large. If such information is stored and
managed on a vehicle, vehicle’s cost would be increased.
Referring to map information which is stored on a server
can be also considered, however, it may be compromised
by delays in data transmission or online data retrieval in
high-speed operation of the vehicles.

On the other hand, computer downsizing, technical ad-
vances in radio communication devices, and IC tags are
realizing the concept of ubiquitous computing and envi-
ronmental intelligence. Such advances realize ubiquitous
and local information management and make it easier to
introduce efficient and distributed real-time information
processing. It means to obtain required amount of re-
quired information at required locations. Implementing
real-time vehicle control in large environments requires
not only grobal broadcast information management but
also distributed local information management.

We already have been developing Intelligent Data Car-
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IA tags (lefu).

Fig. 1. Information assistant syvstem:
reader/writer, and antenna (right).

rier (IDC) system and Information Assistant (1A) thatis a
sort of extended IDC. IDC and TA are ubiquitous informa-
tion devices which realize that robots can communicate
environment-embedded information based on the concept
of environmental intelligence [10].

We already have developed an approach that derives
relative location from visual characteristics of IDC unit
with the absolute location in the 1IDC for mobile robot
self-localization [11]. 1t is assumed in self-localization
that the IDC unit is visually detectable. We also used [A
with laser pointer and image processing to navigate mo-
bile robots in local [12]. However. laser pointers may not
work effectively depending on the environmental condi-
tions such as occlusion or being at outdoor.

In this paper. we propose a self-localization method
utilizing range sensory information and environment-
embedded information. Environment-embedded informa-
tion means local information which is managed in IA.
Such information can be exchanged between the vehi-

cle and devices via local wireless communication. For

self-localization, the vehicle acquires reference informa-
tion from the environment and matches it to range sen-
sory information obtained by sensors to be implemented
on the vehicle. We assume that routes on a wide campus,
for example, consists of a combination of straight lines,
and discuss a method presuming that these straight lines
are used for self-localization.

2. System Configuration

Our proposal is that the outdoor vehicle is self-localized
by matching range sensory data with environment-
embedded information. An auxiliary map that serves as a
landmark for localization and information described later,
such as the localization mode, are stored in management
devices distributed on the road. Vehicles read this infor-
mation via local communication and selt-localize without
having detailed information on the whole environment.

2.1. Local Information Management Device

As mentioned, we are developing IA (Fig.1) as local
information management device [12.13]. 1A is an elec-
trical device with memory and capable of non-contact
short range communication (RF-1D). Reader/Writer and
antenna are utilized to read and write information via non-
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Fig. 2. Electrical vehicle with Laser Range Finder (LRF).

contact communication with IA tags. Communication by
RF-ID between the tag and the antenna is with a maxi-
mum communication distance of 150mm, a reading speed
of 4.8Kbps, and a writing speed of 0.96Kbps. The amount
of data stored in the tag is 6 bytes for the header and 110
bytes for data. The vehicle reads data even at a maximum
I8km/h. It also writes data at 2km/h or less. We focus
here on information reading, but the system also manages
reference information for localization and navigation.

2.2. Vehicle and Operating Environment

Our platform is an electrical vehicle (Fig.2). The laser
range finder (LRF) can provide range sensory informa-
tion. The LRF which is utilized for the prototype is LM-
291 (SICK Corp.) with a detection distance of 32m and
an angle resolution of 0.5° [14]. The experimental vehicle
equippes one steering (Ackerman steering system) and a
set of driving wheels. A rotary encoder is also equipped to
measure the speed of the wheel rotation. The vehicle has
an antenna to communicate with A tags on the road for
gathering environmental information from IA tags during
operation.

In this study. we assume the environment is like an as-
phalt road surrounded by buildings and trees with edge
stones at both ends of the road. It is also assumed to con-
sist of a straight road similar to those often seen on large
campus and intersections such as crossing or T-shaped
roads. The environment is assumed to be free of dynamic
obstacles.

3. Self-Localization

In this section, we discuss self-localization algorithm
using the system described above.

Each [A stores unique ID, the ID of the next IA to be
read, its location, localization mode. and parameters re-
lated to environmental shapes required for localization.
They are described in detail later.

After initially reading information from the first 1A tag,
the vehicle moves toward its destination while acquiring
information from IAs, which they are placed on the way
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Fig. 3. Vehicle and LRF coordination.

to the destination. During travel, the vehicle does not es-
timate its own localization in global coordinates, but con-
duct localization using local IA coordinate. When the
next 1A can be read, the vehicle conducts localization in
new |A coordinate and continues this task until reaching
the destination while canceling accumulated error at each
local IA coordinate. In this condition, a variety of ob-
jects with different shapes placed linearly along the route
is approximately estimated and self-localized based on
this process. Our localization method makes it possible
to decrease information to be managed by representing
the shape of a Jocal map with a combination of straight
line models. It is easily installed even if it does not have
large memory.

3.1. Vehicle Coordinates

The vehicle” kinematic model, vehicle coordinates {c}.
and LRF coordinates {LRF} are shown in Fig.3. If there
is one virtual wheel between the forward left and right
wheels, equivalence takes place due to Ackerman steer-
ing. The origin of vehicle coordinates is assumed located
at forward center between the local information manage-
ment tag and communication antenna.

The vehicle’s positioning vector “MP(t) in 1A, coordi-
nate is defined as follows.

A p(r) = ["x(mAT) "y(maT) “0maT))” (1)

where 1 = mAT indicates the time in local IA coordinates.
i also specifies the ID of each IA.

3.2. Self-Localization Algorithm Along Straight
Path

During the vehicle moves along straight path, follow-
ing localization mode (straight guidance mode) is utilized.
From local 1A, the vehicle takes distance information H
to the straight line segment in local 1A coordinate (Fig.4).
Localization can be calculated as follows.

(1) After /A, is read. "*P(0) =[0 0 0)", m=0. Ac-
quire the positional relationship to the straight line, here
distance H.

(2) Acquire scan data from the LRF by sampling time AT
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Fig. 5. 1A coordinates in following curve guidance.

and convert it to vehicle coordinate representation.

(3) Estimate the straight line based on scan data, the vicin-
ity of the straight line (H £ AH) in system coordinates,
and find inclination B between this straight line and the
vehicle and vertical distance /i between the straight line
and the LRF distance, where AH indicates the allowable
range of sensing data.

(4) Update the self-position and orientation using the fol-
lowing equation:

¥(t) 1 _ [ H=h-Asin6(1)
) B R A

Update v using integration by sampling time AT as fol-
lows:

X(mAT) = ¥ {ve(kAT)cos O(KAT)}
k=1
—AcosO(mAT) . . . . . . . . (3)

where v, is a value from the encoder on the vehicle.
(5) Read the next [A and return to (1). Otherwise, return
to (2Q)withm=m+ 1.

Localization is done by repeating this as discussed
above.

3.3. Self-Localization Algorithm at Intersection

Figure 5 shows proposed local IA coordinates at an in-
tersection. While passing the intersection, the following
calculation is done by using localization mode (intersec-
tion passing mode) which is stored in each IA as discussed
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above, and information on distances H, and H, to the
straight line in local IA coordinates, and road widths w,
and w,. Each IA also contains the ID number to identify
the tag, the distances H, and H, in its IA local coordinate,
and w, and w,. Here, wrning left is given as a typical
example of passing the intersection.

(1) After reading /A,, " P(0) =
acquire distances H| "and H,.
(2) Acquire scan data from the LRF and select the smaller
of road widths w, and w, as the threshold for grouping.
(3) Acquire two point data groups from near A, and H,
from grouped data groups and estimate their straight lines.
Find the inclinations B, and B, of the vehicle and vertical
distances i1, and /1, to the estimated straight line and the
location of LRF.

(4) Select the straight line with the nearer distance of i,
and hy. If by > hy, B = Bs, h=h,, and H = H,. Other-
wise, B =B, h=h,,and H =H,.

(5) Update the self-position by the following equation:

¥(r) H—-h-AsinB(1)
[0 ]=[H Ao ]

Integrate and update x using sampling time as follows;

[0 0 2/x]", m=0and

r(mAT) = Y {v.(kAT)cosO(kAT)}
k=1
—AcosO(mAT) . . . . . . . . (5

where v. is a value from the encoder on the vehicle.

(6) Acquire LRF data after sampling time AT and select
the smaller of road widths w, and w, as the threshold for
grouping.

(7) If the next IA is read. a new system of coordinates is
set, otherwise returnto (2) asm=m—+ 1.

4. Straight Line Estimation

4.1. Algorithm

In previous section, we assumed that the edge stone was
acquired from the LRF data and estimate a straight line
for self-localization. For estimating straight line from a
set of given points, generally Least Mean Square (LMS)
algorithm is utilized to estimate it or the algorithm by
Hough transformation is considered. If an outdoor en-
vironment is assumed, this introduces weeds, landmark
poles, stones, etc.. in grouped data, leading to noise and
adversely, affecting the estimation of straight lines. For
a Hough transformation. a large amount of calculation is
required to estimate a straight line, making it unsuitable
for real-time processing during vehicle travel. We pro-
pose an algorithm to estimate straight lines that requires
less processing time than a Hough transformation with ro-
bustness against noise. Our proposal assumes parameters
to calibrate a straight line (model) found assuming that
the value measured by the sensor has a probabilistic error
distribution, detailed below.

Assume that presumed measurement error has a certain
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probabilistic distribution for M parameters when N data
points (x;.y;) j=1,...,N are acquired. Considering that
parameter a € RY of model &(x.a) is assumed, the fol-
lowing description can be made:

N
e B T I ()
j=1

where function f(-) is a probability density function of
estimated measurement error.

When a logarithm is applied to this equation and the
product sum described, Eq.(7) is established.

U(a) =logS(a) Ja)>0. . . (D)

N
= 2 log f(¥;.x;
j=1
Minimize Eq.(7) for parameter a estimating the param-
eter. The result of Eq.(7) partially differentiated by a as
follows:
N

U(a) ;ZIog,f(\,wa) . (8

Since the outdoor estimation of straight lines above
contains uncertainty due to a variety of factors, error dis-
tribution is preferably assumed by a wider distribution
function than normalized distribution. If the distribution
can be modeled as Laplace distribution which is a typical
example of such model. The following equation is estab-

lished:
Slyjxla) = = 5 ex p(— ) 9

where o; represents statistical distribution of measured
sensor information. From Eqgs.(8) and (9). the following

is established:

dJ a1y
a”‘““x{ai(*

j=1

y;—&(x;.a)

o

.“j - é("‘j? a)

J

B ) (_ —ax,-.a))
253 a{.\',-—é(x,-,a)} o;
o;
i v;—&(x;.a)
Jda o;
1$ yj = &y; a)}ﬁ]
21=Z|[8gn{ % %
=0 ... . ... ... ... o0
where
I (z>20
sgn{:}={ —I E";O; R A 1 D)

Straight line model & (x.a) estimated from acquire data
points is written as follows:

Eva)=a,+ayx. . . . . ... ... (12)

If Eq.(10) is expanded using the above equation, it is
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described as follows:
) X yi—a,—asx; | x;
;z sgny —m — | =0 . (]3]
== O; O-.f'

where all weights g; are assumed equal to @, so the fol-
lowing equation is established:

1 X Yj—ay —a,x;
— sgng ——= 5| =0. . . . (14
2o ,Zi [ = { G J S

If straight line approximation is considered, the sum of
error products is minimized as follows:

N
min Z |yj —a, —uz,\'f] v owow o ow ow v LD
j=1
These conditions are sufficient for finding the nonlinear
equation as shown in Eq.(14) and parameters a; and a,
that meet Eq.(15) by bisection algorithm based on N in-
formation acquired by the sensor.
This enables straight line estimation by an edge stone
to be done based on scan information and vehicle self-
localization to be implemented.

4.2. Experiment on Estimation

We used the straight line estimation algorithm above
for comparison with other methods. Fig.6 shows compar-
ison results of estimation results found by Hough trans-
formation. Least Mean Square (LMS) algorithm, the pro-
posed straight line estimation. Calculation used the same
Pentium 700MHz. 200 points data per one time scanning
are measured by the LRF per one time scannig and the ref-
erence value AH which is utilized to estimate the straight
line is set to 0.5m. When we compared our proposal to
Hough transformation for the time required for estima-
tion, we found that the Hough transformation was 100ms,
while our proposal was Ims. We also compared our pro-
posal to the method of least squares for precision in esti-
mating straight lines, we found that our proposal obtained
almost the same results as true values.

Our proposal is thus more effective for both time of
calculation and precision compared to these methods.
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Table 1. Localization mode command and information in 1As.

[D | Next tag | Position of | Localization | Env. T
1D next tag Mode Info. [m]
1 ]2 0, 10] Straight H=2.0
2 |3 -5, 13] Curve H =94,
Hy = 2.0
W, = 6.2,
wy, = 4.3
3 [ 4 [<30.15] | Straight H=20
4 | None None Stop None |

5. Localization Experiment

To validate our proposed self-localization method, we
conducted an experiment in Wako campus of RIKEN (the
Institute of Physical and Chemical Research). The course
consisted of straight forward, left turn, and straight for-
ward. The IA was installed beside the electro magnetic
guideline on the course. A vehicle traveled along the elec-
tromagnetic guidance line and when the vehicle read the
[As. self-localization can be conducted based on stored
information in coordinates with the IA. The electromag-
netic guidance line is utilized to navigate the vehicle along
the course. The LRF was also installed on the vehicle at
forward center 8cm above the ground. We used an edge
stone in the environment as reference point for localiza-
tion. Here, range data contains some uncertainty due to
the effect of weeds, plants, stones, and road irregularities.

In Fig.7. black lines and the gray line shows the clec-
tromagnetic line and the edge stone, respectively. The cir-
cle also indicate the position of each TA. The number in
the circle is ID of IA to be specified. The indication in
parentheses on Fig.7 means each IA's position in global
coordinates with the position of the first IA which is used
as the origin (in meters). Information stored in each IA is
listed in Table 1. As described above, these stored infor-
mation includes the unique 1D of the [A, 1D and installed
location of the next IA to be read, localization mode dur-
ing the oiperation, and environmental shape parameters
required for localization. This makes it possible to check
environmental information by confirming the 1D of the IA
read during travel. The localization mode and parameters
needed for localization are managed as a set.

o
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For continuous localization in the working environ-
ment, [As are installed at suitable points along guidance
line and provide reference information.

The reference value AH is set to 0.5m to extract LRF
data during the operation and vehicle speed is also set to
Skm/h for fixed-speed operation.

Figure 8 shows that self-positions on system coordi-
nates with ID numbers 1. 2, and 3 as origins are converted
in the global coordinates. Status variables had maximum
error of 20cm, which was directly measured from straight
lines detected during the operation.

In x direction of the vehicle in local coordinate, local-
ization error is accumulated because of it is calcurated
base on odometory data. Even so, the IA tag is reset in
new local IA coordinates and error is cancelled.

Figure 9 shows constructed map using LRF data based
on self-localization result which is converted to global co-
ordinates. When estimated location and sensory data were
reconstructed, a map was similar to the real environment.
As the result, it indicates that localization had good preci-
sion.

We used straight lines for the model estimating envi-
ronmental shape, but the general curve may utilized in the
same way for parameter estimation. We will examine that
our self-localization method can be applied during to self-
localize in real-time considerations.

6. Summary
We have proposed self-localization based on informa-

tion from local information support devices set in the en-
vironment and range information acquired by the vehi-
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cle. We verified our proposed self-localization method
using an electric vehicle. Experimental results indicated
the availability of our self-localization method estimating
straigh line from range data which mainly is to detect edge
stones as landmarks for localization. We are planning to
extend this proposal to implement automatic operation.
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