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Pitchfork bifurcation in a receptor theory-based model
of the serotonergic system

Shiro Yano,*a Takayuki Watanabe,b Hitoshi Aonumab and Hajime Asamac

Abnormalities in the serotonergic system are thought to be a potent cause of several mental diseases.

Past research has shown that autoreceptors are the key component. It is thought that the autoreceptor

constructs a negative feedback circuit on this system and realizes homeostatic control on its neural

activity. This study is mainly organized from the above mentioned knowledge. In this paper, we

construct two possible models of the serotonergic system based on receptor theory and provide some

predictions for this system with each model. In the first model, we predict that the deficit of serotonin

synthesis causes destabilization of the amount of autoreceptors; autoreceptors show an explosive

increase if serotonin synthesis drops below a certain threshold value. In the second model, we indicate

that the serotonergic system changes its stable property from a monostable one to a bistable one by

certain factors. We clarify these factors and show that this changing process is named pitch-fork

bifurcation. Additionally, we also suggest another notable phenomena which would appear when we

consider a stochastic perturbation on the receptor expressions. Lastly, we suggest some experimental

ideas towards the verification of the validity of these models.

1 Introduction

Serotonin (5-HT) has attracted the attention of researchers
as the pathophysiological factor of anxiety, mood disorders,
suicide and others. Serotonergic systems are especially studied
in association with the study of major depressive disorder:1 the
hypothesis that focuses on the dysfunctions of monoamines
(serotonin, 5-HT; dopamine, DA; norepinephrine, NE) is called
the monoamine hypothesis.

In the monoamine hypothesis, serotonin deficiency in the
brain is thought to be an important cause of depressive
symptoms. A previous study has indicated that this deficiency
is caused by a dysfunction in the serotonergic cells at the dorsal
raphe nucleus (DRN).2 A lot of studies have increased the
understanding of the morphology and the physiology of
serotonergic cells: it is generally accepted that the internal
mechanism of the serotonergic cell is associated with the
following properties.3,4

1. A serotonergic cell releases serotonin to the extracellular
area.

2. A serotonergic cell has an autoreceptor in its cell body
membrane and a transporter at the axon terminals.

3. Serotonin–autoreceptor binding inhibits the serotonin
release and the serotonin synthesis.

4. A serotonergic cell takes homeostatic control of itself by
upregulating and downregulating autoreceptors and postsynaptic-
receptors according to the amount of serotonin–receptor
bindings.

In this paper, we predict some remarkable phenomena in
the serotonergic system mainly using the above mentioned
knowledge. To predict what occurs in this system, we especially
focus on the structural stability. From the viewpoint of dynamical
systems, past clinical study suggests the bistable property of
major depressive disorder: a depressive patient moves back and
forth between normalcy and syndrome during the treatment.5

Therefore, it is an important issue to analyse the structural
stability of the serotonergic system.

The outline of this paper is as follows. At first, we construct a
model of receptor dynamics. As we will see later, it is uniquely
derived from the requirement of homeostatic control of the
serotonergic cell. Second, we propose two dynamical models
of the amount of extracellular serotonin, both of which
satisfy the above mentioned properties. Then we analyse
these structural stability and bifurcation parameters. Lastly,
we suggest some experimental ideas to verify the validity of our
models.
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2 Model construction
2.1 Theoretical basis

At first, we briefly introduce the receptor theory. Receptor
theory is the theoretical basis of this study to model the
receptor dynamics.

Receptor theory gives us the modelling technique for the
dynamics of agonist–receptor binding. Let us express the
amount of agonist as [A], unbounded receptor as [R] and
complex as [AR]. In the receptor theory, the agonist–receptor
interaction shown in eqn (1):

½A� þ ½R� Ð
k1

k2
½AR� (1)

is expressed by a differential eqn (2):

d½AR�
dt

¼ k1½A�½R� � k2½AR�; (2)

where k1 is the binding reaction velocity and k2 is the unbinding
reaction velocity. From eqn (2), we can derive the stable fixed
point of this system as

½AR� ! k2

k1

� ��1
½A�½R�: (3)

The ratio KD = k2/k1 is usually called the dissociation constant.
A larger KD indicates the situation that the leftward reaction
([AR] - [A] + [R]) is dominant over the rightward reaction.

Receptor theory also gives us the modelling technique for
the response effect of the agonist–receptor binding. This theory
expresses the response effect as a monotonically increasing
function of the amount of binding [AR]:6

Response = f ([AR]). (4)

Various types of the function f were proposed in the progress
of receptor theory.7 For example, in the earliest work done by
A. J. Clark,8 eqn (4) is expressed in the following manner:

Response = [AR]. (5)

In another case, which is called the operational model,9

eqn (4) is expressed empirically as:

Response ¼ ½AR�
½AR� þ KE

Em (6)

where KE is the parameter which reflects the properties of the
tissue and agonist and Em is the parameter which shows the
maximal response of the tissue. As explained above, f is usually
and empirically assumed to be a monotonically increasing
function.

2.2 Modelling the serotonergic system

Let us consider the serotonergic system. DRN has a serotonergic
neuron which is a major source of serotonin in the brain.
Released serotonin widely affects the forebrain: the neocortex,
the dorsal striatum, ventral striatum, and the amygdala.2

We define ‘‘serotonergic system’’ as the serotonergic neuron

at the DRN, which releases serotonin, and receptive organs of
serotonin.

Here are the definitions of the variables (they are also
described in Fig. 1). The concentration of extracellular serotonin
is expressed in [S]. The serotonergic system has an autoreceptor
near the body of a cell, so the density of autoreceptors is
expressed as [RA], The density of postsynaptic receptors is
expressed as [RP]. Extracellular serotonin binds to not only
autoreceptors but also postsynaptic receptors at the postsynaptic
cell, so the density of binding receptors is expressed as [SRi](i=A,P).

The relationship of these variables is summarized by the
following scheme:

Serotonin concentration [S] is regulated by serotonin syn-
thesis in serotonergic cells and the clearance effect by mono-
amine oxidase and serotonin transporters. Receptor density [Ri]
is regulated by receptor internalization in presynaptic cells and
postsynaptic cells.

Our challenge is to model the dynamics of [S], [RA] and [RP]
in a compelling way, as much as possible. As is shown in the
following, the dynamics of both [RA] and [RP] are naturally
derived from the requirement of homeostatic-controls for the
effect of serotonin–autoreceptor binding f ([SRA]) and for the
effect of serotonin–postsynaptic receptor binding f ([SRP]).

We employ below three assumptions:
1. Reaction velocity of serotonin–receptor binding (first

equation) is sufficiently faster than that of receptor internaliza-
tion.10,11 So we adopt [SRi] = Ki

�1[S][Ri]: parameter Ki is the
dissociation constant, so a lower Ki represents higher binding
of serotonin and receptor.

2. The dynamics of Ki is slower than the dynamics of [S] or [Ri],
enough to treat it as a constant parameter (exogenous variable).

Fig. 1 The serotonergic system and the five variables we use. Details of the
definitions are described in the main article.
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This assumption is suggested by past studies in rats showing
that chronic testosterone administration for two weeks
increases the affinity of hippocampal 5-HT1A receptors without
changing the density of them.12,13 Although this result is not
about the dorsal raphe nucleus, we assume a slow transition of
the affinity of presynaptic and postsynaptic receptors in this
analysis.

3. The dynamics of extracellular serotonin [S] is also suffi-
ciently faster than that of receptor dynamics [Ri].

14,15

It is known that the affinity of presynaptic receptors KA is
reduced in a depressive state.16 Lastly in this paper, we analyse
the effect of KA and KP on the stability of this system.

In the model construction, we proceeded in two stages. At
first, we constructed a model of receptor dynamics [RA] and [RP]
based on receptor theory. Then we constructed two different
models for serotonergic dynamics [S]; the reason why we
propose two different models is due to the limited understanding
of the internal mechanism of serotonergic cells. We tried to
construct them in as careful a manner as possible.

2.2.1 Receptor dynamics. In this step, we will see that the
receptor dynamics satisfies Davis’s criteria about the homeo-
static control.17 The dynamics near the equilibrium is uniquely
determined to our suggested form without loss of generality.

At first, we derive the model of the autoreceptor dynamics
[RA] and postsynaptic receptor dynamics [RP] near their equili-
brium point. Then we constructed the model of the amount of
external serotonin [S].

As noted in the introduction, we assume that the serotonergic
cell somehow regulates itself to realize homeostatic control of
the signal via autoreceptor–serotonin binding. We also assume
that the postsynaptic cell regulates itself to realize homeostatic
control of the signal via postsynaptic receptor–serotonin
binding. It is also introduced that the response f ([SRi]) is a
monotonically increasing function of [SRi]. From this mono-
tonicity, there exists one-to-one correspondence between f ([SRi])
and [SRi]; homeostatic control on f ([SRi]) is equivalent to the
fixed value control on [SRi]. Thus we find that it is a necessary
condition for the serotonergic system to take a fixed value
control on [SRi], so the dynamics of the serotonergic system
is uniquely determined in eqn (7):

1

Ki

d½S�½Ri�
dt

¼ k3 Ĥ i �
1

Ki
½S�½Ri�

� �
þ OðDi

2Þ (7)

where Di is the distance from the equilibrium (Di = Ĥi� Ki
�1 [S][Ri]),

k3 is a time constant and Ĥi is the target value of homeostatic
control. Below we replace (Hi = KiĤ) for convenience. We
deform and approximate the left-hand side of eqn (7) as:

d½S�½Ri�
dt

¼ ½S�d½Ri�
dt
þ ½Ri�

d½S�
dt
’ ½S�d½Ri�

dt
: (8)

This approximation is justified because the time scale of
serotonin generation or decomposition is faster than the
dynamics of serotonin receptors. This type of system is known
as a slow-fast system or a singular perturbed system.18

Thus, we can transform the second line of eqn (7) as follows:

d½Ri�
dt
¼ k3

Hi

½S� � ½Ri�
� �

ðwith ½S�a0Þ: (9)

Eqn (9) causes ½Ri� !
Hi

½S�, which results in [S][Ri] - Hi.

2.2.2 Serotonin dynamics
Model 1. Then we construct two different dynamical models

which represent the dynamics of extracellular serotonin. It is
important that the amount of serotonin is controlled by the
effect from serotonin–autoreceptor binding [SRA].

We construct the first model as follows:

d½S�
dt
¼ k4 S" � ef SRA½ �ð Þ � ½S�

� �
(10)

where Sm is a constant parameter which represents the synthesis
of extracellular serotonin, which reflects serotonin release,
synthesis and reuptake by the serotonergic cell. The second
term expresses the inhibitory effect of serotonin–autoreceptor
binding f ([SRA]). Receptor theory has proposed various types of
f ([SRA]). In this study, for the sake of analytical convenience, we
adopt the simplest form f ([SRA]) = [SRA]. Then we get

d½S�
dt
¼ k4 S" � a½S� RA½ � � ½S�

� �
; (11)

where we replaced eKA
�1 = a.

Approximately, we can replace
d½S�
dt
¼ 0 from the charac-

teristics of its fast dynamics in comparison with receptor
dynamics. Then, in this first model, the amount of extracellular
serotonin is determined as follows at all time points:

½S� ¼ S"
1þ a RA½ �: (12)

We can see that this equation is the mono-decreasing
function of [RA]. This monotonous nature is consistent with
our understanding of the characteristics of serotonin dynamics.

Model 2. We designed a second model to overcome the
undesirable behavior of the first model.

In the first model, a subtle change in [RA] causes a most
significant change in [S], the less the autoreceptor expresses
(i.e. [RA] - 0). In other words, it’s highly unlikely, but this
model says that additional administration of the autoreceptor-
inactivator would show its effect further and further whenever
the autoreceptor is almost completely inactivated.

To overcome the above problem, we propose a second model
as follows:

½S� ¼ aþ b

1þ exp Z KA
�1 RA½ � � lð Þð Þ: (13)

The rate of change of [S] becomes lower below the threshold
KA
�1[RA] = l. The parameters of the second model are almost

comparable to that of the first model. Parameter Z modulates
the impact of subtle change in KA

�1[RA]; it corresponds to
parameter e. Parameter b modulates the maximal value of [S];
it corresponds to parameter Sm. Parameter a determines
the lowest value of [S]; it was not included in the first model.
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From the view point of these parameters, parameter l expresses the
inflection point of the impact of serotonin–autoreceptor binding.

3 Analysis and results
3.1 Analysis on model 1

Thus the local model of the serotonergic system consists of
eqn (7) and (11). We can contract this system as

d RA½ �
dt
¼ k3

HA

S"
þ HA

S"
a� 1

� �
RA½ �

� �
; with ½S�a0

d RP½ �
dt
¼ k3

HP

S"
þHP

S"
a RA½ � � RP½ �

� �
; with ½S�a0

8>>>><
>>>>:

(14)

where we use [S] = Sm(1 + a[RA])�1. Because the stability of [
:
RP] is

not affected by any parameters, we focus our attention on the
stability of [

:
RA] below.

Under the condition
HA

S"
a ¼ eĤA

S"
o 1, we can derive the

equilibrium point of this model as

RA½ � ¼ KAĤA

S" � eĤA

RP½ � ¼ KPĤP

S" � eĤA

;

8>>>>><
>>>>>:

(15)

which satisfy [RA] 4 0 and [RP] 4 0. On the other hand, under

the condition
eĤA

S"
4 1, the equilibrium point diminishes

because of emerging instability. Under this condition, dynamical
eqn (14) becomes unstable and [RA] increases until [S] goes to
zero or [RA] becomes saturated.

To summarize the above analyses, it was indicated that [
:
RA]

becomes unstable if Sm decreases below the threshold level
eĤA = Sm; then [RA] would become saturated. Under the stable
domain of [

:
RA], our analyses also indicated that the equilibrium

point of autoreceptor [RA] becomes high if the dissociation
degree of autoreceptor KA increases or if Sm decreases. These
results would be intuitively plausible.

In this model, system output f ([SRP]) would be a mono-
increasing function of the amount of autoreceptor [RA].
Eqn (15) helps us to show this property:

[RP] p [RA]. (16)

Because f ([SRP]) would be a mono-increasing function of
[SRP], it is important

SRP½ � / a½S� RA½ � ¼ aS" RA½ �
1þ a RA½ �; (17)

where we used eqn (16). This equation is a mono-increasing
function of [RA] (Fig. 2). As is shown in Fig. 2, eqn (17) is almost
independent from [RA] when a becomes large. Thus, system
output f ([SRP]) would be a mono-increasing function of [RA] in
this model.

3.2 Analysis on model 2

At first, we reduce equations by substituting eqn (13) into
eqn (9):

ak3
�1

ĤAKA

d RA½ �
dt
¼ 1þ b=a

1þ exp Z KA
�1 RA½ � � lð Þð Þ

� ��1
� a RA½ �
ĤAKA

:

(18)

To take a bifurcation analysis on the equilibrium point of
autoreceptors [RA] = 0, it is sufficient to take a bifurcation
analysis on that of R = a(ĤAKA)�1[RA]:

R ¼ 1þ b0

1þ expðZ0ðR� l0ÞÞ

� ��1
; (19)

where b0 = b/a, Z0 = ĤAZ/a and l0 = al/ĤA.
In this model, we employ numerical analysis, because it is

difficult to solve eqn (19) algebraically which was shown in the
first model. We examine the effect of three parameters b0, Z0

and l0 on the equilibrium point R = a(ĤAKA)�1[RA].
Fig. 3 is an example of a

:
R – R diagram which reflects the

characteristics of eqn (18). This figure indicates that different
bifurcation such as perfect/imperfect super critical pitch-
fork bifurcation occurs in autoreceptor dynamics. Fig. 4 shows
bifurcation diagrams of autoreceptor dynamics calculated by
eqn (19). Although it is calculated in the specific parameter set,
these figures clearly show that all of b0, Z0 and l0 work as
bifurcation parameters. It is indicated that increasing b0 and
increasing l0 tend to produce another stable point around low
R* domain; then the original stable point diminishes as is
shown in Fig. 3B. It is also shown that increasing Z0 causes
bifurcation, but the number of equilibrium points doesn’t
diminish as is the case in b0 and l0.

We didn’t take a numerical bifurcation analysis on the
dynamics of postsynaptic receptors [RP], because it is shown
that [S] is not a function of [RP]; it is clear that [RP] doesn’t show
bifurcation phenomenon as far as we accept eqn (9). In fact,
[RP] shows bifurcating behavior superficially, it is only affected
by the bifurcation of [RA].

To summarize the above analysis, the second model predicted
the occurrence of the supercritical pitch-fork bifurcation on the

Fig. 2 The amount of autoreceptor [RA] determines the intensity of behavior
modulation. Behavior intensity is a mono-increasing function of [RA]. This func-
tion becomes flat regardless of the amount of [RA] with large a.
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dynamics of autoreceptors. It was also shown that b0, Z0 and l
play a role as bifurcation parameters in this bifurcation. Although
the results of these analyses were only for R, these results are
applicable to the dynamics of [RA] qualitatively. It is because there
exists the relationship R = a(ĤAKA)�1[RA]; the results of the
analysis on R is directly applicable by only multiplying a constant
factor that doesn’t affect whether stability changes or not.

4 Discussion

In this study, we undertook a stability analysis on the two
phenomenological models about the serotoninergic system. In
both cases, a decrease in serotonin synthesis changed the
stability of the system and resulted in an increase of auto-
receptor expression. Especially in the case of the second model,
the bistability of serotonergic cells emerged through the super-
critical pitch-fork bifurcation. In addition, we showed the
bifurcation parameters which causes this bifurcation: b0, Z0

and l. To return to the definition of these parameters, para-
meter b0 corresponds to serotonin synthesis, parameter Z0

corresponds to the impact of serotonin–autoreceptor binding,
and parameter l0 corresponds to the inflection point of the
impact of serotonin–autoreceptor binding (see eqn (13)).

We interpret these results as compared to the past findings on
major depression. According to the second model, the serotonergic

system emerges as a supercritical pitch-fork bifurcation
through three parameters. Especially it is notable that the
serotonergic system increases its vulnerability after bifurcation
through Z0: [RA] cannot maintain its state stably in reaction to a
perturbation on b0 and l0 (Fig. 4).

The system moves back and forth between a stable manifold
to the other. On the other hand, the serotonergic system
doesn’t show such vulnerability before bifurcation occurs. This
allows us to compare the pathology of major depression and
bifurcation on the serotonergic system. Past clinical study
suggests the bistable property of major depressive disorder:
one is normalcy and the other is syndrome.5 Once a patient
transits to syndrome, the patient holds on to this state tightly,
and patient moves back and forth between normalcy and
syndrome during the treatment. On the other hand, a healthy
individual stably continues his normalcy state. Thus the second
model can explain the characteristics of major depression. The
following is another interpretation of the results of the second
model. After the bifurcation through the parameter Z0, the
amount of receptor expression has two possibilities: high or
low (Fig. 4). We think it reasonable to regard a higher amount
of autoreceptor as a depressive state. It is known that a decrease
of serotonin synthesis also occurs in major depression19–21 and
that serotonin depletion (e.g. by treatment of mood disorders
like MAO) causes a depressive state.21 In the second model,

Fig. 3 Pitchfork bifurcation occurs on the autoreceptor dynamics. Figure A shows perfect pitchfork bifurcation, and figure B shows imperfect pitchfork bifurcation.
A closed circle represents a stable point, and an open circle represents an unstable point. Under the parameters set as A, Z0 plays the role of the bifurcation parameter
which causes perfect pitchfork bifurcation. Under the parameters set as B, l0 plays the role of the bifurcation parameter which causes imperfect pitchfork bifurcation.

Fig. 4 Bifurcation diagrams of autoreceptor dynamics: R* (z axis) represents the steady state of R. Each diagram shows the effect of bifurcation parameters Z0 and b0

under specific l (A: l = 0.75, B: l = 0.80, and C: l = 0.85). The blue line represents an unstable fixed points, and the red line represents a stable fixed points.
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serotonin depletion corresponds to the decrease of b0. As is
shown in Fig. 4, decrease of b0 increases autoreceptors and
postsynaptic receptors. It is also known that major depressive
patients often show increased amounts of serotonin autoreceptors
and decreased amounts of serotonin.22 By the consistency with
these studies, we think higher amounts of autoreceptors would
correspond to major depression. The series of the above
mentioned phenomena is difficult to explain by the first model,
but the first model is superior in terms of its deductive
derivability. It is also notable that the first model predicts
destabilization by the deficits of serotonin synthesis.

We suggest some experimental ideas for further verification of
the validity of these models. Critical evidence would be directly
given by a simple experiment. By the measurement of the dose-
response curve between KA

�1[RA] versus [S], we can check which of
the first model (eqn (12)) and the second model (eqn (13)) can
explain the experimental results. It would be relatively-easy to
control the dissociation constant KA

�1 by drug injection rather
than controlling the amount of receptor expression [RA]. We can
also check the validity of the models by using the unique
characteristics of the second model. As already noted, the second
model shows a pitchfork bifurcation. It is known that additive
noise (fluctuation) on deterministic differential equations causes
new phenomena. For example, it would be appropriate to con-
sider the fluctuation on the amount of receptor expression. In the
case of our models, it corresponds to adding a noise term onto
eqn (7)–(9). With these additive fluctuations, it is known that
the variance of the fluctuation expands at the critical point of the
bifurcation.23,24 Thus, we will observe a great fluctuation in the
amount of receptor expression or the output of the serotonergic
system f ([SRP]) by adjusting biological entities corresponding to
the bifurcation parameters. This expanding fluctuation is known
as enhancement of fluctuations.25 Because of its non-linearity, we
also predict the serotonergic system would show other characteri-
stic features known as critical slowdown and critical fluctuations.26

However, even if a second model explains some characteristics of
the symptoms, an ethopharmacological approach is not enough
to test these predictive phenomena at this time. These days, there
are a lot of hypotheses to explain the mechanisms of major
depression.27 It is necessary to analyse the structural stability of
these hypotheses in the future. We expect our models will be
tested by further experiments.

5 Conclusions

In conclusion, we proposed two phenomenological models
about the serotonergic system. After analysing these models,
we indicated the existence of an explosively increasing mecha-
nism on the amount of autoreceptor expression at the cell
membrane in the first model. We also indicated the existence
of bifurcating mechanisms on the amount of autoreceptor
expression at the cell membrane in the second model. We
showed the consistency of the second model by interpreting
our results in light of past research on major depression. Lastly,
we suggested some experimental ideas for further verification
of the validity of our two models. We hope further tests and

analyses on our model will help our better understanding of the
serotonergic system and major depression in the future.
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