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In this paper, we propose a mobile robot system which
has functions of person following and autonomous re-
turning. The robot realizes these functions by analyz-
ing information obtained with camera and laser range
finder. Person following is performed by using HOG
features, color information, and pattern of range data.
Along with person following, a map of the ambient en-
vironment is generated from range data. Autonomous
returning to the starting point is performed by apply-
ing potential method to the generated map. We veri-
fied the proposed method by experiment using a wheel
mobile robot in an indoor environment.

Keywords: mobile robot, laser range finder, camera, per-
son following

1. Introduction

In recent years, introduction of autonomous mobile
robots to environments close to us is expected. Exam-
ples include shopping cart robots returning automatically
to the shopping cart shed after shopping and guide robots
directing the way from the current location to the start-
ing point in unknown environments. A robot that accom-
plishes these purposes needs functions of person follow-
ing and autonomously returning to the starting point [1–
3].

In reference [1] and reference [2], returning was per-
formed after arrival at the destination by manual control.
However, manual control of the robot requires great care.
In reference [3], person following and autonomous return-
ing were performed. However, autonomous returning was
performed only by tracing the route recorded on the out-
ward way.

We previously proposed in reference [4] a mobile robot
system which has functions of person following and au-
tonomous returning to the starting point while avoiding
obstacles. In this system, person following was per-
formed by detection of moving object using Laser Range

Finder (LRF) and person extraction using color informa-
tion. However, detection of moving object was unstable
depending on the walking speed. Therefore, We need
more stable person following method.

Person following methods were proposed in refer-
ences [5–7]. A method in reference [5] detected persons
by template matching of legs-like pattern for LRF data.
To follow the target person, it employed particle filtering
whose initial particles were generated from infrared im-
age. A method in reference [6] used stereo camera and
detected persons by depth templates of person shape. It
employed the Extended Kalman filter for person follow-
ing. A method in reference [7] used LRF and omni-view
camera. LRF data were used for detecting candidate of
person regions and omni-view camera images were used
for extracting person regions based on HOG (Histogram
of Oriented Gradients) features. It also employed particle
filtering for person following.

The abovementioned methods for person following
used one or two criteria for person detection. Here, note
that addition of criterion for person detection increases
the robustness of person following if one criterion itself
works well.

Therefore, in this paper we propose a mobile robot
which has a function of robust person following real-
ized by integration of three criteria for person detection
based on pattern of LRF data, HOG features and color his-
togram. The robot also has a function of self localization
for map generation on the outward way, and a function of
autonomous return with obstacle avoidance.

2. Outline

In this paper, we verify the system using a mobile robot
equipped with a Laser Range Finder (LRF) and a cam-
era (Fig. 1). The mobile robot acquires two dimensional
(2-D) range data of 180◦ forward by the LRF. The mobile
robot also acquires the image in the front direction by the
camera.
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Fig. 1. Mobile robot.

Fig. 2. Environment.

The mobile robot detects and follows a person by us-
ing the LRF and the camera when moving on the outward
way. At the same time, the mobile robot generates a map
with range data measured by the LRF.

The mobile robot generates a potential field from the
generated map by an artificial potential method. Then, it
moves on the return way along gradient directions of the
generated potential field. At the same time, the mobile
robot avoids obstacles not recorded in the map by recon-
struction of the potential field.

An operating environment of the mobile robot is a flat
floor where the mobile robot moves in 2-D space (Fig. 2).
In the operating environment, multiple objects and pedes-
trians usually exist. In this situation, person following by
a single method of person detection may be difficult. It
will be realized by combining multiple methods of person
detection.

3. Person Following on Outward Way

The mobile robot performs person following and map
generation on the outward way. In this paper, the mobile
robot follows the person by using person detection.

Person detection is performed by evaluating a value of
person likelihood. The value of person likelihood can be
evaluated on the pattern of range data and the HOG fea-
tures in acquired images. However, this evaluation is in-
effective to follow the person in environment where more
than one person exist. The reason for this is that the pat-
tern of LRF data and HOG features are not specific to the
person who should be followed but common to all per-

Fig. 3. Points of data evaluation.

sons. Under an assumption that pedestrians do not wear
clothes with similar color to the person to be followed,
color information is added to the pattern of range data and
HOG features. Thus, person following is performed by
using particle filter based on pattern of range data, HOG
features and color information.

3.1. Tracking by Particle Filter
We use a particle filter [8] for person following. The

particle filter estimates the position of the person to be
followed on a horizontal plane. In this study, density of
particle distribution represents the probability of existence
of the person to be followed. By calculating particle posi-
tions according to the particle filter algorithm, position of
the person to be followed can be estimated.

In particle filter algorithm, a particle is assigned a
weight at each particle position. However, calculation of
weight at each particle position is computationally expen-
sive. Thus, assigning the weight to the particle is per-
formed at representative points. Representative points are
set at the positions of range data basically. But here we
have to notice that points in between legs are not eval-
uated through the process. Therefore, process to cover
points in between legs should be performed. Fig. 3 shows
process of determining representative points.

First, the robot acquires range data. Distance D(θ)
and angle θ are obtained as the range data in po-
lar coordinates. Initially, representative points �R =
(U(θ)cos(θ),U(θ)sin(θ)) are set using the range data
as U(θ) = D(θ). Process to cover points in between legs
is performed by Eq. (1), which will be applied to each
range data.

U(θ) = min
−k<l<k

D(θ + l)

if (D(θ + l + k) < D(θ + l)), . . . . (1)

k = arctan
(

W
2D(θ + l)

)
, . . . . . . . . (2)

where W is estimated value of length in between legs.
Next, values of person likelihood are evaluated at

each representative position. In the particle filter algo-
rithm, particles near to representative points are assigned
a weight as evaluated values V (�R). Thus, calculating
V (�R) is performed only at representative points close to
particles.

Particle filter is performed as follows.

(i) Initial particles are distributed around the person
with random noise.
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Fig. 4. Range data.

(ii) Particles are moved based on the system model given
by Eq. (3).

�xt|t−1 =�xt−1 +�vt−1T, . . . . . . . . (3)

where�xt is an estimated position vector of the person
on a horizontal plane at time t, �vt is velocity vector of
the person at time t, and T is time of updating cycle.
�vt is estimated by the subtraction of�xt−1 and�xt−2.

(iii) Each particle is assigned a weight w as following
equation.

w =
V (R)exp

(
−D2

2σ

)
√

2πσ
, . . . . . . . (4)

where σ is position error. Position error includes
error of self-location estimation and measuring er-
ror. However, these error are hard to define. Thus,
position error is defined as the constant value em-
pirically. D is distance between the particle and the
nearest range data, V (R) is value of likelihood of the
nearest representative point.

(iv) Estimated position �xt is determined by calculating
center of gravity of particles. Position �xt is regarded
as the position of the person to be followed at time t.
Thus, the mobile robot move toward the position �xt
at time t.

(v) New particles are selected in descending order ac-
cording to the weight as resampling process.

First, process (i) is performed. Next, processes (ii), (iii)
and (iv) are performed. After that, processes (ii), (iii), (iv)
and (v) are performed repeatedly.

3.2. Evaluation on Pattern of Range Data
Person detection is performed by using pattern of range

data. Range data is acquired as shown in Fig. 4 in the
environment (Fig. 5). In the reference [5], person fol-
lowing was performed by template matching from LRF
data. In the study, person following was achieved by us-
ing templates with 7 position-relation patterns of person

Fig. 5. Acquired image.
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(g) Left oblieque legs (closed)

Fig. 6. Leg templates.

legs. Therefore, as the evaluation on pattern of range data,
pattern matching is performed by using range data and 7
templates of legs that are the same as [5] in our study. The
7 patterns are shown in Fig. 6, where relative position of
legs are varied as closed, open, left forward, right forward
and so on.

While following the person, matching scores are ob-
tained by performing pattern matching at all representa-
tive positions �R(θ ,U(θ)). Matching score L(�R) is ob-
tained at each �R by Eq. (5):

L(�R) = 2ATmax −S(�R), . . . . . . . . . (5)

S(�R) = min
1≤i≤N

A

∑
k=−A

|(D(θ + k)−U(θ))−Ti(k)|, (6)

A = arctan
(

W
2U(θ)

)
, . . . . . . . . . (7)

where N is number of template, A is width of templates,
Tmax is the value set to a maximum value of ((D(θ + k)−
U(θ))).
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Fig. 7. Dataset.

3.3. Evaluation on HOG Features
Person detection in acquired images is performed by

using Real AdaBoost algorithm [9] with HOG features.
The validity of HOG features for person detection is veri-
fied in the reference [10].

Thus, classifier of Real AdaBoost for person detection
is generated from HOG features of sample images of per-
son and background. Daimler Pedestrian Classification
Benchmark Dataset [a] is used as sample images (Fig. 7).

Real AdaBoost constructs the strong classifier as linear
combination of weak classifier.

H =
D

∑
d=1

hd , . . . . . . . . . . . . . . (8)

where D is the number of weak classifier, H is value of
strong classifier, hd is value of weak classifier. We use
value of H as the constructed strong classifier value of
Real AdaBoost.

For person detection on HOG features, image regions
to perform person detection are selected in acquired im-
ages. H(�R) is acquired at each representative point �R. By
setting the size of person, size and position of the im-
age region are determined according to each representa-
tive point �R.

3.4. Evaluation on Color Histogram
Detecting the person who should be followed is per-

formed by using color histogram. The color histogram
of hue h and saturation s is made (an example of hue-
saturation histogram is depicted in Fig. 8 with an image
of a person in an indoor environment). Number of bins of
hue × saturation set to 16× 8. This setting is based on
experiment with human identification conducted by Taka-
hashi et al. [11], where histogram of h = 16 × s = 8 was
verified to be effective to make identification robust to the
changes of brightness.

The mobile robot acquires color information on the per-
son to be followed by the mobile robot before the person
following begins.

While the mobile robot follows the person, the color in-
formation is acquired from the image region which is se-
lected according to each position of representative point.
Assuming that the ordinary size of person and the dis-
tance between camera and person are known, image re-
gions can be determined according to the representative
point �R. Then, the color histogram is made and the sim-
ilarity with the color histogram made before the person
following begins is calculated.
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Fig. 8. An example of color histogram.

The Bhattacharyya coefficient [12] is used for calcu-
lating the similarity with the histograms. Eq. (9) shows
Bhattacharyya coefficient C(�R) of point �R.

C(�R) =
hb

∑
h=0

sb

∑
s=0

√
Ht(h,s)×H(h,s,�R), . . . (9)

where Ht(h,s) is the frequency of each bin of the color
histogram of the person that is acquired before the mobile
robot begins person following. H(h,s,�R) is the frequency
of each bins of the color histogram acquired in image re-
gion for position �R while the mobile robot follows the
person. hb is the number of bins of hue h, and sb is the
number of bins of saturation s.

3.5. Integration of Evaluated Values by PCA

The integrated value of person likelihood V (�R) is calcu-
lated by applying PCA (Principal Component Analysis) to
L(�R), H(�R) and C(�R). Before PCA is performed, averag-
ing procedure is performed. This procedure is introduced
because large differences of values among representative
points in the near distance can be noise for PCA. Aver-
aged values Ls(�R),Hs(�R),Cs(�R) are calculated by follow-
ing equations.

Ls(�Ri) =
ai

∑
j

L(�R j), . . . . . . . . . . . (10)

Hs(�Ri) =
ai

∑
j

H(�R j), . . . . . . . . . . (11)

Cs(�Ri) =
ai

∑
j

C(�R j), . . . . . . . . . . (12)

where �R j is representative point having the distance be-
tween �Ri and �R j not more than threshold da, ai is number
of �R j.

Next, for processing PCA, standardized value (VL(R),
VH(R), VC(R)) is calculated from Ls(�R), Hs(�R) and Cs(�R)
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as the followings.

VL(�R) =
Ls(�R)−Ls(�R)

sL
, . . . . . . . . (13)

VH(�R) =
Hs(�R)−Hs(�R)

sH
, . . . . . . . . (14)

VC(�R) =
Cs(�R)−Cs(�R)

sC
, . . . . . . . . (15)

where L(�R),H(�R),C(�R) are averages, sL,sH ,sC are vari-
ances. PCA is processed by calculating eigenvector from
variance-covariance matrix ∑ from VL(�R), VH(�R), VC(�R).

∑ =

⎛
⎜⎝

S(VL,VL) S(VL,VH) S(VL,VC)

S(VH ,VL) S(VH ,VH) S(VH ,VC)

S(VC,VL) S(VC,VH) S(VC,VC)

⎞
⎟⎠ , (16)

where S(Vi,Vj) is covariance of Vi and Vj.
Finally, the integrated value of person likelihood V (�R)

is calculated by using the primary ingredient (α,β ,γ) and
eigenvalue of the primary ingredient λ .

V (�R) = αVL(�R)+βVH(�R)+ γVC(�R)+2
√

λ . (17)

To avoid negative effect by a large noise, a coefficient is
set zero when its corresponding component has negative
value.

4. Map Generation on Outward Way

The mobile robot generates the map of ambient envi-
ronment while it moves on the outward way. The LRF is
used to measure the ambient environment during the mo-
bile robot movement, and the ambient environment map
is generated by integrating each measurement data. Mea-
surement data integration needs an accurate self-location
estimation of the mobile robot. In this study, the estima-
tion is made by dead reckoning. However, dead reckon-
ing has a problem of error accumulation caused by wheel
slipping. In order to decrease this error accumulation,
the robot aligns each measurement data by the ICP algo-
rithm [13].

Moving objects do not exist in the same place. There-
fore, it is necessary to remove moving objects from the
map. The mobile robot removes moving objects by a
method in the reference [14]. To remove a moving ob-
ject, subtraction of acquired range data at different robot
positions is performed. The map of static object can be
acquired by using this method.

5. Motion on Return Way

The mobile robot moves on the return way according
to the Laplace potential method [15]. The robot generates
the potential field in the map obtained on the outward way.

Map dataObstacle

▲ : Gradient direction

● : Configuration obstacle

Initial path Recalculation path

Map dataObstacle

▲ : Gradient direction

● : Configuration obstacle

Initial path Recalculation path

(a) Initial path. (b) Recalculation path.

Fig. 9. Reconstruction of potential field.

Then the robot moves on the return way along a gradient
direction of the generated potential field.

For the robot to avoid obstacles not recorded in the
map, the LRF measures an ambient environment while
the robot moves on the return way and the robot recon-
structs a potential field. Fig. 9 shows reconstruction of
a potential field. If the robot detects an obstacle which
did not exist on the outward way, the obstacle is added to
the map data made on the outward way (Fig. 9(a)). Then
the robot reconstructs a potential field to avoid obstacles
(Fig. 9(b)). This makes the movement of the robot safe
on the return way.

6. Experiment

6.1. Experimental Device
We used the mobile robot “Pioneer 3” of MobileR-

obots, Inc. (Fig. 2). The robot has 2 drive wheels and
1 caster. It’s maximum speed is 400 mm/sec. It turns
with the velocity differential of right and left wheels. The
LRF is model LMS200-30106 by SICK. It is equipped at
a height of 300 mm above the ground. The sensing range
is 180◦ in one plane and the resolution is 0.5◦. The camera
is model C910 by logicool. Its horizontal angle of view is
about 70◦. The camera is equipped at a height of 800 mm
above the ground. As the specs on computers, CPU is
Intel Core 2Duo T9300 2.5 GHz, and memory is 3.5 GB.

6.2. Experiment Environment
We conducted experiment in which the mobile robot

follows a person to the target point and then returns to the
starting point. Experiment environment was a corridor
with a flat floor. Fig. 2 shows the experiment environ-
ment.

The width of corridor is about 2 m. Wall materials are
metal and concrete. There were two pedestrians on vinyl
flooring in experiment environment. We set position error
σ = 50 mm, parameter of LRF detection Tmax = 700 mm,
parameters of color histogram hb = 16, sb = 8, and pa-
rameter da = 50 mm.
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Fig. 10. Acquired image (A).

Fig. 11. 2-D map image (A).

Fig. 12. Particles in 2-D map image (A).

6.3. Experimental Result

On the outward way, the mobile robot followed the per-
son. Fig. 10 shows an image acquired with the camera
while the robot followed the person.

Figure 11 shows particles and a 2-D map image gener-
ated by range data acquired with the LRF. Gray points in
2-D map are particles. Fig. 12 shows the magnified map
around particles in Fig. 11.

Figure 13 shows evaluation value on shape of range
data VL(θ). The horizontal axis in Fig. 13 indicates the
view angle from the robot (the positive and negative val-
ues correspond to the right and left angle, respectively). In
Fig. 13, it is shown that high values appear in the vicinity
of the angle where the person exists.

Figure 14 shows person detection by HOG features.
Fig. 15 shows evaluation value on HOG features VH(θ).
In Fig. 14, white rectangles are the regions whose value of
VH(θ) exceeded the threshold. It is shown that high values
appear in the vicinity of the angle where the person exists.
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Fig. 13. Evaluation value of LRF VL(θ ) (A).

Fig. 14. Person detection by HOG features (A).
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Fig. 15. Evaluation value of HOG VH(θ ) (A).

C
V

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-40 -30 -20 -10 0 10 20 30 40
θ [degree]

Fig. 16. Evaluation value of color histogram VC(θ ) (A).

Figure 16 shows evaluation value on color information
VC(θ). The obstacle which has the similar color to the
person to be followed was existing in the right side of the
person. It is shown that high values appear in the vicinity
of the angle where the obstacle exists (vicinity of 13◦).

Finally, Fig. 17 shows the integrated value of person
likelihood V (θ). It is shown that the highest values appear
in the vicinity of the angle where the person to be followed
exists.
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Fig. 17. Integrated evaluation value V (θ ) (A).

Fig. 18. Acquired image (B).

Fig. 19. 2-D map image (B).

Fig. 20. Particles in 2-D map image (B).

Figure 18 shows an image acquired with the camera
while the pedestrian passed. In Fig. 18, the right per-
son is to be followed by the mobile robot. Figs. 19 and
20 show particles and a 2-D map image. Fig. 21 shows
VL(θ). Fig. 22 shows person detection by HOG features.
Fig. 23 shows VH(θ). Fig. 24 shows VC(θ). Fig. 25 shows
V (θ).
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Fig. 21. Evaluation value of LRF VL(θ ) (B).

Fig. 22. Person detection by HOG features (B).
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Table 1. Ratio of frame whose person’s point has highest value.

k LRF HOG Color Integrated
(VL) (VH ) (VC) (V )

Number of frame 236 209 228 242

Rate of frame [%] 95.5 84.6 92.3 97.9
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Fig. 26. Generated map and trajectory of mobile robot on the outward way.
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Fig. 27. Generated map and trajectory of mobile robot on the return way.

In Figs. 21 and 23, it is shown that high values appear in
the vicinity of the angle where the person exist (vicinities
of 5◦ and 20◦). In Fig. 24, it is shown that high values
appear only in the vicinity of the angle where the person
to be followed exists.

Finally, in Fig. 25, it is shown that the highest values
appear in the vicinity of the angle where the right person
to be followed exists. Thus, it is more effective to use
integrated value than to use LRF value or HOG value.

The number of acquired images and range data during
person following was 349 frame. The number of frames
containing objects outside the person to be followed was
247 frame.

Table 1 shows ratio of the frame which the highest
value appears where the person to be followed exists
among frames containing objects outside the person to be
followed. It is shown that integrated value has the highest
ratio.

Figure 26 shows the generated map and the robot tra-
jectory on the outward way. It is shown that stationary
object map was generated by moving object detection.

Figure 27 shows the trajectory of the robot on the re-
turn way. The robot moved on the return way by using
the map which had been generated on the outward way.
On the return way, the obstacle that did not exist on the
outward way appeared. It is shown that the robot returned
to the starting position while avoiding the obstacle.

These results show that the mobile robot can detect and
follow the person by the proposed method in the exper-
imental environment and can return to the starting point
while avoiding obstacles.

The error between the starting point in Fig. 26 and
the goal point in Fig. 27 may be caused by error of ICP
method. The reason for this is that features along the
moving direction in Figs. 26 and 27 for alignment of ICP
method were sparse in experimental environment.
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7. Conclusion

In this paper, we constructed the mobile robot system
that has functions of person following and returning to the
starting location autonomously while avoiding obstacles.

Person following was achieved by using pattern of
range data, HOG features and color information. Map
generation was achieved by the ICP algorithm and the
moving object detection. The robot returned to the start-
ing point according to the Laplace potential method with
generated map and a path of avoiding obstacle is gener-
ated by reconstructing a potential field.

As future works, we need to conduct experiments in
more diverse situations (many people, longer distance).
This requires functions of supporting occlusion and more
precise localization in dynamic environment. Further-
more, in the situation that pedestrians wearing same color
clothes exist, the proposed method may not be effective.
In such cases, utilization of time-series information will
play more important role. More precise and robust sys-
tem model in the particle filter (or other filter techniques)
will be required.
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