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SHORT PAPER

Measurement of just noticeable difference of hip joint for implementation of self-efficacy: in
active and passive sensation and in different speed
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aDepartment of Precision Engineering, The University of Tokyo, Tokyo, Japan; b22nd Century Medical and Research Center,
The University of Tokyo, Tokyo, Japan
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Self-efficacy, which is a belief to achieve a goal, is important for sufficient enhancement of physical ability of elderly
people. For implementation of self-efficacy to assistive systems, it is necessary to subliminally change reference
trajectories of the system within the range at which people cannot recognize the difference (just-noticeable difference:
JND). This study clarified that elderly people have weaker position sense rather than young people when they are moved
passively in relatively fast speed. New reference hip trajectories are computed to gradually extend hip flexion of human
standing-up motion based on the measured JND.
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1. Introduction

In this paper, we measure the just-noticeable difference
(JND) of human body position, and a new reference trajec-
tory for assistive robots is suggested to gradually extend a
person’s functional mobility. These days, our aging society
is facing the problem of decreased physical capabilities.
In order to improve the physical ability of elderly peo-
ple, standing-up motion is considered an important basic
activity.

Previously, we had developed an assistive system for
the standing-up motion.[1] It was composed of a bed and
a support bar system to lead people to a reference trajectory.
However, this assistive machine just strengthened the
user’s dependence on the machine or orthostatic
hypotension occurred. Also, our previous study reveals that
elderly people have weaker functions of bending trunk ini-
tially than young people do.[2] Particularly, hip flexion is
an important movement to generate momentum and move
the center of mass forward.[3] This impaired functional
mobility is caused by physical disorders, psychological fear,
or physiological factors.

For example, physical disability subliminally changes
their behavior, such as less hip flexion, to adapt to
entrenched physical body change.[4] Meanwhile, people
hesitate to bend their hip due to fear of falling,[5] or they
cannot clearly recognize their behavior change because of
the gap between afferent and efferent nerves. These factors
result in unconscious self-imposed limit which constricts
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their motion. It is important for them to have self-efficacy,
which is a belief of capability to achieve a goal, in order to
overcome this unconscious limitation.

In other medical areas that have tried it to date, self-
efficacy has been taught by medical doctors or physical ther-
apists. They usually observe the symptoms of the patients
carefully and give them sufficient encouragement based
on their own assessment. It has been suggested that self-
efficacy results in better patient functioning.[6] However,
the effectiveness of this approach depends mainly on the
individual practitioner’s personality or their experience.

The possibility exists that robotic therapy may overcome
their reluctance and improve functional capabilities if robotic
systems can provide self-efficacy with precise measure-
ments and repeatable intervention. Developing such an
assistive system necessitates the gradual extension of func-
tional mobility of users, although they do not clearly notice
the confronted difficulties. The range at which people are
unable to notice is called the JND.

One rehabilitation system trains pinching and extension
of the finger movement using the JND of the finger
position and exerting force.[7] The required range of finger
movement is increased gradually within the amount of JND
as the trials progress. For the implementation of the idea
of self-efficacy to assistive robots, previous study implies
the necessity to investigate the characteristics of human
sensation about their body movement.

Focusing on the standing-up motion, the flexion of the hip
joint is specifically examined. However, there is no study
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which has investigated how people sense their hip flexion in
a seated position. Although it was revealed that the JND of
the hip joint angle is about 2–3◦,[8] they only investigated it
in a standing position, and subjects in the experiment extend
or flex only one leg.

Therefore, our objective in this paper is to first evaluate
the characteristics of human sensation about their body
position in young and elderly people. Afterwards, we sug-
gest new reference trajectories which can gradually extend
the flexion of hip joint in standing-up motion.

2. Methods

2.1. Just-noticeable difference

Just-noticeable difference (JND) is the threshold at which
people can only barely sense a difference. In this study,
human sensation about one’s body position is expressed as
a probabilistic distribution. When people sense their body
position θ , they judge it by all integrated sensory informa-
tion S related to vision, joint receptors, or proprioceptors
such as the muscle spindles. Therefore, the probability p
that applies when people think their body position is θ

when they receive sensory information S is defined as fθ (S)

(sense distribution).
Although people receive the same sensory information,

they cannot always discern their body positions clearly.
Consequently, sense distributions of different body posi-
tions usually overlap and cannot be divided. Figure 1 illus-
trates the overlapped sense distributions. Black solid lines
indicate two distributions to sense their body position as θ

and θ + �θ , and dashed lines show other distributions.
In this paper, JND is calculated from distance d ′ between

two distribution ( fθ and fθ + �θ ). The larger the d ′ is, the
higher the probability p will be, and therefore the difference
(�θ ) can be clearly recognized. In contrast, p becomes
smaller and more false recognition occurs when people
receive the same sensory information S if d ′ is smaller.

2.2. Signal detection theory

This paper calculates JND by signal detection theory. To cal-
culate the sensitivity d ′, it is necessary to judge a threshold
(the vertical black line in Figure 1). That judgment threshold
is a criterion to judge their body position; people judge their
body position as θ + �θ when sensory information S is
above the criterion and they feel it is θ when S is below it.
d ′ is calculated from Equation (1).

d ′ = F−1
norm(1 − pF ) − F−1

norm(1 − pH ), (1)

where a false alarm ratio (pF ) is the probability by which
people sense their body position as θ+�θ when actual body
position is θ , and hit ratio (pH ) is the probability by which
people sense their body position as θ +�θ when the actual
body position is θ + �θ . Additionally, F−1

norm is the inverse
function of accumulated standard normal distribution. The

JND (δ) is expressed in percentage and computed from
sensitivity d ′ as in Equation (2).

δ = �θ

d ′ × 100

θ
. (2)

2.3. Postural sensation

For this study, the JND of the hip joint is calculated in two
different situations, such as active movement or passive
movement. It is known that people have different JND in dif-
ferent movement types which are the motions they perform
actively by themselves or they are forced to move passively
by an external equipment.[9] Additionally, the speed of the
standing-up motion affects the movements of the hip, knee,
and ankle joints.[10] Therefore, three different postural sen-
sation (ACTIVE, PASSIVE-FAST, and PASSIVE-SLOW)
are studied.

In the ACTIVE sensation, people need to bend their back
actively by themselves. In contrast, people are forced to
move by the external bar in PASSIVE-FAST and PASSIVE-
SLOW sensation. In passive session, people are asked to
move according to the speed of the bar pushing their back.
The speeds of the motion are, respectively, set to vfast and
vslow in PASSIVE-FAST and PASSIVE-SLOW sessions.

2.4. Generation of reference trajectory

To improve the functional ability of elderly people, it is
important for them to have self-efficacy. Self-efficacy is
provided to people when they overcome their limitation.
However, there is an unconscious limitation in the move-
ment of elderly people due to physical pain, psychological
barrier, or physiological impairment. Therefore, it is impor-
tant for people to gradually increase their mobility without
recognizing the confronted difficulties.

This study conducts a simulation experiment to propose
a methodology to determine the reference trajectories of an
assistive system based on the characteristics of human sen-
sation. When people repeatedly use the assistive system, it
is important for the assistive robots to change their reference
trajectories gradually to overcome unconscious limitation
within the amount that people do not recognize clearly.

Figure 2 illustrates the idea of new reference trajectories
of the assistive system. In our suggested methodology, an
initial functional ability, unconscious limitation, is mea-
sured first. In the figure, the horizontal dashed black line
indicates the unconscious limit of users. The reference tra-
jectory in the first trial (base trajectory) is set to be below the
unconscious limit in order to start from the easier trajectory
to follow (the solid black line in Figure 2). However, the
reference trajectory of the next trial (the dashed red line in
the figure) is made to be harder for the amount of JND (δ).
As the trials of the assistive system progress, the reference
trajectory in n-th trial of the system (the solid green line
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Figure 1. Schematic design of sense distribution.
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Figure 2. Schematic design of sense distribution.

with circle markers in the figure) can exceed the initial
unconscious limitation.

When the base trajectory (θ ) is decided, latter reference
trajectories (θ ′) are calculated based on the base trajectory
(θ ) as in Equation (3).

θ ′(t) = θ(t) + nδ(θ(t) − θinit). (3)

In the equation, reference trajectory θ ′ at time t is decided
based on the number of trials (n), JND (δ), and the change of
trajectory from the initial position (θ(t)−θinit). The change
between base trajectory at time t (θ(t)) and initial state (θinit)
is proportionally increased with the amount of JND during
trials.

3. Results

3.1. Environment

In order to compute pH and pF , participants are asked to
perform two motions in one trial. The first motion is always
the same: participants bend their back to θ . They bend either
the same amount (θ ) or a different amount (θ + �θ ) in
the second motion. After the second motion, participants
are asked to answer orally whether they think the second
motion is the same as the first motion or not. pF is the ratio
at which subjects answer θ +�θ when they bend θ whereas
pH is the ratio at which they answer θ +�θ when they bend
θ +�θ . In this paper, the JND of the hip joint (δ) is defined

as the same difference as previous studies where people can
recognize correctly at 75%.[7]

Figures 3(a)–(c) show the motions performed in the
ACTIVE sensation; an optical motion capture system
(MAC3D; Motion Analysis Corp.) with eight cameras
(HMK-200RT, Motion Analysis Corp.) was used to calcu-
late the hip joint angle from four markers attached to right
and left acromioes and great trochanter. The sampling rate
was set to 200 Hz for measurement taken in this study.
Figure 3(d) illustrates the setup in the PASSIVE sensation.
In this session, people are forced to move by the external
bar which pushes their back.

The difference between their current hip joint angle and
target angle is provided via visual information (right black
box with three squares in Figures 3(a)–(c)). The partici-
pants would see three squares through a head mount display
(HMZ-T2; SONY Corp.) during trials. When their hip joint
angle is within the target range, which is 98–102% of target
joint angle, the middle square is highlighted, but either the
top or bottom square is highlighted when their hip joint is
above or below the target range. In the PASSIVE session,
subjects wore the same head mount display, but it only
projected a blank scene.

In theACTIVE session, 50 trials were performed.Among
them, participants were asked to bend to θ in the second
motion in half of the trials. The remainder of them were
to bend to θ + �θ . The trials of the two types were dis-
tributed randomly. In the PASSIVE session, 100 trials were
done. Twenty-five trials of four different conditions were
distributed randomly, such as bending to θ or θ + �θ with
fast speed (vfast), and to θ or θ + �θ with slower speed
(vslow).

From our preliminary study, it is known that 70◦ is the hip
joint angle when people rise their hip from a seat. Therefore,
in this study, θ was decided as 70◦. On the other hand, �θ

was determined as 3◦ based on the previous result which
indicated JND of the hip joint as about 2–4◦ in standing
position.[8] Additionally, vfast was set to 1.3 m/s and vslow
was set to 0.7 m/s in this study.

Participants were asked to sit on a chair whose height
was 0.45 m. Their hip joint angle was fixed to 90◦ from a
horizontal direction, and they were asked to put their feet in
a comfortable position at the beginning of every trial. When
they performed the bending motion, they were told to put
their hands on their thigh. In all sessions, participants wore
a noise cancelling headphone (MDR-NC60, SONY Corp.)
to prevent auditory information.

In total, 14 people participated in our experiment. They
can be divided into two groups, such as young people (6 male
and 1 female; mean age = 26.4, SD = 3.3 years) and
elderly group (3 male and 4 female; mean age = 65.1, SD
= 3.9 years). Average and standard deviation of their trunk
length was 0.42 ± 0.04 m, and other segment length was not
measured. All subjects were recommended to take a break
whenever they felt tired during our experiment in order to
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Figure 4. Results of just-noticeable difference.

avoid fatigue. The study was conducted with approval by
the Institutional Review Boards of the University of Tokyo,
and all participants provided written informed consent.

3.2. Results of just-noticeable difference

In the ACTIVE sensation, the mean and standard deviation
of horizontal trunk velocity was 0.34 ± 0.05 m/s. Figure 4
presents the results of JND obtained in three different pos-
tural sensations. The white and gray bars in the figure,
respectively, show the average JND of young and elderly
participants while error bars indicate standard deviation.
Mean and standard deviation of JND of young people were
14.2 ± 5.6, 9.4 ± 3.8, and 10.3 ± 4.6%, and those of elderly
people were 11.2 ± 2.7, 14.4 ± 5.2, and 11.3 ± 2.9% for
ACITVE, PASSIVE-FAST, and PASSIVE-SLOW sensa-
tions. Circle markers show the computed JND for each
participants; white and gray circles show the data of young
and elderly people.

As a result of statistical analysis (t-test), there was a
significant difference in the JND of PASSIVE-FAST be-
tween young and elderly people with a significance level of
p < 0.05. In contrast, there was no significant difference in
the JND for ACTIVE and PASSIVE-SLOW among the two
groups.

3.3. Results of simulation experiment to generate
suggested reference trajectory of assistive system

This paper shows the results of the simulation experiment
to generate an example of reference trajectories which can
be used for our assistive systems of standing-up motion.
Figure 5(a) portrays a schematic design of the developed
assistive system.[1] The machine leads people to a desired
trajectory with a support bar and a bed system. Users of this
system are asked to sit on the bed and hold the bar in front of
them. The bar moves vertically and horizontally to control
their upper body with two actuators (ACT1 andACT2). The
bed moves up and down to push their hip vertically with an
actuator (ACT3).

It is assumed that one of the elderly subjects (Male,
63 years) uses our system. Trajectories of each actuator
(PACT1,ACT2,ACT3) are derived from a human geometric link
model as in Equations (4)–(6). During the use of assistive
machine, it is assumed that users keep their elbow straight
to hold the support bar; θ4 is fixed to 15◦. Since hip joint
flexion is especially focused, target trajectories for ankle and
knee are fixed as well in the simulated example of reference
trajectory.

PACT1 =
4∑

i=1

li cosθi, (4)

PACT2 =
4∑

i=1

li sinθi, (5)

PACT3 =
2∑

i=1

li sinθi. (6)

The base trajectories of joint angles, except θ4, were derived
from one measured body trajectory of the same subject
performing the standing-up motion in this study, and the link
length (li=1,2,3,4) was decided based on the measured data.
In this example, li=1,2,3,4 are 0.40, 0.52, 0.47, and 0.58 m,
respectively. Figures 5(b) and (c) show the measured joint
angles and angular velocities for hip, ankle, and knee. Black
solid lines indicate those of hip joint, blue solid lines with
circle markers indicate those of ankle, and blue dashed lines
indicate those of knee.
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Figure 5. Reference trajectory for the assistive system.

Figure 5(d) shows the reference trajectory of hip joint
which our assistive system should generate. In this example,
since the participant’s maximum horizontal speed is less
than 0.7 m/s, JND was set to 12.0% which is obtained from
the same elderly subject in PASSIVE-SLOW sensations.
The black solid line indicates the base trajectory at which
the system would emulate at the first. The dashed red line
shows the reference hip joint angles for the next trial, and
the green line with circle markers illustrates the joint angles
at the n-th trial (n = 4 in this example). Our result illustrates
that reference trajectory is gradually decreased within the
amount of JND.

Figures 5(e) and (f) show the movement of two actua-
tors in the support bar. In both figures, the solid black line
indicates the movement of actuators to generate the base
trajectory. Likewise the dashed red lines and solid green
lines show the actuators’ movement to generate trajectories
of the second and n-th trial. The modified movements of
two actuators (ACT1 and ACT2) of the support bar could
be generated corresponded to the reference trajectories.

4. Discussion and conclusion

Characteristics of human sensation are studied in this study.
The JND of position sense differs among people depending
on their individual sensory system, such as proprioceptor.
The mean of calculated JND in this study (1.88–2.88◦:
corresponded to the range of calculated JND, 9.4–14.4%),
is smaller than ones of the previous study (2.70–4.30◦).[8]
Also, standard deviation of JND in this study (0.54–1.12◦)
is within the previous work (2.20–2.84◦).[8] Those differ-
ences are thought to be caused by the different posture in
the experiment, such as sitting in the current study com-
pared to standing in the previous work. Our results of JND

show that elderly people have lower ability to sense their
body positions when they are passively moved in relatively
fast speed. It implies that decreased functional mobility is
possibly caused by the lower position sense.

In order to improve their physical ability, reference
trajectories of the assistive device are suggested which
employ the idea of self-efficacy. In this study, we compute
the JND of hip joint angle and show the example of imple-
mentation of JND to the assistive system for the standing-
up motion. Results of reference trajectories are generated
based on the JND of passive slow movement of the elderly
person (12.0%). However, reference trajectories should be
changed when users perform different types of motion, such
as active motion or comparatively faster motion. Therefore,
our methodology is supposed to be utilized for subjects or
different motions depending on its purpose.

In order to implement the new reference trajectories, the
JND of motion speed will be investigated. Although the
change of reference trajectories is within the amount of
individual JND, users might notice the different speed of the
assistive machine. Additionally, it is known that the speed
of standing-up motion affects the joint movement of knee
and hip. Therefore, optimized reference trajectories can be
obtained based on the JND of position and speed sensation.

Moreover, this methodology is applicable to other assis-
tive systems as well. For example, it is possible to extend
and improve human walking motion as long as the JND of
knee and ankle is measured in addition to that of a hip joint.
It also enables other types of systems, such as force or speed
training, by computing the JND of sense of force or speed
other than position sense.

In conclusion, the characteristics of human sensation
about their body position is studied to implement the idea
of self-efficacy to assistive systems. The JND of hip flexion
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is measured in different postural sensations. It has clarified
that elderly people have lower position sense than younger
people when they are moved in fast speed. Based on the
just-noticeable difference, new reference trajectories are
suggested to gradually extend human body movement.
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