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Abstract This paper proposes a novel approach to an RGB-
D simultaneous localization and mapping (SLAM) system
that uses the vanishing point and door plates in a corridor
environment simultaneously for navigation. To increase the
stability of the SLAM process in such an environment, the
vanishing point and door plates are utilized as landmarks
for extended Kalman filter-based SLAM (i.e., EKF SLAM).
The vanishing point is a semi-global unique feature usu-
ally observed in the corridor frontage, and a door plate has
strong signature information (i.e., the room number) for the
data association process. Thus, using these types of reliable
features as landmarks maintains the stability of the SLAM
process. A dense 3D map is represented by an octree structure
that includes room number information, which can be use-
ful semantic information. The experimental results showed
that the proposed scheme yields a better performance than
previous SLAM systems.

Keywords SLAM · RGB-D sensor · Vanishing point ·
Door plate · Mobile robot

1 Introduction

Mapping an unknown environment is a very important task
for a mobile robot in the navigation field and includes such
details as localization and path planning. To build a reliable
map, the robot pose should also be accurately estimated at
the same time. Various simultaneous localization and map-
ping (SLAM) schemes have been proposed to deal with this
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problem [1]. Extracting robust features for matching is the
key issue for estimating the robot pose accurately. Visual-
based SLAM commonly uses low-level features such as
corners or lines [2,3]. However, with low-level features, the
data association process to match features can often fail
because the features are indistinguishable from each other,
which decreases the SLAM accuracy.

In contrast to low-level features, a global feature that can
be used as a unique landmark in an environment makes it
unnecessary to consider the above indistinguishable prob-
lem for data association. In addition, using features with
easily recognizable differences eliminates ambiguity in the
data association process, which leads to reliable SLAM.

In previous research on using global features, several
SLAM schemes have been developed that use the vanish-
ing point as a feature. Bosse et al. used the vanishing point
extracted from an omni-directional camera image to group
parallel line features and applied it as landmark information
for SLAM [4]. Kawanishi et al. [5] also used the vanishing
point to implement structure from motion (SfM) in a tex-
tureless environment. However, these methods can only be
applied with omni-directional cameras and cannot make use
of information from other sensors. Furthermore, these meth-
ods cannot build a dense map for mobile robot navigation.
Lee et al. used the vanishing point extracted from laser range
data to correct the rotational error of the robot pose; however,
their approach cannot correct translational errors of the robot
pose [6]. Zhang and Suh [7] developed a SLAM scheme to
build a line-based map using not only the vanishing point, but
also line features. However, their constructed line-based map
does not include dense information on the environment, and
errors in the data association process are inevitable because
of the indistinguishable line features.

To overcome these disadvantages, we propose a novel
approach for reliable SLAM that uses both the vanishing
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Fig. 1 Data from RGB-D
sensor: a RGB image, b range
image, and c point cloud

Fig. 2 Local coordinate system

point and door plates as features. The vanishing point is
used to correct the rotational pose error, and the door plate
is used to reduce the uncertainty of the translational pose
error with respect to the longitudinal direction of the cor-
ridor. Because we can obtain a robust signature (i.e., the
room number information) from the door plate, it is pos-
sible to clearly distinguish between features. This eliminates
the ambiguity between features, so robust matching can be
performed. Moreover, registering recognized room numbers
in the map information allows a semantic map containing
spatial information can be built.

In this study, an RGB-D sensor to easily acquire 3D infor-
mation and Web camera to recognize door plates were used to
generate a dense 3D semantic map for mobile robot naviga-
tion. To handle the nonlinearities of the system and estimate
the robot state and feature states, extended Kalman filter-
based SLAM (i.e., EKF SLAM) was applied. The RGB-D
sensor can acquire an RGB image and depth image continu-
ously, as shown in Fig. 1a, b. Processing these images allows
a 3D point cloud data to be generated, as shown in Fig. 1c.

Figure 2 illustrates the coordinate system adopted for the
experiments in this study: the robot coordinates {R}, RGB-D
sensor coordinates {V } to observe the vanishing point, and
Web camera coordinates {D} to recognize the door plates.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the method for extracting the vanishing point
as the global feature, and Sect. 3 presents the method for

recognizing door plates with obvious signature information.
Section 4 describes the EKF SLAM process for using the van-
ishing point and door plates as features. Section 5 describes
how a 3D semantic map that includes both volumetric and
feature information can be built. Section 6 presents the exper-
imental results from a real environment. Finally, Sect. 7
presents the conclusions and future work.

2 Vanishing point extraction

A vanishing point is the intersection of projections from a set
of parallel lines in space onto an image plane. Theoretically,
this point exists at an infinite distance [8]. Several methods
have been proposed to extract the vanishing point from an
artificial environment [9]. The vanishing point can be a very
useful feature in a corridor environment consisting of a long
straight passage because this environment is characterized
by converging to a unique vanishing point. Figure 3 shows
the procedure for extracting the vanishing point in a corridor
environment. First, a binary image is generated from the orig-
inal image using the Canny edge detection process, as shown
in Fig. 3a, b. Candidate lines that may converge to the van-
ishing point are then extracted through the Hough transform,
as shown in Fig. 3c. The lines that do not converge to the
vanishing point are eliminated using the condition that these
lines are almost perpendicular to the (u, v) axis because of
the characteristics of artificial structures. Finally, the unique
vanishing point can be extracted by calculating the intersec-
tion of lines that are not eliminated. The equation of these
lines is given by

ai u + biv = ci , (1)

where i = 1, 2, . . . , M and M is the number of the lines.
(ai , bi , ci ) are coefficients of each equation of the lines. (u, v)

represent the image coordinates. By substituting the coeffi-
cients into Eq. (1), the form of the matrix vector equation can
be defined as follows:
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Fig. 3 Procedure for line-based vanishing point extraction

Au = c, (2)⎡
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Here, the estimated vanishing point û = (û, v̂) is calculated
with the least square methods using a Penrose pseudo-inverse
matrix as follows:

û = A†c, (4)

where A† = (ATA)−1AT. As shown in Fig. 3e, the unique
vanishing point for the landmark is extracted with the above
method.

3 Door plates recognition

Because door plates can frequently be observed in a corridor
environment, they can provide very useful feature informa-
tion. Reliable SLAM requires a data association process that
tracks the same landmarks during a robot’s navigation. If we
use accurately recognized door plates as landmarks, the data
association process is greatly simplified because clear room
number information is obtained. In particular, these features
can handle translational pose errors that cannot be corrected
when only the vanishing point is used as a feature. This sec-
tion describes the method for door plate recognition.

The room number information on a door plate is recog-
nized by using an optical character recognition (OCR)-based
method using a support vector machine (SVM) and artifi-
cial neural network (ANN) [10]. This process is divided into
two steps: SVM-based plate detection and ANN-based plate
recognition.

A sufficient number of training samples is required to
ensure reliable SLAM because a pre-training process is
needed where the recognition rate strongly depends on the
samples. The plate detection step involves detecting candi-
date image patches corresponding to the room number using
image data from the camera mounted on a robot. The plate

Fig. 4 Plate detection process: a original image, b after Sobel filter
application, c after morphology closing filter application, and d detected
candidate plates (rectangular blocks)

recognition step involves recognizing the image of the room
number as a numeral.

3.1 Plate detection

The plate detection step involves detecting all candidate parts
that correspond to the door plate in the input image. This task
is also divided into two steps: segmentation and classifica-
tion. During segmentation, an input image is divided into
multiple segments to make feature extraction easier. First,
we apply a Sobel filter and threshold filter in sequence to
find vertical edges on the input image, as shown in Fig. 4b.
This is because one important characteristic of door plate
segmentation is the high number of vertical edges in let-
ters. Second, applying a close morphology filter helps fill the
black spaces between each vertical edge line and connect all
regions with a high number of edges. After these processes
are applied, regions in the image that may contain the room
number information can be detected, as shown in Fig. 4c.
Finally, a predefined aspect ratio (i.e., region width divided by
region height) is applied to remove the improper regions, and
candidate image patches are detected, as shown in Fig. 4d.
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Fig. 5 Plate detection process: a training samples (s(x) > 0, label =
1), b training samples (s(x) < 0, label = −1), and c learned SVM
(support vector machine)

Fig. 6 Preprocessing for number recognition: a original image patch,
b binary image patch, and c segmented objects (rectangular blocks)

The classification step determines whether or not each
candidate patch has the room number information with the
SVM, which is a widely used supervised machine learn-
ing algorithm for binary classification and has a relatively
small number of parameters. Fig. 5a, b shows the labeled
training samples that include and do not include the room
number information. The linear SVM determines the hyper-
plane parameters w and b that are used to classify the data:

s(x) = wTx + b = 0, (5)

y = sgn( f (x)), (6)

where x = [x1, . . . , xk]T, w = [w1, . . . , wk]T and k repre-
sents the total number of pixels for each image patch. x is
a feature vector that describes all of the pixels of the image
patch. After the training of the SVM is completed, the image
patches corresponding to the room number can clearly be
distinguished in the feature space from all candidate image
patches, as shown in Fig. 5c. Therefore, the labels of new
input image patches are determined through the sign func-
tion in Eq. (6), and only image patches of the room number
are detected.

3.2 Plate recognition

In the plate recognition step, OCR is used to determine the
numeral from the image patches corresponding to the room
number. An accurately recognized room number can act as
a strong signature for the data association process in EKF
SLAM. First, a binary image is generated through a threshold

Fig. 7 Number recognition process: a training samples, b histogram
features, and c ANN (artificial neural network)

filter for pre-processing, as shown in Fig. 6b. Second, a
contour detection algorithm is performed, and each number
information object is segmented as shown in Fig. 6c. After the
pre-processing, each segmented number is separately recog-
nized as 0–9 s through an ANN, which is another supervised
machine learning algorithm. Figure 7a shows the training
samples for ANN training. To train the ANN as shown in
Fig. 7c, we use the features of horizontal and vertical accu-
mulation histograms, as shown in Fig. 7b.

After the ANN is trained, all weight parameters of each
layer are determined; therefore, if a new number object is an
input, the corresponding number information object among
0–9 s can be recognized. In addition, a probability value (i.e.,
value similarity between histograms as shown in Fig. 7b)
can be obtained for each digit, which can be used for the
recognition score to determine the reliability. Figure 8 shows
the final recognition results. If valid recognition is performed,
the recognition score should be very close to 1.0. On the other
hand, a recognition score from false recognition should be
low (e.g., 0.7 or less). These false recognition results would
not be registered as landmarks for SLAM. Because the unique
value of a room number with a high recognition score can
be used to clearly detect the location of each room, it can be
used for robust signatures.

4 EKF SLAM process

Figure 9 shows a flowchart of the overall proposed SLAM
process. The robot pose and landmark positions are estimated
by EKF SLAM to handle nonlinearities related to odometry
and measurement data (i.e., the vanishing point and door
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Fig. 8 Recognized door plates:
a correct recognition result
(recognition scores: (0.9787,
0.9804, 0.9581) and (0.8518,
0.9804, 0.9425)) and b incorrect
recognition result (recognition
scores: (0.9682, 0.9856,
0.6180))

Fig. 9 Overview of the proposed EKF SLAM using vanishing point (VP) and door plates (DPs)

plates). An octree-based dense 3D map (i.e., location-based
map) is built from the 3D point cloud data, and a feature-
based map is generated from the estimated positions of the
landmarks. Finally, a dense 3D semantic map is constructed
by combining the information of both maps. Further details
are given in Sect. 5.

The EKF SLAM procedure consists of the prediction and
update steps. The control input data for odometry are used
to define a motion model at the prediction step. The van-
ishing point and door plate information are used to define a
measurement model in the update step. The state vector x
and corresponding covariance matrix P in EKF SLAM are
defined as follows:

x = [
(xr )

T (lv)T (ld(1:n))
T
]T

, (7)

xr = [
xr yr φr

]T
, (8)

lv = [
xv yv

]T
, (9)

ld(1:n) = [
(ld1)

T (ld2)
T · · · (ldi )

T · · · (ldn)
T
]T

, (10)

ldi = [
xdi ydi sdi

]T
, (11)

P =
⎡
⎣

Φ Ψ r,v Ψ r,d(1:n)

(Ψ r,v)
T Θv Θv,d(1:n)

(Ψ r,d(1:n))
T (Θv,d(1:n))

T Θd(1:n)

⎤
⎦ , (12)

where xr is the robot pose and lv , ldi are the positions of the
vanishing point and the i th door plate with a room number

signature at time t , respectively, as shown in Fig. 10. Here,
the subscript t representing the current state is omitted. The
vanishing point feature represents a unique global landmark,
while the door plate features do not. The diagonal elements
Φ, Θv , and Θd(1:n) are covariance matrices corresponding to
the states of the robot pose, vanishing point, and door plates,
respectively. The off-diagonal elements Ψ r,v , Ψ r,d(1:n), and
Θv,d(1:n) are the cross-correlation matrices of Φ, Θv , and
Θd(1:n). The state vector and covariance matrix are estimated
in the prediction and update steps.

A more detailed EKF SLAM procedure is as follows. First,
the system state x is predicted based on the control input in
the prediction step. Then, the data association process is per-
formed based on the measurement data. If the data association
processes succeed, the whole system state x is updated in the
update step. If the data association process fails, the whole
system state x is augmented. Further details are given in this
section.

4.1 Prediction

In the prediction step of EKF SLAM, a motion model is
defined to predict the state vector x− and corresponding
covariance P− using the control input u = (sl , sr ) at the
time t as follows:

x− = f (xt−1, u)

123



110 Intel Serv Robotics (2015) 8:105–114

Fig. 10 State variables for EKF SLAM

= xt−1 +

⎡
⎢⎢⎢⎢⎣

sr +sl
2 cos(φr,t−1 + sr −sl

2B )
sr +sl

2 sin(φr,t−1 + sr −sl
2B )

sr −sl
B

0N×1

⎤
⎥⎥⎥⎥⎦

, (13)

P− = FPt−1F
T + GQGT , (14)

F =
[

F 03×N

0N×3 IN

]
, (15)

G =
[

G
0N×3

]
, (16)

Q =
[

k|sr | 0
0 k|sl |

]
, (17)

where f (·) is the motion model of the system. This is defined
by assuming a two-wheeled differential robot. N = 3n + 2
is the size of elements consisting of landmark states in the
state vector x. B denotes the distance between the wheels. Q
is the process noise matrix, and its elements consist of values
that are proportional to the distances by the right wheel sl

and left wheel sr of the control input. F = ∂f /∂xr , t − 1
and G = ∂f /∂u are Jacobian matrices of the nonlinear
function f (·) with respect to the robot state vector and con-
trol input, respectively. Note that the landmark state vectors
are not affected by the control input because the vanishing
point and door plates are considered to be fixed landmarks
in the environment. The superscript g−h indicates the pre-
dicted state before the measurement data at the time t are
taken.

4.2 Data association

When a feature (e.g., vanishing point or door plate) is
extracted, the data association process is needed to check
whether it is a newly observed landmark or has already
been registered. To perform this process, the measurement
model h(·) based on the predicted state vector represents the

relationship between the global frame and sensor frame. This
model is defined as follows:

r ẑi = h(x−
r , l −

i ), (18)

where r ẑi is the predicted measurement data of the i th land-
mark l −

i in the sensor frame at the time t from the predicted
state vector x−

r . The measurement models for the vanishing
point and door plates given in Sects. 2, 3 are defined as fol-
lows:

r ẑv = hv(x−
r , l −

v )

= fv
{
(x−

v − x−
r ) sin φ−

r − (y−
v − y−

r ) cos φ−
r

}
√

(x−
v − x−

r )2 + (y−
v − y−

r )2
, (19)

r ẑdi =
[

ûdi

ŝdi

]

= hd(x−
r , l −

di )

=
⎡
⎣

fd

{
(x−

r −x−
di ) cos φ−

r −(y−
r −y−

di ) sin φ−
r

}
√

(x−
di −x−

r )2+(y−
di −y−

r )2

s−
di

⎤
⎦ . (20)

Here, Eq. (19) is the measurement model for the vanishing
point extracted from the image from the RGB-D sensor. It
plays an important role in correcting the rotational error of
the robot pose because the vanishing point is observed almost
continuously in the corridor environment. l −

v = (x−
v , y−

v )

denotes the state vector of the vanishing point, which has
already been registered as a unique landmark. We assumed
that a point at the finite distance for which the vanishing point
is projected on a virtual plane is defined as the state of the
landmark, as shown in Fig. 10. We assumed this because it
is difficult to define a measured value as infinity. Equation
(19) is the approximation model based on the assumption that
the robot navigates along the corridor axis. The error of this
measurement model can be ignored under the assumption that
the distance between the robot and virtual plane is sufficiently
large. This approximation model is valid because the robot
moving along the corridor axis assigns the same meaning
to observing the vanishing point. For these assumptions, we
can consider the vanishing point as a global landmark fixed
in space.

Equation (20) is the measurement model for the door
plates extracted from the image from the camera mounted
in the lateral direction. s−

di denotes a signature that character-
izes a landmark type. In this paper, we define the signature
as an integer value of the recognized room number. Here,
it is possible to greatly reduce the data association error by
processing reliable measurement data. This can only occur if
the recognition scores for all digits are above the threshold.

fv and fd are the focal lengths of the RGB-D sensor and
Web camera, respectively. Figure 11a illustrates the image
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Fig. 11 Observation models for EKF SLAM: a local coordinate sys-
tem, b image planes, c observation model of vanishing point, and d
observation model of door plates

planes; these include the measured r zv corresponding to the
vanishing point and r zd corresponding to the door plate.
r ẑv represents the predicted measured value of the vanish-
ing point based on the robot state vector x−

r at the time t . It
is defined as the pixel coordinate with respect to the u axis,
as shown in Fig. 11b. r ẑdi also represents the predicted mea-
sured value of the door plate based on the robot state vector.
It is also defined in the same manner as the vanishing point,
and the integer value of the room number signature is added
as shown in Fig. 11c.

As noted in the introduction, because the measured value
r ẑv is a unique landmark, it is not included in the data associ-
ation process. Hence, state augmentation is performed only
when a vanishing point is observed for the first time, and
subsequent observations are always used for the state update
process. On the other hand, for the measurements of the door
plates, the simplified data association process is always per-
formed using only the signature sdi , as given in Table 1. If the
matching landmark ldi with the measured r zd exists (i.e., the
data association succeeds) based on the algorithm given in
Table 1, the whole system state is updated. On the other hand,
if there is no matching landmark ldi after all landmarks are
searched (i.e., the data association fails), the whole system
state is augmented. Therefore, the data association process
can simply be conducted by only checking the room number
information of the door plates. Note that we only use recog-
nition results with a high recognition score as measurement
data; thus, it is possible to greatly reduce the matching error
more than with a Mahalonobis distance-based method.

Table 1 Algorithm of simplified data association process

1: Data association for door plates landmarks (r zd ):

2: for every registered landmark ldi

3: if sd of r zd = sdi of ldi

4: measured r zd is matched to i th landmark ldi

5: end if

6: end for

4.3 Update

In case of the data association success, the predicted state
vector x and the corresponding covariance P at time t are
updated from the measured r zd as follow:

K = P−HT (HP−HT + R)−1, (21)

x = x− + K(zd − ẑdi ), (22)

P = (IN+3 − KH)P−, (23)

H = [
Hr 02×3(i−1) Hi 02×3(n−i)

]
(24)

R =
[
σ 2

u 0
0 0

]
, (25)

where K represents the Kalman gain. Hr = ∂hd/∂x−
r and

Hi = ∂hd/∂ldi are the Jacobian matrices of the measurement
models with respect to the robot state vector and landmark
state vector, respectively. R denotes the measurement noise
matrix. Here, the measurement of the room number infor-
mation is clear and cannot affect the correction of the state
vector. Thus, the corresponding noise element of R (i.e., the
entry in the second row and second column of the matrix
R) should be 0. Equations (21)–(23) represent the update
process using the door plate information. The state update
process using the vanishing point is also performed in the
same manner based on the measured r zv and its model hv(·).

4.4 State augmentation

If the data association fails, the state vector and the corre-
sponding covariance at the time t are augmented with the
first measurement. The augmented state vector x+ and its
covariance matrix P+ are given by

x+ = [
xT (la)T

]T
, (26)

P+ =
⎡
⎣

Φ Ψ ΦT (Ar )
T

Ψ T Θ Ψ T (Ar )
T

ArΦ ArΨ ArΦ(Ar )
T + AaR(Aa)T

⎤
⎦ , (27)

where Ar and Aa are the Jacobian matrices of the registered
landmarks with respect to the robot state vector and measure-
ment data. The new covariance matrix for the new landmark is
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Fig. 12 3D semantic mapping: a original point cloud (size: about
300,000 points), b after voxel grid filter is applied (size: about 20,000
points), c location-based map for volumetric information (OctoMap),
and d feature-based map for semantic information

thus augmented with all of the uncertainty factors considered
(i.e., the covariance of the robot state Φ and the measurement
noise R).

5 3D semantic map building

The estimated landmark states of the door plates can be useful
semantic information in that they consist of absolute position
values and the room number values. Therefore, these land-
mark states can be directly used for a feature-based map,
as shown in Fig. 12d. This semantic information makes
it possible to reduce the speed of the robot near the door
when there is a risk of collision. Moreover, a goal position
can easily be assigned using not specific coordinate infor-
mation, but the room number information. Using only the
feature-based map, however, makes mobile robot navigation
impossible. For these reasons, a location-based map that rep-
resents the volumetric information was built and combined
with the feature-based map in this study. Several ways to
represent a 3D environment model have been developed [11–
13]. Among them, the OctoMap library, which is based on
the probabilistic update of the 3D point cloud, was utilized
to build a dense 3D map [13,14]. The data structure of the
OctoMap is based on an octree structure that is very effi-
cient for memory management. However, if we use all of

Fig. 13 Experimental setup: a whole system, b RGB-D sensor (ASUS
Xtion Live Pro), and c Web camera

the points from the RGB-D sensor, as shown in Fig. 12a, the
computational burden would be very high because 307,200
points would be considered in every frame of an image with
a resolution of 640 × 480 pixels. To remedy this problem,
a voxel grid filter is applied to reduce the number of points,
as shown in Fig. 12b. Thus, the computational burden of the
OctoMap building process using a 3D point cloud is effec-
tively reduced. Figure 12c indicates the results of the built
OctoMap.

6 Experimental results

To verify the proposed SLAM scheme, various experi-
ments were conducted using a Pioneer 3-DX (MobileRobots)
mobile robot equipped with an RGB-D sensor (ASUS Xtion
Live Pro) and web camera, as shown in Fig. 13. The RGB-
D sensor was mounted in the frontal direction; it was used
to extract the vanishing point and build the location-based
map (i.e., OctoMap). The web camera mounted in the lateral
direction was used to recognize the door plates and build the
feature-based map. The camera calibration task was done
before the experiments. The average speed of the robot was
0.34 m/s, and a laptop computer with a 2.8 GHz quad core
CPU was used to execute the proposed SLAM method. The
acquisition period of the sensor data was 300 ms. The robot
navigated toward the end of the corridor and came back to
the starting point, as shown in Fig. 14a. Figures 14b, c illus-
trate the 3D semantic map, including both the feature-based
map and location-based map, constructed with our proposed
method.

To verify the effectiveness of the proposed method,
comparative experiments were conducted. We conducted
experiments under the same conditions using three differ-
ent methods: odometry, a conventional corner-based EKF
SLAM scheme using Harris corners, and the proposed EKF
SLAM scheme using the vanishing point and door plates.
The estimated trajectories and position errors are illustrated
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Fig. 14 SLAM results: a real corridor environment and b, c 3D semantic map, including feature-based map and location-based map

in Fig. 15a, b, respectively. The red dotted line, light solid
line, and dark solid line represent the results with odometry,
corner feature-based SLAM, and proposed SLAM, respec-
tively. The odometry showed the largest error, even though
the robot navigated along a linear path. For corner feature-
based SLAM, the position error could not converge to close
to 0 because of the indistinguishable features. The proposed
method produced the most accurate estimated trajectory and
smallest error.

Figure 16 represents the relationship between the number
of features used as landmarks and the computation times
of EKF SLAM for each frame. The conventional SLAM
scheme, which used corner features, exploited 612 corners
during the round-trip navigation in a corridor with a dis-
tance of 55 m; thus, it could not handle real-time processing,
and the computation time rapidly increased after about 100
landmarks were registered. On the other hand, the proposed
SLAM scheme used only one vanishing point and 14 door
plates (i.e., 15 total) as landmarks; therefore, the matching
process was very fast compared to the conventional SLAM
scheme.

In conclusion, the corner feature-based SLAM registered
a very large number of features as landmarks; thus, the

Fig. 15 Comparison of a estimated trajectories and b translation errors

computational load was significantly increased in proportion
to the square with EKF SLAM. Furthermore, the accuracy
of SLAM was not reliable. On the other hand, the proposed
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Fig. 16 Comparison of computational time

method built accurate map closely matching the real envi-
ronment despite using a much smaller number of features as
landmarks. The proposed method significantly reduced the
computational burden.

7 Conclusion

This paper proposes a reliable SLAM scheme for a corridor
environment that uses a vanishing point and door plates on
the assumption that the robot navigates by the longitudinal
direction of the corridor. The proposed approach was vali-
dated in several experiments, and the following conclusions
were drawn:

– By using a vanishing point as a unique global landmark,
the rotational error of the robot pose can be corrected
robustly because the vanishing point can be observed
almost continuously in a corridor environment.

– A door plate with room number information can serve
as a very obvious signature; therefore, by using it as the
landmark, the data association process in EKF SLAM
can be simplified, and the translational error of the robot
pose can be corrected robustly.

– A dense 3D semantic map can be constructed by combin-
ing the location-based map from the 3D point cloud and
feature-based map representing the room number infor-
mation.

– By combining the two above features, reliable SLAM can
be performed for a corridor environment.

Future work will involve developing novel features with
new measurement models for several types of semantic

information that contain more useful meanings. A semantic
map with a variety of information other than the door plate
information would be beneficial to various tasks performed
by the robot in this environment.
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