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a b s t r a c t

To construct an intelligent space with a distributed camera sensor network, pre-calibration of all cameras
(i.e., determining the absolute poses of each camera) is an essential task that is extremely tedious. This
paper considers the automatic calibration method for camera sensor networks based on 3D texture map
information of a given environment. In other words, this paper solves a global localization problem
for the poses of the camera sensor networks given the 3D texture map information. To manage the
complete calibration problem, we propose a novel image descriptor based on quantized line parameters
in the Hough space (QLH) to perform a particle filter-based matching process between line features
extracted from both a distributed camera image and the 3D texture map information. We evaluate the
proposed method in a simulation environment with a virtual camera network and in a real environment
with a wireless camera sensor network. The results demonstrate that the proposed system can calibrate
complete external camera parameters successfully.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Distributed sensor networks installed in external environments
can recognize various events that occur in the space, so that such
space can be ofmuch service in human–robot coexistence environ-
ments, as shown in Fig. 1. In recent years, many studies on an intel-
ligent space, have been performed [1,2]. Distributed camera sensor
networks with multi-camera systems provide the most general
infrastructure for constructing such intelligent space. In order to
obtain reliable information from such a system, pre-calibration of
all the cameras in the environment (i.e., determining the absolute
positions and orientations of each camera) is an essential task that
is extremely tedious. In this respect, several studies that provide
Bayesian filter-based probabilistic estimates of optimal sensor pa-
rameters and target tracks have been conducted. Foxlin proposed
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the simultaneous localization and auto-calibration (SLAC) concept,
which is a very general architectural framework for navigation and
tracking systems with environment sensors [3]. Taylor et al. also
implemented a simultaneous localization, calibration, and tracking
(SLAT) system using radio and ultrasound pulse-based range sen-
sors as environment sensors [4]. However, these methods can only
be applied with range and bearing sensors and cannot make use of
information from the camera sensor network, which is a popular
network system for the intelligent space.

Chen et al. employed an approach that optimizes robot motion
tominimize camera calibration errors; however, their approach as-
sumes that the robotmotion has no uncertainty, and rough param-
eters of the camera should be initialized by human observation [5].
Proposals by Rahimi et al. and Funiak et al. recovered the most
likely camera poses and the target trajectory given in a sequence
of observations from the camera network [6,7]. However, these
approaches have limitations in that they canonly estimate 3degree
of freedoms (DOF) poses (x, y, φ)with a restrictive assumption that
requires aligning each camera’s ground-plane coordinate system
with a global ground-plane coordinate system. The optimization
problem of including orientation parameters for all axes (ψ, θ, φ)
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Fig. 1. Concept of intelligent space.

could have myriad local minimum solutions without additional
constraints becausemany indistinguishable observations can exist
even if the camera poses are different. For the reasons mentioned
above, there has been no previous research that tried to estimate
complete 6DOF camera parameters.

To overcome this limitation, our research group proposed a
novel calibration method that estimates the complete 6DOF poses
(x, y, z, ψ, θ, φ) for camera sensor networks by applying addi-
tional constraints [8]. The additional constraints consist of terms
related to grid map information and a two-way observation model
based on an assumption that the camera and target can observe
each other. However, for this approach, a mobile agent is essential
for implementing the calibration methods, so that these methods
cannot be applied where the mobile agent cannot be used. In
this respect, we propose another approach to achieve a complete
calibration scheme for 6DOF external parameters that does not use
any mobile agent, but instead, uses only the environmental map
information to accommodate situations in which the mobile agent
cannot beused. Therefore, the proposed complete 6DOF calibration
system is able to construct a camera network system in arbitrary
poses in the environment and easily calibrate its parameters under
the assumption that there are no large structural alterations to a
building (i.e., no wide discrepancies between the real environment
and the map information).

In this approach, OctoMap, which is widely used to manage
dense 3D environment models with texture information is uti-
lized [9,10]. The OctoMap divides the environment into irregular
voxels that are managed in an Octree structure, so that it leads to
very efficient memory management compared with a point-based
structure. As shown in Fig. 2, the 3D texture map information can
be utilized to generate virtual 2D images from arbitrary viewpoints
(i.e., arbitrary 6DOF camera poses) using 3D projective geometry
when the internal camera parameters are known; thus, the ex-
ternal camera parameters (i.e., 6DOF pose) can be determined by
matching the virtual images generated at every viewpointwith real
images from the camera sensor networks.

The problem addressed in this study can be considered to be
similar to image-based self-localization problems ofmobile robots,
a dilemma that has been extensively studied over the past few
years [11–15]. However, the solutions to these problems cannot be
applied to complete 6DOF estimation problemsbut to only position
estimation (or 3DOF estimation) problems, because the motion
of mobile robots is expressed by 3DOF in 2D space. Furthermore,
thesemethods can only be applied using omni-directional cameras
to efficiently acquire surrounding information of a large environ-
ment and cannot make use of information from normal cameras.
In particular, the method proposed by Ishizuka et al. achieved self-
localization of mobile robots bymatching 2D edge points observed
from an omni-directional camera to 3D edge points obtained from

Fig. 2. Arbitrary camera poses and generated virtual images from 3D texture
OctoMap information.

the 3D environment model [15]. The equivalent method used in
this study is called a 2D–3D edge matching scheme and several
6DOF registration techniques for a 3D geometric model (i.e., 3D
map information) and 2D image data also have been previously
proposed [16–20]. Most of these registration methods are based
on the correspondence of 2D photometric edges and projected 3D
geometrical edges on the 2D image plane. However, it is difficult
to find corresponding edges correctly because robustly extracted
edges are limited.Moreover, the initial pose should bemanually set
close to the correct pose to avoid being stuck in local minimums.
To overcome the limitations of setting initial registration, Hara et
al. proposed a new registration algorithm that can estimate an
optimal pose robustly against initial registration errors [21]. How-
ever, it was not completely free from the initial set. The allowed
maximum error of the initial registration is 2 m and 20 degrees
for each axis. In conclusion, these registration schemes can be
applied to matching 3D texture map information with 2D image
data; however, initial registration by human observation should
be performed and a global search algorithm (i.e., seeking a 6DOF
solution in a global space) is yet to be established. Realizing the
global search of the 6DOF solution with no strong constraints is
impossible because ofmyriad localminimumsolutions; thus, there
has been no previous study that attempted this kind of approach.
Here, the map information is very useful for reducing the solution
space (i.e., the searching space for the 6DOF camera poses) given
that the cameras are generally installed on the occupied region,
such as interior walls, because of space limitations.

The contributions of this paper are as follows. The limitations
of the early approaches are that they can estimate only 3DOF pa-
rameters (x, y, φ) with restrictive assumptions and a mobile agent
is needed for similar calibration patterns, as mentioned above. On
the other hand, the proposed complete 6DOF calibration system
in this paper only uses the environment map information; there-
fore, the proposed scheme easily calibrates its parameters without
any mobile agent. Moreover, because we apply a novel matching
schemewith a line feature-based descriptor that canmanage some
of the occlusions and clutter, the proposed calibration framework
is relatively robust to illumination changes and also manages a
few changes in the environment (i.e., discrepancies between the
3D map information and the camera image data) compared with
the color information-based approach. In addition, the proposed
calibration system requires no initial conditions because the parti-
cle filter-based approach, which is adapted for main paradigm for
the proposed calibration task, has the ability to solve the global
estimation problem, in comparison with previous local estimation
scheme [21].

The remainder of this paper is organized as follows. Section 2
presents overview of the proposed calibration process based on 3D
texturemap information. Section 3 describes the parameterization
step which converts 3D texture map information to simpler repre-
sentation in detail. A novel image descriptor for a fast and accurate
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line-based matching process is presented in Section 4. Section 5
presents the particle filter-based parameter calibration step. The
effectiveness of the proposed calibration scheme is evaluated with
the experiment results in Section 6. Finally, Section 7 gives conclu-
sions of this paper.

2. Overview of proposed calibration process

We can takemaximum likelihood (ML) ormaximuma posterior
(MAP) estimation methods into consideration to find the optimal
camera posew∗, as follows:

w∗
= argmax

w
[p(w|IR,Moct )] ,

= argmin
w

[p(IR|w,Moct )p(w|Moct )] ,

= argmin
w

[− log p(IR|w,Moct )p(w|Moct )] ,

= argmin
w

[
(IV (w) − IR)⊤ΩI (IV (w) − IR)

]
,

= argmin
w

⎡⎣ ∑
(u,v)∈I

∥IV (w)(u, v) − IR(u, v)∥2

⎤⎦ , (1)

where w = [xc yc zc ψc θc φc]
⊤ denotes the 6DOF camera pose

and IV (w) represents the virtual image generated from the arbitrary
camera pose w. IR is the real image from the camera sensor net-
work.Moct denotes pre-given 3D texture OctoMap information.ΩI
is an informationmatrixwith regard to the noise of the image data.

In ML estimation method, prior probability distribution
p(w|Moct ) is neglected, and thus this problem can be very simplest
and intuitive method that determines the optimal camera posew∗

by calculating the differences of all pixel intensities between the
generated virtual images IV and the real camera image IR. However,
it is impossible to generate innumerable virtual images from the
entire solution space because it has a huge number of cases (i.e., in
countless numbers of IV (w)) and the calculation of all projective
transformations from a large-scale 3D map information to the 2D
image plane demands excessive computational time. Furthermore,
if the real image is corrupted by noise (e.g., illumination changes
or moving objects), the matching results are significantly affected.

On the other hand, our proposed method to find complete
6DOF external parameters in the global solution space stands in
contrast to the ML estimation method mentioned above, given
that we exploit the prior information of camera pose with 3D
texture OctoMap information p(w|Moct ), which is neglected in
Eq. (1), as much as possible. We extract line features from both the
3D texture OctoMap information and real image data in order to
make strong constraints from the given map information. The line
features occupy only small parts in an overall environment, and
thus the computational cost to manage this type of light features
can be significantly reduced. As shown in the Fig. 3, line segments
appear to be very efficient features because they are noticeable
as common segments between the 3D texture map information
and 2D image data, and are relatively unaffected by illumina-
tion changes compared to color information; however, lengths,
angles, and parallelism of the line features are not conserved in
3D projective geometry. In this respect, this study proposes a
novel image descriptor based on Quantized Line parameters in
the Hough space (QLH) in order to determine 6DOF camera poses
using a particle filter-based approach, which is one of the popular
implementations of Bayesian filters that can track the distribution
of probability using a set of particles.

Fig. 4 shows a flowchart of the overall proposed 6DOF calibra-
tion process in this study. The process is divided into two steps:
‘‘parameterization of 3D geometric lines’’ to generate parameters
of the 3D geometric line segments that correspond to the en-
tire environment, and ‘‘particle filter-based calibration’’ to per-

Fig. 3. Line features (bold lines in same color refer to features located on same
area): (a) line features in 3D texture map information (i.e., 3D geometric lines) and
(b) line features in 2D image (i.e., 2D photometric lines). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. Overview of proposed 6DOF calibration process.

form camera pose estimation. During the parameterization step,
the 3D geometric line parameters of the environment are gener-
ated automatically from dense 3D texture OctoMap information.
The calibration step determines the 6DOF camera parameters by
matching the generated 3D geometric line parameters with the 2D
photometric line parameters extracted from the real image data
from the camera sensor network. Here, the sequential importance
resampling (SIR) particle filter algorithm is used for the matching
process [22]. This study focuses on considering the expression of
the line features and design of their new measurement model in
order to apply the SIR particle filter algorithm.

3. Parameterization of 3D geometric lines based on 3D texture
OctoMap

We can take direct parameterization of 3D geometric line seg-
ments into consideration from the 3D map information as shown
in Fig. 5(a) because the 3D map may appear clear and valid for
extracting the major line segments by estimating the intersections
of the planes. However, the map structure consists not of planes,
but instead of many voxels (i.e., Octree structure as mentioned
in Section 1). Thus, additional processing is required to estimate
geometric plane information from the voxels in advance [23]. In
this study, the parameterization process of the 3D geometric line
segments for the entire environment consists of threemajor steps:
extraction of the point cloud on the line segments, outlier elimina-
tion, and learning robust line parameters, as illustrated in Fig. 5(b),
(c), and (d). These steps make use of the 3D texture OctoMap
information as training data. Each step functions as follows:

1. The ‘‘extraction of the point cloud on line segments’’ step
involves generating candidate 3D geometric line segments



316 Y. Ji et al. / Robotics and Autonomous Systems 87 (2017) 313–328

Fig. 5. Parameterization of 3D geometric lines: (a) 3D texture OctoMap information Moct (for clarity, occupied nodes that correspond to ceiling area are removed),
(b) extracted point cloud plines on 3D geometric line segments, (c) point cloud plines where outliers are removed, and (d) learned robust 3D geometric line parameters l.

Fig. 6. Generation of virtual image: (a) 3D texture OctoMap information Moct ,
(b) Octree structure that constitutes 3D OctoMap (free and occupied nodes are
represented by white and black squares, respectively), and (c) generated virtual
image from virtual cameraw.

by searching occupied nodes of an Octree structure that
constitutes the 3D textured OctoMap. As shown in Fig. 6(b),
the Octree structure is composed of tree-based node infor-
mation, and thus high-speed searches can be performed.
Searching the occupied nodes of the 3D texture OctoMap in-
formation is reasonable because the occupied nodes repre-
sent the occupied spaceswhere the camera sensor networks
can be installed.

2. During the ‘‘outlier elimination’’ step, the principle compo-
nent analysis (PCA), Bayes’ rule, and clustering in a direction
vector space are adopted to keep only frequently observed
3D geometric line segments (i.e., robustly extracted ones at
any viewpoint) and remove rarely observed ones, as shown
in Fig. 5(c).

3. The ‘‘learning robust line parameters’’ step learns coeffi-
cients of the 3D geometric line segments, as shown in
Fig. 5(d). Here, the random sample consensus (RANSAC)
algorithm is recursively performed.

3.1. Extraction of point cloud on line segments

Table 1 describes an algorithm for generating the point cloud
plines on the 3D geometric line segments from the 3D texture
OctoMap information Moct . The 3D geometric line segments are
composed of point cloud data plines in this process. This process
performs iteration for every occupied node nocc. First, a position
vector (x, y, z) that corresponds to an occupied node nocc and a
random orientation vector (ψ, θ, φ) are produced to generate an
arbitrary viewpoint (i.e., an arbitrary 6DOF camera pose w) in
lines 2–4. In line 5, a virtual image IV (w) that corresponds to the
arbitrary camera posew is generated as described in the following
paragraphs.

Fig. 6 shows that the color information of every occupied node
that constitutes the 3D OctoMap is projected onto a virtual 2D im-
age plane (i.e., the color information assigns to each corresponding
pixel value IV (w)(u, v)) using the camera parameters. The position
ǔ = [u v s]⊤ and its corresponding pixel area size Apixel are

Table 1
Algorithm to generate point cloud on 3D geometric line segments.

calculated by:

ǔ = proj(ňocc)
= ET ňocc[u

v

s

]
=

[fu fskew cu
0 fv cv
0 0 1

][r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

]⎡⎢⎣xocc
yocc
zocc
1

⎤⎥⎦ , (2)

Apixel =
(lnode)2fufv
(doptical)2

, (3)

doptical =
[
r31 r32 r33 t3

]
ňocc, (4)

where ňocc = [xocc yocc zocc 1]⊤ is the position vector of an
occupied node. s is a scale factor. E denotes the internal parameter
matrix that includes focal length (fu, fv), skew coefficient fskew,
and principal point (cu, cv). T is the external parameter matrix
transformed from the 6DOF camera pose w. lnode and doptical re-
spectively represent the cube of edge length that corresponds to
the occupied node nocc for the 3D OctoMap and the distance on
the camera’s optical axis (i.e., x-axis) between the occupied node
and camera position. Here, only the nodes of the shortest distance
doptical are projected onto virtual image IV (w) on the optical camera
characteristic when multiple nodes are projected onto the same
pixel location. Note that the coordinate system adopted in this
study (i.e., the relationship between the camera coordinate system
and the global coordinate system in the 3D space) is appeared in
Fig. 1.

After generating virtual image IV (w), 2D photometric line seg-
ments ulines are extracted (line 6). Fig. 7 shows the procedure
for generating the 2D photometric line segments. First, a binary
image is generated from the virtual image using the Canny edge
detection process, as shown in Fig. 7(a) and (b). The straight
line segments are then extracted through the probabilistic Hough
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Fig. 7. Procedure for generating 2D photometric line segments: (a) virtual image
generated from arbitrary camera pose w, (b) result of binary image after applying
Canny edge detection, (c) extracted straight line segments (red lines) through
Hough transform, and (d) 2D photometric lines ulines which are represented by
white pixels. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 8. Overall process for generating point cloud plines on 3D geometric line
segments: (a) all occupied nodes nocc of 3D OctoMap Moct , (b) exploration for
occupied nodes to extract 3D geometric line segments, and (c) generated point
cloud plines on 3D geometric line segments after exploration complete.

transform (Fig. 7(c)) [24]. Next, a set of 2D pixel coordinates ulines
that correspond to the 2D photometric lines are generated from
the line image, as shown in Fig. 7(d).

ulines =
[
u
(k)
line | 1 ≤ k ≤ Nline

]
, (5)

u
(k)
line =

[
u(k)
i | 1 ≤ i ≤ N (k)

]
, (6)

u(k)
i =

[
u(k)
i v

(k)
i

]⊤
. (7)

Here,u(k)
line andN (k) denote the pixel points on the kth 2Dphotomet-

ric line segment and the number of pixels points, respectively.Nline
represents the number of 2D photometric line segments in virtual
image plane IV (w).

In line 7, the pixel points on the 2D photometric lines ulines are
back-projected onto the 3D environmentmodel (i.e., 3D OctoMap),
so that 3D point cloud ṕlines composed of the candidates of the 3D
geometric lines are generated, as follows:

ṕlines =
[
ṕ
(k)
line | 1 ≤ k ≤ Nline

]
, (8)

ṕ
(k)
line =

[
ṕ(k)
i | 1 ≤ i ≤ N (k)

]
, (9)

ṕ(k)
i =

[
x(k)i y(k)i z(k)i

]⊤
. (10)

Here, ṕ(k)
line denotes the points on the kth 3D geometric line segment

and the 3D geometric point.

Table 2
Relationship between shape of point cloud and each eigenvalue.

Shape Linear (1D) Planar (2D) Volumetric (3D)

λ1 value large large large
λ2 value small large large
λ3 value small small large
Relationship λ1 ≫λ2 ∼=λ3 λ1 ∼=λ2 ≫λ3 λ1 ∼=λ2 ∼=λ3

Finally, the point set of the 3D geometric lines ṕlines extracted
from every node are integrated into the overall point cloud plines
(line 8). The overall process described above is shown in Fig. 8.

3.2. Outlier elimination

As illustrated in Figs. 5(b) and 8(c), the generated point cloud
plines contains outliers, thus leading to inaccurate matching results
for a posterior calibration process. To eliminate these outliers
produced during the back-projection step, three types of noise
removal schemes can be applied: PCA, Bayes’ rule, and direction
vectors of 3D geometric lines.

3.2.1. Outlier removal using PCA evaluation
The candidates for 3D geometric lines are evaluated through

PCA to determine whether the shapes are straight lines even on
a 3D space, so that only those points that are included in straight
lines in both the 2D and 3D spaces are kept. The PCA evaluation
scheme for the 3D geometric line candidates is represented by:

Cov
(
ṕ
(k)
line

)
=

1
N (k)

∑
i∈Line k

(
ṕ(k)
i − ¯́p

(k)
i

)(
ṕ(k)
i − ¯́p

(k)
i

)⊤

, (11)

¯́p
(k)
i =

1
N (k)

∑
i∈Line k

ṕ(k)
i . (12)

Here, ṕ(k)
i and ¯́p

(k)
i are 3D point coordinates and the center value

that constitutes the kth line candidate, respectively.N (k) represents
the number of points that constitute the kth line candidate. By
performing eigenvalue analysis of covariance matrix Cov(ṕ(k)

line),
eigenvalues λ(k)1 > λ

(k)
2 > λ

(k)
3 and eigenvectors e(k)1 , e

(k)
2 , and e(k)3

can be calculated, respectively. Dimensionality labeling of the
point cloud (i.e., whether the point cloud is spread into one, two,
or three dimensions) can be derived from these eigenvalues. Given
the relationship between the value of each eigenvalue and the
shape of the point cloud (Table 2), the shape of the point cloud
can be classified by calculating the difference between each eigen-
value, as follows:

d(k) = argmaxi=1,2,3

[
s(k)i

]
, (13)

s(k)1 = λ
(k)
1 − λ

(k)
2 , (14)

s(k)2 = λ
(k)
2 − λ

(k)
3 , (15)

s(k)3 = λ
(k)
3 . (16)

In Eq. (13), d(k) represents the index i of s with maximum value.
Therefore, line segments where the evaluation result is d(k) = 1
can be accepted as a 1D straight-line feature in both the 2D and
3D space, and others (i.e., d(k) = 2 or 3) are not. More details on
the shape classification for the point cloud can be found in [25].
Fig. 9 illustrates examples of 2D photometric lines and their back-
projection results. The unexplainable 2D photometric line is occa-
sionally extracted and it should be eliminated because it is not a
3D geometric line.
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Fig. 9. 2D photometric lines and their back-projected examples onto 3D OctoMap
information: (a) 3D geometric line (d(k) = 1) and (b) not 3D geometric line
(d(k) = 3).

3.2.2. Outlier removal using Bayes’ rule
In order tomaintain only frequently extracted lines and remove

rarely detected ones, Bayes’ rule can also be adopted while the
algorithm for generating the point cloud on the 3D geometric line
segment (Table 1) is performed. A probability is assigned to each
line segments and is updated according to the Bayesian update
formula, as follows:

p(S(ṕ) = Tline|O(ṕlines)1:k)

=
p(O(ṕlines)k|S(ṕ) = Tline)p(S(ṕ) = Tline|O(ṕlines)k−1)∑

S(ṕ) p(O(ṕlines)k|S(ṕ))p(S(ṕ) = |O(ṕlines)k−1)
, (17)

where S(ṕ) denotes whether point ṕ belongs to a 3D geomet-
ric line (S(ṕ) = Tline) or not (S(ṕ) = Fline). O(ṕlines)1:k =

[O(ṕlines)1,O(ṕlines)2, . . . ,O(ṕlines)k]⊤ represents the observations
of point ṕ from 1st to kth iteration of the exploration. The ini-
tial probability p(S(ṕ) = Tline) is set to 0.5. The likelihood
p(O(ṕlines)k|S(ṕ)) can be defined as 0.8 when the line segment is
observed (S(ṕ) = Tline), and 0.1 when the line segment is not
observed (S(ṕ) = Fline). By performing sequential updates based
on Eq. (17), the probabilities of frequently observed points that
belong to line segments gradually increase; thus, the points with
low probability (e.g., less than 0.9) can be eliminated. Note that
Eq. (17) is the same expression as the update rule of occupancy
probabilities in the occupancy grid mapping algorithm [26].

3.2.3. Outlier removal using direction vectors
The removal of outliers can be performed by clustering direc-

tion vector information a(k) corresponding to each 3D geometric
line p

(k)
line.

alines =
[
a(k)

| 1 ≤ k ≤ Nline
]
, (18)

a(k)
=
[
a(k)x a(k)y a(k)z

]⊤
. (19)

Here, the normalized (i.e., ∥a(k)
∥ = 1) direction vector a(k) can

be easily calculated using two points on the 3D geometric line
segment. Each direction vector can be plotted in the 3D direc-
tion vector space, as shown in Fig. 10(c). Here, because we can
intuitively recognize that areas of dense points mean principal
directions among all 3D geometric line segments, the outliers are
simply eliminated through a radius outlier removal filter, as shown
Fig. 10(d). Fig. 11 helps visualize the action of the radius outlier
removal filter. The user specifies a number of neighbors where
every index must be within a specified radius r to remain in the
original points. For example, if one neighbor is specified, only the
green point is removed from the original points. If two neighbors
are specified, both the green and yellow points are removed from
the original points. The elimination result shown in Fig. 11(b)
illustrates a case where two neighbors are specified.

Codebooks for principle directions of 3D geometric line seg-
ments are then generated through clustering for the remaining

Fig. 10. Outlier elimination by clustering in direction vector space: (a) point cloud
plines on 3D geometric line segments before outlier elimination, (b) point cloud
plines after outlier elimination, (c) each direction vector alines plotted in direction
vector space before applying radius outlier removal filter, (d) each direction vector
alines after applying radius outlier removal filter, and (e) generated codebooks for
principle directions of 3D geometric line segments.

Fig. 11. Radius outlier removal filter: (a) before applying and (b) after applying. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

direction vectors, as shown Fig. 10(e). The codebooks can be ob-
tained by calculating the center for each classified cluster. Here,
the Euclidean clustering method with Kd-tree representation [27]
is used to extract clusters that correspond to the direction vectors.

In a typical indoor environment, as shown in Fig. 10(e), six code-
books are generated (cf. without considering the sign, three code-
books) for the direction vectors. Finally, the line segments (strictly
speaking, point cloud data) for which there is no codebook within
a threshold distance can be eliminated by calculating Euclidean
distances between each direction vector of the line segments and
the codebooks.

3.3. Generation of 3D geometric line parameters

plines is composed of still point cloud data; thus, a simpler
representation for defining 3D geometric line segments should be
considered because the computational burden would be very high
to process it. For example, a considerable number of variables is
necessary for representing the point cloud data, whereas only six
parameters are sufficient for representing the equation of a line
in 3D Space. During this process, therefore, parameterization of
3D geometric line segments through the RANSAC algorithm [28]
is performed, as shown in Fig. 5(d). The parametric model is rep-
resented through a set of coefficients. The 3D geometric line seg-
ments can be parameterized using only six coefficients, as follows:
x − xs
xe − xs

=
y − ys
ye − ys

=
z − zs
ze − zs

. (20)
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Fig. 12. Overall RANSAC process for generating 3D geometric line parameters.

Here, (xs, ys, zs) and (xe, ye, ze) denote the start and end point of a
3D geometric line segment, respectively. They also represent the
parameters of a 3D geometric line segment. Essentially, this step
produces a list of these six line parameters from point cloud data
plines composed of 3D geometric line segments.

The RANSAC algorithm is an iterative learning method for
estimating the parameters (xs, ys, zs, xe, ye, ze) of a mathematical
model (i.e., the 3D line) from a set of observed data (i.e., point
cloud data plines). It is a non-deterministic algorithm in the sense
that it produces a reasonable result only with a certain probability,
with this probability increases as more iterations are allowed [28].
RANSAC uses a voting scheme to find the optimal fitting result.
The RANSAC algorithm for parameterizing 3D geometric lines that
consist of plines is divided into two steps repeated iteratively. In
the first step, a sample subset that contains minimal data points
(e.g., two points in the case of the line model) is randomly selected
from input point cloudplines. A fittingmodel and the corresponding
line model parameters are computed using only the elements of
this sample subset. The cardinality of the sample subset is the
smallest that is sufficient for determining themodel parameters. In
the second step, the algorithm checkswhich elements of the entire
point cloud are consistent with the line model instantiated by the
estimated model parameters obtained from the first step. A data
element is considered an outlier if it does not fit the line model
instantiated by the set of estimatedmodel parameterswithin some
error threshold that defines themaximumdeviation attributable to
the noise effect. The set of inliers obtained for the fitting model is

Fig. 13. Compressed-dimensional image descriptor for comparing image data from
real camera with virtual image data from arbitrary camera poses in 3D texture map
information.

called a consensus set. The RANSAC algorithm iteratively repeats
the above two steps until the consensus set obtained in certain
iteration has sufficient inliers. The overall process for RANSAC
mentioned above is illustrated in Fig. 12. Through repetition of
these steps, every 3D geometric line segment in plines can be pa-
rameterized as follows:

l =
[
l(k) | 1 ≤ k ≤ Nline

]
, (21)

l(k) =
[
x(k)s y(k)s z(k)s x(k)e y(k)e z(k)e

]⊤
. (22)

In conclusion, the number of variables necessary for represen-
tation of the parameterized line segments is very low (i.e.,Nline×6);
thus, the computational burden for the posterior processes can be
reduced significantly.

4. Novel image descriptor based on QLH

4.1. Concept of QLH descriptor

In order to estimate camera parameters based on 3D texture
map information, a novel feature comparison model is required
for a fast and accurate matching process. In other words, as shown
in Fig. 13, an image descriptor (i.e., the compressed-dimensional
signature) should be defined to compare image data from a real
camera with virtual image data from arbitrary camera poses in the
map information.

To this end, the concept of histograms is widely exploited in
imagematching processes (e.g., object recognition or similar image
search) because it can be used to represent diverse items, such
as an intensity of the color distribution of an image. Fig. 14(b)
shows examples of the intensity histograms that correspond to
two image data. To compare two histograms (i.e., similarity com-
parison between the two images), many matching criteria have
been proposed, such as correlation, Chi-square, intersection, and
Bhattacharyya distance [29]. Among them, Chi-square or Bhat-
tacharyya distance produce good matching results for color in-
tensity histogram-based imagematching when the environmental
conditions are the same. However, intensity-based comparison
schemes depend on the environment’s lighting conditions, and
thus they are not robust to illumination changes. Furthermore,
moving objects also significantly impact the distribution of the
color intensity information in the image data. Using local features
in images (e.g., SIFT [30] or SURF [31]) can be also considered
because these are relatively robust to illumination changes. Fur-
thermore, it is possible to exploit bag of visual words (BoVW)
techniques to perform these types of keypoints matching [32–35].
Recently, BoVW has been applied to the localization problem
[36–38]. These schemes, however, utilize corner-based feature
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Fig. 14. Examples of imagematching criteria: (a) original images, (b) color intensity
histograms, and (b) QLH descriptors.

points, and thus they do not apply to non-textured environ-
ments where robust feature points cannot be reliably extracted.
FAB-MAP proposed by M. Cummins et al. also uses the BoVW
descriptor to solve the problem of recognizing places based on
their appearance [39–41]. However, this appearance-based ap-
proach using Bayesian pattern recognition is only able to recognize
similar scenes, instead of precise position and orientation esti-
mation, given that these types of local keypoints are invariant to
uniform scaling and orientation. Tomono also exploited a BoVW-
based image-retrieval scheme using edge points in order to esti-
mate 6DOF camera poses. In this study, localization is performed
based on a landmark image database; thus, the performancemight
decrease when the target scene does not include any similar visual
vocabulary generated from the image database [42]. Higher order
local autocorrelation (HLAC) [43], generalized local correlation
(GLC) [44], and global Gaussian (GG) [45], which represent an
image as a single descriptor, are also not suitable solutions for
position or orientation estimation. The central problem of image
matching in this study is that the generated virtual images (Fig. 13
left) provide very poor resolution compared to real camera images
(Fig. 13 right).

To this end, a novel image descriptor based on QLH that rep-
resents the distribution of the slope and distance from the origin
of the 2D image plane for the 2D photometric lines is proposed
in this study, as shown in Fig. 14(c), because the 2D photometric
line features are robustly extracted without reference to the image
resolution, unlike the keypoint-based features. Furthermore, the
proposed QLH descriptor-based matching scheme utilized in this
study does not need to generate low-resolution virtual images
because the 3D texture map information Moct is converted into
3D geometric line segments l beforehand, as described in Sec-
tion 3. Unlike the image descriptors previously mentioned, the
QLH descriptor is sensitive to translation and rotation changes of
the camera scenes since it is generated based on line parameters.
Thus, it is highly suitable for pose estimation, including theposition
and orientation. Tomono also suggested a similar concept of an
Euclidean invariant signature which is defined by an index table in
the Hough space [46]. It was utilized for scan matching between
2D measurements from a laser range finder (LRF). On the other
hand, the proposed QLH descriptor is generated from image infor-
mation captured by cameras, instead of 2D range data. Therefore,
the QLH descriptor is relatively robust to illumination changes
because it does not include any intensity information and it is
always available, provided that the edge information is detected.
For example, as shown in Fig. 14(b), the color intensity histogram

Fig. 15. Example of QLH descriptor: (a) extracted 2D photometric lines from image
data, (b) quantization and registration at Hough space, (c) after applying Gaussian
Kernel function K (·) to manage noise.

changes significantly when it is affected by illumination condi-
tions and moving objects; therefore, similarity matching cannot
be performed correctly regardless of whether the scenes are from
the same environment or not. On the other hand, the proposed
QLH descriptor is relatively robust to changes in the environment,
as illustrated in Fig. 14(c). The generation method for the QLH
descriptor is described in detail in next subsection.

4.2. Generation of QLH descriptor

2D photometric line information in the image plane is uniquely
determined by two properties: slope α and the distance from the
origin ρ given by:

ρ = u cosα + v sinα, (23)

where (u, v) represents the image coordinates. ρ is the distance
from the origin to the closest point on the straight line, and α is
the angle between the u-axis and the line that connects the origin
with the closest point. Therefore, it is possible to associate each
line of the image with a pair (ρ, α). The (ρ, α) plane is referred to
as the Hough space for the set of straight lines in the 2D space [47].
Hence, it can be combined to design a new image descriptor for line
segment-based matching. The descriptor is generated by quantiz-
ing the ρ and α information of 2D photometric lines in the Hough
space with a Gaussian Kernel function.

The QLH descriptor for a real camera image is generated simply
from the image that includes 2D photometric line segments, as
illustrated in Fig. 7(d). On the other hand, the predicted QLH
image descriptors from the arbitrary camera poses in the 3D map
information can be obtained from 2D photometric line segments
l2D generated by projecting the parameterized 3D geometric lines
segments l onto the virtual 2D image plane. Table 2 lists the
algorithm for generating the QLH descriptor from 2D photometric
line segments.

Lines 1–4 quantize the slope and the distance values of each
2D photometric line l(j)2D = (ρ(j), α(j)) to transform into the index
lidx = (ρidx, αidx) on the Hough space, and round(·) represents
the rounding function. Here, bρ×bα is the quantum size on the
Hough space. After quantizing, line 5 calculates each element of
QLH descriptor Q using the typical Gaussian Kernel function K (·)
(i.e., O mean and I covariance), which is given by

K (x) =
1

(2π )D/2
exp

(
−

1
2
x⊤x

)
, (24)

where Nj, h, and D denote the number of 2D photometric lines,
smoothing parameter, and dimensions (two in this case), respec-
tively. A matrix norm of Q depends on the number of registered
lines; thus, it affects accuracy in thematching process. To eliminate
this effect, the result is normalized in line 7. An intuitive example
for generating a QLH descriptor is shown in Fig. 15. Each 2D
photometric line segment is quantized (ρidx, αidx) and registered
at the corresponding cell in the Hough space (Fig. 15(b)). Then,
Gaussian Kernel function K (·) is applied to manage unexpected
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noise (Fig. 15(c)). Although the environment is fixed, the QLH
image descriptor changes depending on the camera pose, and thus
the QLH descriptor can be used as an available signature for the
calibration process, as described in next subsection.

4.3. Evaluation of QLH descriptor based on earth mover’s distance

The similarity between two sets of QLH descriptors is computed
with regard to their earth mover’s distance (EMD). EMD is a mea-
sure of the distance between two multi-dimensional distributions
in some feature space [48]. In this study, the QLH descriptor can be
managed as a 2D distribution, which is defined in the feature space
(ρidx, αidx). In order to compute EMDbetween twoQLHdescriptors,
each QLH descriptor is converted to a set of clusters Qsig.

Q (1)
sig =

[
(q(1)

i ,ϖ
(1)
i ) | 1 ≤ i ≤ Nc

]
, (25)

Q (2)
sig =

[
(q(2)

j ,ϖ
(2)
j ) | 1 ≤ j ≤ Nc

]
, (26)

where q andϖ indicate the cluster representative (i.e., the coordi-
nates (ρidx, αidx) of the QLH descriptor) and the weight value that
belongs to that cluster (i.e., Q (ρidx, αidx)), respectively. The size of
cluster Nc is equal to the size of the QLH descriptor (e.g., 30×18 =

530 in the case of Fig. 15). Computing EMD is based on a solution
to the well-known transportation problem. In other words, EMD
measures the minimum amount of work required to change one
signature to another. Here, the notion of work is based on the user-
defined ground distance dij. Therefore, a flow matrix F with flow
elements fij between q(1)

i and q(2)
j that minimizes the following

overall cost is calculated.

WORK (Q (1)
sig ,Q

(2)
sig , F ) =

Nc∑
i=1

Nc∑
j=1

fijdij

s.t.1 fij ≥ 0 1 ≤ i ≤ Nc, 1 ≤ j ≤ Nc

s.t.2
Nc∑
j=1

fij ≤ ϖ
(1)
i 1 ≤ i ≤ Nc

s.t.3
Nc∑
i=1

fij ≤ ϖ
(2)
j 1 ≤ j ≤ Nc

s.t.4
Nc∑
i=1

Nc∑
j=1

fij = min

⎛⎝ Nc∑
i=1

ϖ
(1)
i ,

Nc∑
j=1

ϖ
(2)
j

⎞⎠ , (27)

where dij represents the user-defined ground distance,which is the
distance between clusters q(1)

i and q(2)
j , as follows:

dij =

√
τρ(∆ρidx)2 + τα(∆αidx)2, (28)

∆ρidx = ρ
(2)
j − ρ

(1)
i , (29)

∆αidx = arctan

(
tanα(2)

j − tanα(1)
i

1 + tanα(2)
j tanα(1)

i

)
. (30)

Here, τρ and τα are the weight parameters that adjust the impor-
tance of the distance and slope distributions. s.t.1 allows moving
supplies from Q (1)

sig to Q (2)
sig and not vice versa. s.t.2 and s.t.3 limit

the amount of supplies that can be sent by the clusters in Q (1)
sig to

their weights, and the clusters in Q (2)
sig to receive no more supplies

than their weights. s.t.4 forces moving the maximum amount of
supplies possible. This amount is called the total flow. By solving
the transportation problem, optimal flowmatrix F can be obtained.
Hence, EMD is defined as the work normalized by the total flow, as
follows:

EMD(Q (1)
sig ,Q

(2)
sig ) =

∑Nc
i=1
∑Nc

j=1 fijdij∑Nc
i=1
∑Nc

j=1 fij
. (31)

Fig. 16. EMD calculation results around correct camera pose.

Additional details on EMD can be found in [48]. In this study, an
important advantage of EMD is that it allows partial matches in a
very natural way. In other words, it canmanage the occlusions and
clutter that can occur frequently in line-based matching.

Fig. 16 shows an example of the EMD values around the correct
camera pose. Here, the EMD calculation results that correspond
to only one translation and orientation are plotted given that
the results that correspond to the complete 6DOF state values
cannot be illustrated. A robust descriptor should generate the
lowest distance (i.e., highest similarity) near the true pose and
gradually increases values according to the distance from the true
pose. Fig. 16 illustrates this characteristic well, and thus the EMD
calculation between the proposed QLH descriptors can be used as
reasonable criteria for parameter calibration. Even if this function
has some local minimum (i.e., not a convex function), as shown in
Fig. 16, a global solution can be found using a particle filter-based
estimation which is described in detail in the next section.

5. Particle filter-based parameter calibration

A particle filter is used as the main paradigm for the calibration
task in this study. It is one of the popular methods for implement-
ing a Bayesian filter that can estimate the probability distribution
using a set of random particles. The state (i.e., 6DOF camera pose in
this case) is represented by the weighted sum of all particles. The
particle filter has the ability to solve not only a local estimation, but
also a global estimation problemwith high accuracy because it can
represent non-parametric multi-modal probability distributions
(i.e., not bound to a unimodal distribution). This section describes
the Bayesian filter briefly and the particle filter-based parameter
estimation method to obtain the most likely camera posew.

5.1. Bayesian filter

The Bayesian filter in this study determines the posterior prob-
ability of the 6DOF camera pose w based on measurement data
(i.e., the QLH descriptor in this case) from the camera image and
pre-given map information. The posterior probability distribution
of the camera parameterw, given the all conditions (i.e., measure-
ment Q and map information Moct ) is calculated as follows:

p(w|Moct ) =

∫
p(w|wk−1,Moct )p(wk−1|Q ,Moct )dwk−1, (32)

p(w|Q ,Moct ) = η · p(Q |w,Moct )p(w|Moct )
= η · p(Q |w, l)p(w|Moct ), (33)
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where w = [xc yc zc ψc θc φc]
⊤ denotes the 6DOF camera pose

at kth iteration. Here, the subscript k that represents the state
of the current iteration is omitted. Q denotes the QLH descriptor
from the real camera image (i.e., the measurement data), andMoct
is the 3D texture OctoMap information. p(w|Moct ), represented
in Eq. (32), is the prior distribution on the camera parameters,
and Markov assumption is applied on the right side. This means
the prediction phase for predicting the distribution of state w by
applying the prediction model p(w|wk−1,Moct ) to the posterior
distribution at previous iteration p(wk−1|Q ,Moct ). Eq. (33) repre-
sents the update phase to update the probability distribution of
state w by applying the measurement model p(Q |w, l) to prior
distribution p(w|Moct ). Measurement model p(Q |w, l) is defined
by the likelihood function that should be designed for the QLH
descriptor in this study. Here, η is the normalizing constant . Note
that the prior informationMoct is converted into the 3D geometric
line parameters l at the update phase as described in Section 3. In
conclusion, the Bayesian filter recursively performs the prediction
phase (Eq. (32)) and update phase (Eq. (33)) to estimation state
vectorw.

5.2. Particle filter

In this study, the particle filter is an implementation of the
Bayesian filter to calibrate complete external camera parameters.
To represent the probability distribution on camera pose w, the
particle filter uses a set of random weighted particles represented
by:

S =
[
⟨wi,ϖi⟩ | 1 ≤ i ≤ Np

]
, (34)

where wi is the pose of the ith particle with associated impor-
tance weight ϖi at kth iteration and Np is the number of particles
in one set. At each iteration, the probabilities (weights) of the
particles are updated using prediction and measurement models,
and then the particles are resampled. A set of particles describes
posterior distribution p(w|Q ,Moct ), which represents camera pose
w conditioned on the measurement data (i.e., QLH descriptor Q
generated from the real camera image) andmap informationMoct .
The posterior distribution on camera posew is approximated from
a set of weighted particles, as follows:

p(w|Q ,Moct ) ≈

Np∑
i=1

ϖiδ(w − wi), (35)

where δ(·) is the Dirac delta function. This subsection reviews the
particle filter briefly.More details on the particle filter can be found
in [49,50]. Among several variants of particle filters, the SIR particle
filter algorithm is adopted in this study [22]. This algorithm is
composed of the following steps: sampling, importanceweighting,
and resampling.

5.2.1. Sampling step
In the sampling step, a new particle set S− is generated

from past particle set Sk−1 based on state transition probability
p(w|wk−1,Moct ), as follows:

w−

i ∼ p(w|wi,k−1,Moct ). (36)

Because cameras are generally installed on the interior wall be-
cause of space limitations, the prediction model in the sampling
step uses the map information that contains such information as
constraints. Dense 3D map information can provide two types of
constraints for the prediction model: a constraint on camera posi-
tion (xc, yc, zc) and a constraint on camera orientation (ψc, θc, φc).

Fig. 17. Extraction of normal vectors to make camera orientation constraints:
(a) calculation of normal vector by fitting plane and (b) extracted normal vectors
n̂ = (n̂x, n̂y, n̂z ) (blue lines) that correspond to all points in 3D OctoMap. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Thus, the sampling step that considers these two constraints can
be implemented as follows:

w−

i = wi,k−1 + ϵ

s.t.1 ∃(x−

i , y
−

i , z
−

i ) ∈ nocc

s.t.2 arctan 2(n̂y, n̂x)−
π

2
> arctan 2(cos θ−

i sinφ−

i ,

cos θ−

i cosφ−

i ) > arctan 2(n̂y, n̂x) +
π

2
s.t.3 arccos(n̂z) −

π

2
> arccos

(
− sin θ−

i

)
> arccos(n̂z) +

π

2
s.t.4 ϵ ∼ N (0, diag(σ 2

x , σ
2
y , σ

2
z , σ

2
ψ , σ

2
θ , σ

2
φ )), (37)

where noise variable ϵ follows aOmeanGaussian distributionwith
small variances (s.t.4). The superscript - indicates that the pre-
dicted state before themeasurement data at the current iteration is
not updated. s.t.1 represents the constraint on the position where
the predicted particle’s position (x−

i , y
−

i , z
−

i ) should be located
at the occupied node nocc of 3D OctoMap. s.t.2 and s.t.3 are the
constraints on the orientation where predicted pitch θ−

i and yaw
angle φ−

i cannot be more than 90 degrees from a normal vector
of the corresponding wall plane. Here, n̂ = (n̂x, n̂y, n̂z) refers
to the normal vector. Note that roll angle ψc does not have any
constraints because it represents the rotation on the optical axis.

In order to calculate the normal vector n̂ = (n̂x, n̂y, n̂z) that
corresponds to all the occupied nodes of the 3D OctoMap infor-
mation, the plane-fitting algorithm presented in [51] is performed.
The corresponding normal vectors are extracted using the all point
cloud data that consists of the all center points of the all occupied
nodes nocc of the 3D OctoMap information. As shown in Fig. 17 (a),
it is assumed that the points in a small local region are located
on a local plane, which is expressed in the form of the following
equation:

z = ax + by + c. (38)
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Fig. 18. Measurement model for QLH descriptor: (a) measurement model for
transforming EMD into a probability (i.e., particle’s weight) and (b) probability
distribution around correct camera pose.

This optimization problem can be solved by the following calcula-
tions:

[a
b
c

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i,j

(xi)2
∑
i,j

xiyj
∑
i,j

xi∑
i,j

xiyj
∑
i,j

(yj)2
∑
i,j

yj∑
i,j

xi
∑
i,j

yj Narea

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i,j

xizij∑
i,j

yjzij∑
i,j

zij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (39)

[n̂x
n̂y
n̂z

]
=

1
√
a2 + b2 + 1

[
−a
−b
1

]
. (40)

Here, (xi, yj, zij) are the values of each point in the local area. Narea
represents the number of points in the local area. Through these
calculations, the normal vector n̂ = (n̂x, n̂y, n̂z) that corresponds
to each node nocc can be acquired; therefore, the constraints for
the camera orientations represented in Eq. (37) can be applied for
the prediction model. The extraction result of the normal vectors
for the entire 3D OctoMap is shown in Fig. 17(b).

5.2.2. Importance weighting step
In a particle filter, the probability of a particle is updated us-

ing a measurement model in the importance-weighting step. In
otherwords, importance factorϖ is evaluated usingmeasurement
model p(Q |w,Moct ), as follows:

ϖi = η · p(Q |w−

i ,Moct), (41)

where η is a normalization constant. Eq. (41) is the same as the
measurement model that represents the likelihood function. Thus,
p(Q |w−

i ,Moct ) is computed by the function for similarity com-
parison that assigns a low weight when the difference between
the QLH descriptor predicted from the arbitrary particle pose and
that extracted from the real camera image is large, or assigns a
high weight when the difference is small. Here, the proposed QLH
descriptor can be exploited for criteria of similarity comparison to
determine particle weight, and thus a new measurement model is
required.

Fig. 18(a) shows a measurement model for the QLH descriptor.
Theuncertainty canbemodeled as aGaussiandistribution. Because
the difference between two sets of QLH image descriptors are
computed by EMD, the EMD distribution (Fig. 16) can be converted
into a probability distribution around the correct pose (Fig. 18(b))
through the following measurement model:

p(Q |w−

i ,Moct) =
1

σEMD
√
2π

exp
(

−
EMD(Q , h(w−

i ))2

2σ 2
EMD

)
, (42)

where Q and h(w−

i ) refer to the QLH descriptor extracted from a
real camera image and that predicted from the pose of ith particle

w−

i , respectively. σEMD represents the standard deviation associ-
ated with the uncertainty of the QLH descriptor (e.g. σEMD = 3.0
in the case of Fig. 18). EMD(·) denotes the earth mover’s distance
between the two sets of QLH descriptors. EMD is the appropriate
criterion for the similarity comparison of this problembased on the
discussion in Section 4.3. The result of Eq. (42) is transformed into
the weighting of the particle, and the calculated weights are used
for the resampling in the next step.

5.2.3. Resampling step
In the resampling step, a new particle set S is randomly chosen

from S− according to the distribution defined by the importance
factorϖi.

S =
[
⟨wj, 1/Np⟩ | 1 ≤ j ≤ Np

]
∼
[
w−

i ,ϖi
]
. (43)

Particles with high weight generate many particles. Otherwise,
particles with lowweight generate few particles or none. The prior
probability of each particle of the new particle set S at the current
iteration k is initialized to 1/Np.

Through the three recursive steps, the particles converge on the
pose with highest probability. The estimated camera state w∗ is
calculated by the weighted average, as follows:

w∗
=

1
Np

Np∑
i=1

ϖiwi. (44)

5.3. Time complexity of algorithm

The time complexity of algorithms is most widely expressed
using the big-O notation. The time complexity of the proposed
calibration process can be divided into two computations: com-
putational burden to generate the QLH descriptor from the 2D
photometric line segments extracted by the Hough transform,
which corresponds to a real camera image, and iterative calcula-
tions required for the particle filter procedure. Here, the former
involves negligible amount of calculation because this process is
executed only once. The SIR particle filter procedure used in this
study is divided into three steps: sampling, importance weighting,
and resampling. Each complexity can be written as follows:

Osample = O(Np), (45)

Oweight = Np(Oproj + OQLH + OEMD)
= Np(O(Nline) + O(N2

j ) + O(N2
c ))

= O(Np(Nline + N2
j + N2

c )), (46)

Oresample = O(Np), (47)

whereNline,Nj, andNc denote the number of entire 3D photometric
lines, projected 2D photometric lines, and bins constituting the
QLH descriptor, respectively. Np is the number of particles and it
spends a large part of the computation time. In the importance
weighting step, the computation time for one particle is composed
of three parts: the complexityOproj = O(Nline) required for project-
ing 3Dgeometric line segments l into a 2D image plane, complexity
OQLH = O(N2

j ) required for generating the QLH descriptor Q
from projected 2D photometric lines l2D (Table 3), and complexity
OEMD = O(N2

c ) required for calculation of the EMD between the
QLH descriptors (Eq. (31)). In conclusion, the time complexityOiter
required for one iteration in the proposed calibration framework
can be represented as follows:

Oiter = Osample + Oweight + Oresample

= O(Np + Np(Nline + N2
j + N2

c ) + Np)

= O(Np(2 + Nline + N2
j + N2

c ))

≈ O(Np(N2
j + N2

c )). (48)
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Fig. 19. Simulation environment with virtual camera network of up to three cameras: (a) 3D texture OctoMap information of simulation environment, (b) top view,
(c) simulated image data that includes moving object from camera w(1) , (d) simulated image data by changing illumination condition from camera w(2) , (e) simulated
image data from cameraw(3) . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Simulation results for several stages of particle filter. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 3
Algorithm to generate QLH descriptor Q from 2D photometric line segments l2D .

Here, the computations that correspond to a constant and Nline (at
most 100) are negligible compared to quadratic terms.

6. Experiment results

6.1. Simulation

A simulation was conducted with a virtual camera network
of up to three cameras. Fig. 19(a) and (b) show the 3D tex-
ture OctoMap information of the simulation environment. The
OctoMap information in this simulation has 623,613 nodes of
which the minimum voxel size (i.e., the cube of edge length) is
20 mm. The size of the simulation environment is 5 m × 8 m
× 3 m, including various line features located on the sides of
the walls, doors, and windows. Here, the real poses of the virtual
cameras that should be estimated in this study are represented in
purple with black axes, and each corresponding simulated image
is as illustrated in Fig. 19(c), (d), and (e). Note that we treated
these simulated images as real image data from camera sensors in
the simulation experiments. Changes in the environment caused
by a moving object and illumination condition are considered as
shown in Fig. 19(c) and (d) in order to validate robustness. In
this simulation, internal parameters fv, fu, fskew, and (cu, cv) for all
virtual cameras are set to 930, 930, 0, and (640, 400), respectively.
The image dimensions are 1280×800.

Global 6DOF pose estimations (i.e., complete external param-
eter calibrations) of the camera sensor network with no initial
conditions are performed in the simulation environment. As shown
in Fig. 20, the particles are initialized globally based not on the
initial conditions, but on prior information (i.e., the constraints
from themap information as described in Eq. (37)).We can assume

that pose estimations are finishedwhen all particles convergewith
very small variances. In this simulation, a maximum of 50,000
particles are used for each camera pose and the number of particles
is adjusted according to the variance of the particles’ distribution.
TheQLHdescriptor-based similarities between the 2Dphotometric
line segments from the camera sensor network and those from all
particles are computed. The results are then used in the probability
update of each particle.

The several stages of the particle filter iterations and conver-
gence process for all camera poses are illustrated in Figs. 20 and
21, respectively. After approximately 15 iterations, most camera
poses (colored axes) accurately converge on the real poses (black
axes). Note that the roll angle (i.e., the rotation on the optical axis)
has slight effect on the scope of the camera observation, and thus
it is fixed at 0 degrees and an estimation is not performed. The
simulation results show that the complete 6DOF external param-
eters are estimated accurately even if environmental conditions
change because of illumination or moving objects. In addition, the
matching process of the particle filter algorithm is very fast in
that it utilizes not the heavy 3D volumetric information, but only
3D geometric line parameters. Note that the computation time
required for one iteration was about 6 s in the case of Np = 50,000,
average Nj = 12, and Nc = 120×72 (in a 4.0 GHz quad core CPU).

6.2. Real data

Experiments were conducted in a real environment by imple-
menting a camera network system using two wireless IP cam-
eras (AXIS M1004-W). Camera calibration was performed before
the experiment in order to define an internal camera matrix,
and distortion parameters were used for the coordinate transfor-
mation and to obtain the undistorted image. Calibrated internal
parameters fu, fv, fskew, and (cu, cv) for the wireless IP cameras
were 930.261, 926.302, 0, and (663.912, 456.287), respectively.

Fig. 22 illustrates the real environment for the experiments
and the real image data captured from the installed wireless IP
camera network. The image dimensions are 1, 280×800. Even if
line information is relatively not much affected by illumination
changes compared to color information, 2D photometric lines in
real image data might not be extracted robustly when the line
features are obscured by high-intensity light. Namely, the image
processing illustrated in Fig. 7 cannot be performed correctly un-
der the image conditions. In this case, manual adjustment of the
thresholds in the Canny edge detector or Hough transform might
be required; furthermore, it is possible for operator instructions
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Fig. 21. Convergence process for camera state variables w = [xc yc zc ψc θc φc ]
⊤ for camera sensor network system in simulation experiment: (a) for camera w(1) , (b) for

cameraw(2) , and (c) for camera w(3) .

Fig. 22. Experimental environment with wireless IP camera network: (a) real
environment, (b) real image data from wireless IP camera w(1) , (c) real image data
fromwireless IP cameraw(2) , and (d) real image data fromwireless IP cameraw(3) .

Fig. 23. Environment model: (a) 3D texture OctoMap informationMoct , (b) learned
3D geometric line parameters l.

to be required in some cases. Fig. 23 shows the corresponding 3D
texture OctoMap information and the learned 3D geometric line
segments. The size of the entire map information is approximately
20 m × 8 m × 3 m. The OctoMap information in real experiments
has 7,446,590 nodes of which the minimum voxel size (i.e., the
cube of edge length) is 20 mm. The cameras were mounted on
the wall in the experimental environment, and these roll angles

Fig. 24. Experimental results for several stages of particle filter in real environment
for camera w(1) and w(2) (global estimation). (For interpretation of the references
to color in this figure legend, the reader is referred to theweb version of this article.)

were installed at 0 degrees for the reasonmentioned in Section 6.1.

6.2.1. Global estimation
To begin with, the particles are widely spread with no initial

condition in the same manner as the simulation in order to verify
the performance of global estimation for the camera parameters.
The stages for the calibration using real data (w(1) and w(2)) are
shown in Fig. 24. As shown in the results, the proposed calibration
method can estimate the complete 6DOF external parameters that
are close to the correct poses on the ground where virtual images
with back-projected 2D photometric lines (bold red and blue lines)
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Fig. 25. Convergence process for camera state variables w = [xc yc zc ψc θc φc ]
⊤ for wireless camera sensor network system in real experiment: (a) for camera w(1) and

(b) for cameraw(2) .

generated from estimated camera poses are almost the same as the
contour of the real images. Here, the images illustrated in Fig. 24
are alpha blended images that include both the real images and the
generated virtual images. Thus, we can initially easily recognize
large differences between the real images and generated virtual
images, but after convergence, these images are almost identically
matched with small errors. The cause for these errors can be
considered as a result of the error of the 3D OctoMap information
itself, which is the basis for the position information.

The convergence processes for the camera poses (w(1) andw(2))
in the real experiment are depicted in Fig. 25. After approximately
40 iterations, most camera poses converge similarly to the simu-
lation experiments. Fig. 26 shows the convergence of particles to
the correct camera position as a function of the resampling step.
The convergence rate is defined as the number of particles closer
than 0.3 m to the correct position divided by the number of total
particles. In the case of cameraw(2), more iterations were required
for the particles to converge on the correct pose in places where
similar scenes were observed to exist.

On the other hand, an example of global estimation failure
for camera w(3) is shown in Figs. 27(a) and 28(a). As shown in
Fig. 22(d), the image captured by cameraw(3) has a jumble ofwaste
baskets at the left side, whereas the images from cameras w(1)

and w(2) are structurally clean and stable, as shown in Fig. 22(b)
and (c). Therefore, in case of the image data captured from camera
w(3), the robust and intuitive 2D photometric line segments cannot
be extracted relatively. As a result, the particles for camera w(3)

converged into an incorrect pose and wrong camera parameters
were estimated. Furthermore, as illustrated in the alpha blended
image in the final stage of Fig. 27(a), back-projected 2D photomet-
ric lines (bold green lines) are almost same as the contours of the
real captured image from camera w(3), despite the different place.
This result proves clearly that the proposed calibration framework
still has limitation for global estimation in the case of environments
where a lot of similar line structures exist.

6.2.2. Local estimation
The discussionsmentioned above are the limitations in the case

of the global estimate only. The proposed calibration framework
makes it possible to estimate the accurate 6DOF camera param-
eters when using the roughly measured state by human eyes as
initial information (i.e., the local estimation problem) in spite
of structurally unclean environments. An experiment for camera
w(3) was conducted to verify the local estimation performance. As
shown in the first stage of Fig. 27(b), particles are initializedwithin
around 2mbased on human observation. The several stages of par-
ticle filter iterations and the convergence process for the camera
parameters are illustrated in Figs. 27(b) and28(b), respectively. The
results show that the complete 6DOF external parameters are esti-
mated very accurately in case of the local estimation problem even
if the image captured from camera w(3) is not structurally stable.
Note that the complete 6DOF parameter calibration including the
roll angle ψc , which were excluded in the global estimation, could
be carried out successfully.

Fig. 26. Particle convergence on correct camera position versus iteration of particle
filter: (a) for cameraw(1) and (b) for cameraw(2) .

Fig. 27. Experimental results for several stages of particle filter in real environment
for camera w(3): (a) global estimation and (b) local estimation. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

7. Conclusion

It has been impossible to achieve a global estimation of com-
plete 6DOF camera parameters with no strong constraints because
of myriad local minimum solutions. To overcome this difficulty,
a novel approach for an automatic and complete parameter cali-
bration system that uses 3D texture map information for camera
sensor networks was proposed in this study. The particle filter-
based approach that is an implementation of the Bayesian filter
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Fig. 28. Convergence process for camera state variables w(3)
= [x(3)c y(3)c z(3)c ψ

(3)
c θ

(3)
c φ

(3)
c ]

⊤ for wireless camera sensor network system in real experiment: (a) global
estimation and (b) local estimation.

was used to estimate the complete camera poses. The validity
of the proposed automatic calibration method was investigated
through both simulation and real experiments, and the following
conclusions were drawn:

• The proposed learning method can automatically generate
3D geometric line segments from 3D texture map infor-
mation by applying point cloud processing and RANSAC
algorithm. The generated 3D geometric line segments can
be used to represent the entire environment in a small
number of parameters for a fast matching process, whereas
the heavy 3D volumetric map information cannot manage
this problem.

• The QLH descriptor with EMD-based novel similarity com-
parison criteria can serve as an efficient signature for vision-
based automatic calibration systems. Using the proposed
criteria, the complete external parameters of the camera
network system can be estimated automatically.

• By applying the particle filter-based approach, global es-
timation without initial conditions can be performed for
a large indoor environment, whereas the 2D–3D matching
schemes introduced in Section 1 can only be applied to the
local estimation problem which needs initial registration
close to a correct pose. In addition, the map information
that contains occupied areas can be incorporated into the
prior distribution over the camera states and be considered
as strong constraints.

• The proposed QLH descriptor-based matching scheme still
has limitations for global estimation when the captured
camera image is not structurally stable and where the en-
vironments have a lot of similar line structures since these
environments are virtually indistinguishable using the QLH
descriptor alone. Local estimation was, however, performed
successfully with small errors in most cases. This shows
that the proposed calibration framework produces reliable
performance in case of the local estimation, even when
compared to the previous 2D–3D matching schemes.

Finally, the future works related to this paper are as follows:

• We will take more robust descriptors (e.g., additional con-
sideration of lengths of 2D line segments) into consideration
owing to following reasons. First, we have to overcome
the limitations in global estimation because the current
approach struggles to distinguish the environments with
similar line configurations. Second, the precision of the 3D
OctoMap information should also be considered given that
the accuracy of the calibration results depends on it.

• As of now, heuristic calibration of parameters is sometimes
applied in the extraction of both 3Dgeometric (e.g., choosing
the number of neighbors in the clustering) and 2D photo-
metric lines (e.g., Canny edge detection and Hough trans-
form). In the case of the 3D geometric lines, it is necessary

to simplify the parameterization task by exploiting a more
compact data structure (e.g., a set of 2D planes) for the 3D
environmentmodel, instead of an Octree structure. The task
for 2D line extraction should also be improved to address
the environmental conditions.

• As the number of particles increases, the result is a linear
increase in the computational load as shown in Eq. (48).
In other words, a factor that has the greatest effect on the
computational load is the size of the environment that influ-
ences the required number of particles. Thus, an improved
optimization method that can manage a large environment
should be considered.
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