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We propose a method for stabilizing spherical videos
by estimating and removing the effect of camera rota-
tion using dense optical flow fields. By derotating each
frame in the video to the orientation of its previous
frame in two dense approaches, we estimate the com-
plete 3 DoF rotation of the camera and remove it to
stabilize the spherical video. Following this, any cho-
sen area on the spherical video (equivalent of a nor-
mal camera’s field of view) is unwarped to result in a
‘rotation-less virtual camera’ that can be oriented in-
dependent of the camera motion. This can help in per-
ception of the environment and camera motion much
better. In order to achieve this, we use dense optical
flow, which can provide important information about
camera motion in a static environment and can have
several advantages over sparse feature-point based ap-
proaches. The spatial regularization property of dense
optical flow provides more stable motion information
as compared to tracking sparse points and negates the
effect of feature point outliers. We show superior re-
sults as compared to using sparse feature points alone.

Keywords: video stabilization, spherical videos, dense
optical flow

1. Introduction

Spherical cameras that can view all directions in space
in real-time (such as the Ricoh Theta) have become pop-
ular these days. They are often used to provide an im-
mersive view of the entire surrounding environment. Due
to these advantages, they have also found use in robotics.
Remotely operated robots equipped with spherical cam-
eras can be used for visual surveying in situations dan-
gerous for humans. Often, robots such as drones have
unstable motion and looking at the spherical videos di-
rectly can lead to user disorientation. It is especially dif-
ficult for the viewer to concentrate on the survey. In such
cases, stabilizing the video by estimating the camera ro-
tation could help immensely. Since most of the instability
and disorientation in a video is due to camera rotation, it is
enough to nullify it and create a ‘rotation-less virtual cam-
era.’ Previously, [1] and [2] talked about the development

Fig. 1. Spherical images contain information from all direc-
tions and can be unwarped at any point to give a perspective
view. Thus, they can provide an immersive view of the sur-
roundings.

of such a rotation-less camera which can be oriented at
will independent of the robot’s motion. They experimen-
tally concluded that it could be immensely useful in visual
surveying and serve to reduce confusion.

A major advantage of spherical cameras is that since
they contain information from all directions, any area on
the image can be unwrapped to give the perspective view
in that particular direction, as shown in Fig. 1. Moreover,
they can also be rotated to any orientation without loss of
information. Thus, in this research, we attempt to estimate
the rotation of a spherical camera video in order to stabi-
lize it and create such a virtual, rotation-less camera. This
is doubly effective as most image-based motion estima-
tion algorithms are more effective using spherical images.
We make use of the dense optical flow field information
to achieve this.

Tracking the motion of a camera through im-
ages/videos has been addressed since long. The basic con-
cept is to track the flow of a number of pixels and back-
calculate the camera motion using the camera geometry.
Tracking sparse feature points can be done by a plethora
of feature descriptors like SIFT [3] that can match points
across multiple images. However, this matching of sparse
points can result in outliers that often cannot be filtered
out easily, even by techniques such as RANSAC [4].
These can make motion estimation unstable and affect the
accuracy of the result. Traditionally, most work on camera
motion estimation uses sparse feature points. In contrast,
dense optical flow algorithms attempt to provide the com-
plete motion information of all pixels in the image and are
particularly effective in case of videos with small frame-
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to-frame motions. Since this is an ill-constrained prob-
lem, it is often achieved through various forms of spatial
regularization and smoothing. This regularization leads
to smooth pixel motion estimates that may differ slightly
from the true value, but are free of drastic outliers, un-
like sparse feature points. In this work, we focus on the
use of dense optical flow for our rotation estimation and
stabilization.

We continuously estimate camera motion and derotate
each frame to the orientation of its previous frame in a
dense minimization of the optical flow to convert it to
a pure translational motion, thus creating a rotation-less
camera. Two types of minimizations based on frame-to-
frame motion properties are introduced. One is a 3 DoF
approach using only the rotation, and the other is a frame-
to-frame 5 DoF full epipolar minimization, both based on
dense optical flow. The estimation is superior as com-
pared to using only feature points. We use the inexpen-
sive Ricoh Theta S camera for this research which out-
puts spherical images directly in an equirectangular for-
mat. The properties of the spherical camera are exploited
for a two-fold advantage: the information contained in
all directions is used effectively in a dense minimization,
and it is also used to provide information for the virtual,
rotation-less camera.

Next, in Section 2, we talk about other related work
in this area. Following that, we explain spherical image
epipolar geometry and optical flow patterns in Section 3.
In Section 4, we explain our proposed estimation methods
followed by an explanation of how to create the virtual,
rotation-less view in Section 5 along with selected frames
showing its working. In Section 6, we show experimental
evaluation of our proposed approaches with a motion cap-
ture system. Finally, we conclude the paper in Section 7.

2. Related Work

Most work with regards to creating a stable, rotation-
less camera makes use of additional sensors to estimate
the rotation of a camera. For example, [5, 6] make use
of inertial measurement units (IMUs) to estimate and cor-
rect the rotation. However, such units often have large
drift and it is well known that image-based approaches
give lesser errors. Moreover, it is always difficult to syn-
chronize the capture of information when using multiple
sensors. Such methods cannot be universally applied to all
systems without addition/change of hardware. Since our
purpose is to process videos, it would be more suitable
to use image information alone. Similar to our approach,
[7] and [8] used spherical cameras along with expensive
depth sensors for mapping textures to high quality point
clouds to provide an immersive view. While these systems
generate high quality 3D outputs, they are quite cumber-
some to design and calibrate, apart from the cost of the
equipment and the power requirements. In most cases, a
simple visual feed would suffice.

There are also methods which involve a full structure
from motion estimate [9, 10]. They use the estimated

camera trajectory to fully stabilize the video feed in 3D.
However, they can be considerably heavy in terms of the
performance and very heavy on the memory as they al-
ways involve a global bundle adjustment step. Although
they are globally consistent and accurate, such heavy
methods are not usually required for stabilization pur-
poses and neither are they feasible in scenarios where the
robot moves across vast distances. Frame-by-frame ap-
proaches that track camera motion are usually sufficient
for stabilization and do not involve intensive steps like the
creation, handling, and storage of a 3D map of the envi-
ronment. Such methods not involving 3D reconstructions
are also available [11, 12], but they are based on sparse
feature tracking and can easily be affected by the presence
of many outliers. Limiting the estimation to use informa-
tion contained in a few sparse points makes it susceptible
to noise and lowers accuracy. Meanwhile, area-based ap-
proaches that work on optimizing a dense error function
all over the image are quite precise for such estimates and
very well suited for spherical images as they cover a very
wide view. They are also stable because they make use
of information present in every pixel of the image, thus
removing outliers or reducing their effects. Considering
these advantages, [13] introduced the use of the spheri-
cal Fourier transform to estimate rotations between two
spherical images. However, their method fails to account
for the effects of translation.

To characterize pixel motion, dense optical flow be-
comes the logical choice of information. Dense opti-
cal flow methods like [14] are very popular for perspec-
tive video stabilization. Hence, we attempt the same on
spherical videos. Earlier, [15] made use of dense opti-
cal flow to estimate precisely the epipolar geometry of
perspective images. They explained how the smooth-
ing/regularization property of global dense optical flow
methods helps in removing any local outliers and reducing
their effects. In case of regularization/smoothing, outliers
are reduced to Gaussian noise. Previously, [16] discussed
the types of flow patterns formed on a spherical camera
under pure rotation and translation. They explained how
a spherical image frame in a video can be derotated to the
same orientation as the frame before it based on optical
flow in order to separate the translational and rotational
components, which can give us the motion parameters of
the camera. Thus, they followed a pattern recognition-
like approach with multiple searches for the motion along
3 separate axes. This could be slow in practice and their
work was left in a theoretical state. A similar approach
was also followed in [17] for motion estimation, but us-
ing sparse flows. Meanwhile, [18] also followed a similar
technique for stabilizing the roll and pitch motions of a
mobile robot. However, their motion model was designed
for ground robots moving in a plane.

In contrast to the above, our proposal is to use the entire
dense optical flow information at every pixel of the image
in order to estimate the rotation and stabilize the camera,
without any assumption about the type of motion. Fol-
lowing this, the spherical video can be unwarped at an
point to generate a rotation-less virtual camera. As we
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show, this usage of dense information results in a smooth
stabilization with less errors as compared to sparse fea-
ture point information. We proposed a similar approach
in an earlier paper [19] that estimated only the rotation in
3 DoF using a simple approach. In this paper, we explain
it in detail and propose an extension to make it more ac-
curate by including the full 5 DoF epipolar estimate using
a different error function. We also evaluate the perfor-
mance of both methods and compare them to estimation
using sparse feature information alone to show the benefit
of using dense information.

3. Spherical Epipolar Geometry and Optical
Flow

In order to understand optical flow patterns on spher-
ical images, an explanation of spherical image geometry
is necessary. As the name suggests, spherical images are
formed on a sphere, rather than a plane. Assuming a cal-
ibrated camera, every pixel �x with Cartesian coordinates
(X ,Y,Z) forms a unit radius vector on the spherical image
S. The center of the spherical image S is set as the origin.
(Since it is difficult to show spherical images, we show
all images in the equirectangular format.) As explained
in [20], pixels on the spherical camera under motion also
follow the same mathematical constraints under motion as
any central projective camera. Hence, we can define:

x′T Ex = 0 . . . . . . . . . . . . . . (1)

where E is the essential matrix between the two images
and x and x′ are the corresponding points of the same 3D
environmental point projected on the two images, writ-
ten with Cartesian coordinates in a column matrix form
as
[
X Y Z

]�. It can be estimated using a regular 8-point
RANSAC algorithm [21] and decomposed to give the ro-
tation matrix and translation vector. Thus, the frame-to-
frame motion of the camera can be completely defined
in 5 DoF: 3 for the rotation, and 2 for the direction of
translation. The frame-to-frame translation only requires
2 degrees of freedom as it has no magnitude defined. This
is because cameras lose all information about distance. A
relative global scale can be defined to obtain the camera
trajectory, but is not necessary for our purpose of stabi-
lization. In this research, we are only interested in finding
the 3 DoF camera rotation to stabilize the video.

As for the physical interpretation of point movement
on the unit sphere, [16] described how the image points
move for the camera undergoing pure translation and pure
rotation. These patterns are shown in Fig. 2. It can
be seen that for pure translational movement, all points
move on the unit sphere move along circles joining the
two epipoles �q and �q′. These are known as the epipolar
circles, analogous to epipolar lines in planar images and
they describe the path of pixels on the image for the cam-
era undergoing translation. Meanwhile for pure rotation,
the points move in circular loops around the axis of rota-
tion.

X

Z

Y

(a) Translation (spherical)

X

Z

Y

(b) Rotation (spherical)

Fig. 2. Movement of pixels on the unit sphere for (a) pure
translation (b) pure rotation. The arrows indicate the direc-
tions of translation and rotation, respectively.

In order to confirm these patterns, we calculated the
optical flow on real situations of pure translation and ro-
tation using the Farneback algorithm [22]. Images were
captured with a spherical camera (Ricoh Theta S) under
pure rotation and pure translation using a graded camera
stand. The flow vectors induced by the images were cal-
culated in the equirectangular projection1 and projected
on the unit sphere. The resultant flow vectors are seen in
Fig. 3. The similarity with the patterns in Fig. 2 can be
clearly noticed.

It is obvious that the frame-to-frame arbitrary motion
of the camera can be represented as a combination of ro-
tation and translation. Thus, it follows that if we find the
rotation between two spherical images and derotate one
image to the same orientation as the other, the flow pat-
tern between them will be purely translational in nature,
as shown in Figs. 2(a) and 3(a). This removal of rotation
is possible in spherical images because they encode infor-
mation from all directions, as opposed to planar images.

Our proposed algorithm relies on this concept of dero-
tation in order to find the rotation of the camera and sta-
bilize it. We propose two dense approaches for this. One
of them involves only the 3 DoF frame-to-frame rotation
parameters and ignores translation using a unique symme-
try property of fully spherical vision. The other involves
the entire 5 DoF frame-to-frame epipolar estimate and is
slower, but more accurate than the former. In the end,
we are only interested in the 3 DoF rotation estimate for
stabilization. To the best of our knowledge, no similar ap-
proach involving use of dense flow information has been
proposed for spherical image rotation estimation. One
work that came close, but used feature points for recti-
fication was explained in [23]. Our proposed approach
delivers a more accurate result as compared to using only
sparse feature points, as shown later via experiments.

1. In order to view spherical images in their entirety, they are displayed
in the equirectangular format. All the processing mentioned in this re-
search, however, is done on a spherical space.
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(a) Translation (spherical) (b) Rotation (spherical)

(c) Translation (equirectangular projection). The two
circular points indicate the epipoles. Optical flows are
aligned along the epipolar circles.

(d) Rotation (equirectangular projection) The axis of rota-
tion is in the vertical direction.

Fig. 3. Estimated motion fields on the spherical image for
translation and rotation in both spherical and equirectangular
projections. Patterns similar to Fig. 2 above can be noticed.
(Note: the flow was calculated densely, but for visualization,
it been shown sparsely.)

4. Rotation Estimation by Derotation

With no assumptions about the camera trajectory, we
track the frame-by-frame camera rotation and stabilize the
video to generate a rotation-less output. It is obvious that
any movement of the camera between two frames involves
a rotation and translation. If we perfectly estimate the ro-
tation of the current frame from the previous frame and
reverse it, we should end up with a purely translational
alignment. Thus, if we define dense measures of similar-
ity to a translational state, we should be able to optimize
the rotation of one image frame with respect to the previ-
ous one and remove it. We propose using the dense opti-
cal flow pattern to define this similarity measure using two
different approaches – a simple one based on the moment
of optical flow vectors that can ignore the effect of trans-
lation, and another based on the full epipolar constraint
including the direction of translation. The basic idea is to

Rotation Parameters

lation 
eter

Rotation Flow

nslation Flow

Total Flow

Fig. 4. Motion model and notations. All translation parame-
ters are represented by epipole �q(θ ,φ ). All rotation parame-
ters are represented by the <X-Y -Z> Euler angles α , β , and
γ. �ftrans is the component of optical flow caused by trans-
lation while �frot is the component due to rotation. The total
optical flow vector �f is �ftrans +�frot .

formulate a minimization algorithm in order to bring the
dense optical flow pattern to that of a translational pattern
in Figs. 2(a) and 3(a) in order to estimate the rotation.
First, we will explain the mathematical notations and the
motion model we follow on the unit sphere.

4.1. Notation and Motion Model
We define rotation using the Euler angles α , β , and γ in

the X-Y -Z axes notation. The main reason for using Euler
angles is to ensure a small search space. Typically, the
frame-to-frame rotations are small. Hence, all parameters
will remain close to zero. Every pixel is denoted as its
radius unit vector �x in Cartesian coordinates. As for the
translation parameters, we indicate it by the one of the
epipoles �q (the point opposite to direction of motion of
the sphere). Since �q has to lie on the surface of a sphere,
it is defined in terms of the spherical coordinates θ and φ
only for the minimizations. This implicitly enforces the
spherical condition and ensures that all parameters take
the form of angles. Thus, (α,β ,γ,θ ,φ) uniquely define
the 5 DoF motion between two spherical images.

The optical flow vector at�x is written as �f , relative to�x.
�ftrans is defined as the translational component of optical
flow, which is tangential to the epipolar circle connecting
�x and the epipole �q. �frot is the component caused by ro-
tation, tangential to the circle passing through �x, whose
plane is perpendicular to the axis of rotation. All parame-
ters and notations can be seen in Fig. 4.

4.2. Derotation by Minimization
We describe two different approaches to estimate the

rotation by minimizing the deviation from a pure transla-
tional state. The first is a simpler function that estimates
rotation by ignoring translation, using a unique property
of complete spherical imaging.
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Magnitude 
Normalization

Before normalization: 
Unsymmetric, depth dependent

optical flow vectors 

After normalization: 
Symmetric, depth independent 

optical flow vectors 

Fig. 5. Diametrically opposite points on the sphere in-
duce moments in opposing directions for pure translation.
Normalizing the magnitudes of optical flow vectors removes
depth dependency from the pairs of points and makes it, and
by extension the entire optical flow field, completely sym-
metric about the center.

4.2.1. 3 DoF Directional Moment Approach
In a pure translational movement, all image points

move along epipolar circles joining the two epipoles. Ev-
ery pixel formed from a 3D point in the environment has
a diametrically opposite point moving in the same direc-
tion, as seen in Fig. 5. These diametrically opposite pairs
of points induce moments around the center of the sphere
in opposite directions. Thus, a directionally symmetric
optical flow pattern is formed, as seen in Figs. 2(a) and
3(a). The magnitude of the optical flow vector at each
pixel depends on its distance from the camera. However,
our objective is not to find this depth, but only the motion
of the camera. Hence, to remove the depth dependence,
we divide all optical flow vectors by their magnitude, (or,
in other words, discard the magnitude of the vector and
retain the direction of the vector). Then, every diametri-
cally opposite pair, and by consequence, the entire pattern
becomes completely symmetric. An example of this is
shown in Fig. 5. The camera is moving upwards and two
points p1 and p2 are at diametrically opposite, different
distances from the center. It can be seen that the opti-
cal flow induced by p1 is less than that of p2. However,
dividing each by its magnitude preserves the direction in-
formation and induces symmetry in both. The same can
be said of all diametrically opposite point pairs.

In this state, independent of the translation direction,
it can be said that the ‘directional moment’ of the opti-
cal flow vectors around the center of the camera should
be zero. We exploit this property of the fully spherical
optical flow field to find its rotation. Thus, we define the
following quantity, known as the ‘directional moment’ of
the optical flow field:

�M = ∑
∀�x∈S

(
�x×

�f

|�f |

)
. . . . . . . . . . (2)

This quantity can be calculated entirely from the state
of the optical flow at a frame. If we rotate one of the im-
ages by some angles α , β , and γ , we may reach a point at
which this quantity reaches zero. In this state, the frame
can be said to have no rotation with the previous frame.
With this in mind, we define a minimization of the direc-
tional moment of optical flow with respect to the rotation
angles α , β , and γ in order to estimate them:

minimize
α,β ,γ

|�M| = minimize
α,β ,γ

∣∣∣∣∣ ∑∀�x∈S

(
�x×

�f

|�f |

)∣∣∣∣∣ . . (3)

Any deviation from the zero moment means that a ro-
tational flow is induced on the spherical image. Thus, the
directional moment �M can be used as a measure of ‘devi-
ation’ from the translational state. It can be calculated as
follows:

• ‘De-rotate’ the frame with Euler angles α , β , and γ
along the x-y-z Euler axes.

• Calculate the optical flow vector �f at every point �x
with respect to the previous frame.

• Normalize the value of each flow vector �f as
�f
|�f | .

• The total error is computed as the magnitude of the
directional moment �M (Eq. (2)).

The directional moment can be calculated using only
the 3 rotation angles and is thus in 3 DoF. The error or
the measure of deviation from a translational state can be
estimated without involving the translation by using the
unique property that the field of view is completely spher-
ical and hence directionally symmetric in a purely transla-
tional state. This symmetry is not possible for a perspec-
tive camera which has information only from a narrow
field of view and thus, this approach is unique to a spher-
ical camera. It gives suitably good performance in indoor
areas with rich textures. Due to the requirements of sym-
metry, the inclusion of the robot body inside the image
induces problems. This can easily be rectified by simply
excluding the part of the image where it appears as well as
the diametrically opposite region. However, the assump-
tion of good estimation of optical flow direction from all
around the camera may lead to sub-optimal solutions and
increase drift in case of environmental regions with many
missing textures where the optical flow direction is am-
biguous. Although this can usually taken care of to an
extent due to the regularization property of optical flow,
we introduce our next error function, based on the full
frame-to-frame epipolar constraint rather than symmetry
conditions. We expect it to be slightly more accurate in
comparison to this error function.

4.2.2. 5 DoF Direct Epipolar Approach

Normally, frame-to-frame camera motion is expressed
in 5 DoF. 3 for rotation, and 2 for translation direction.
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However, in the previous subsection, the proposed min-
imization assumed a symmetry condition in the transla-
tional flow field and thus was able to restrict the esti-
mation to the 3 DoF rotation, independent of the trans-
lation direction. It could lead to a sub-optimal solution
in cases where the optical flow direction cannot be deter-
mined properly in every direction. Now, we propose an-
other minimization – one based directly on the full 5 DoF
frame-to-frame epipolar constraint. Instead of assuming
a symmetric flow with an unknown translation direction,
we include the translation direction in the optimization
and try to align all optical flow vectors in accordance to
it. It is an approach similar to non-linear epipolar esti-
mation algorithms, but one that takes advantage of dense
information and regularization imposed by dense optical
flow algorithms, as explained in [15].

In the same manner as above, we define an error func-
tion to indicate deviation from a translational state of mo-
tion, this time based on the full epipolar constraint. A
pure translational state requires that all the flow vectors
(pixel movements) are pointing away from the direction
of translation. In other words, they should be pointing to-
wards epipole�q, as shown in Figs. 2(a) and 3(a). At every
point�x, optical flow vector (pixel movement) should point
towards the epipole�q, tangential to its respective epipolar
circle which joins �x to �q. Any deviation will cause this
arrangement to be disturbed. As suggested in [24] which
used an angular error for the epipolar constraint (using
sparse feature points), we also use a similar error for op-
tical flow.

Thus, our error function is defined over the rotation an-
gles α , β , and γ , and the translation direction, which is
opposite to epipole�q(θ ,φ). Assuming perfect estimation
of all parameters, each point�x on the sphere should have
its current optical flow vector �f tangential to its epipolar
circle, i.e., the circle connecting �x to �q(θ ,φ). In other
words, �frot = 0 and �f = �ftrans. Therefore, we can define
the difference between �f and �ftrans as the error at point
�x. �ftrans depends on the 3D structure of the environment.
However, its direction can be estimated from the property
that it is aligned tangential to the epipolar circle connect-
ing�x to �q (θ , φ ). Thus, we consider the angle between �f
and �ftrans as the error at point x denoted by Ω. Ω can be
calculated as follows (as shown in Fig. 6):

We find the epipolar circle Cq (as shown in Fig. 6) as
defined by its normal vector �Nq:

�Nq =�q×�x. . . . . . . . . . . . . . (4)

Similarly, we can find another circle Cf (as shown in
Fig. 6) to which �f is tangential, by its normal vector �Nf :

�Nf = (�x+�f )×�x. . . . . . . . . . . . (5)

Now, the angle Ω, which forms the error at pixel �x is

Fig. 6. Calculating the error at�x. To find angle Ω, we take
the cross products (�x+�f )×�x and�q×�x in order to define the
circles along �ftrans and �f and find the angle between them.

equal to the angle between �Nq and �Nf :

Ω = arccos
(

�Nq · �Nf

|�Nq||�Nf |

)
. . . . . . . . . (6)

= arccos
(

(�q×�x) ·((�x+ �f )×�x
)

|(�q×�x)||((�x+ �f )×�x
)|
)

. . . (7)

where �f is calculated on derotating the image with the
rotation parameters (α,β ,γ), and �q, the epipole, is the
Cartesian coordinate transform of (θ ,φ). The total devia-
tion from a translational state is defined as a least squares
error of Ω over all pixels�x on the spherical image.

To summarize the error formulation in each iteration
for the 5 DoF parameters (α,β ,γ,θ ,φ):

• ‘De-rotate’ the image with Euler angles α , β , and γ
along the x-y-z Euler axes.

• Calculate the optical flow vector �f at every point �x
with respect to the previous frame.

• According to the current estimate of epipole�q(θ ,φ),
calculate for all�x the angle between �ftrans and �f .

• The error at point�x is this angle, Ω (calculated from
normal vectors �Nf and �Nq).

The final optimization is posed as follows:

minimize
(α,β ,γ ,θ ,φ)

∑
∀�x∈S

Ω2. . . . . . . . . . . . (8)

4.3. Minimization
Both approaches use different error functions to bring

the frame-to-frame camera motion to a translational state.
The directional moment approach is defined over the rota-
tion angles α , β , and γ , and the direct epipolar approach
is defined over those as well as the translation direction
�q(θ ,φ). We employ the Levenberg-Marqardt [25] ap-
proach to solve the minimization problem for both ap-
proaches. Since it is difficult to define a discrete coordi-
nate space on a sphere, we sum the error over all pixels of
the equirectangular images, normalizing for the distortion
induced on it in the same manner as [26].
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(a) Before optimization: translational + rotational flow

(b) After optimization: only translational flow, aligned
along epipolar circles.

(c) After optimization: subtracting the translational flow
from (a) gives us the rotational flow.

Fig. 7. Spherical flow field (a) before optimization: trans-
lation + rotation. (b) After optimization: translation flow
aligned along epipolar circles (the circles are distorted be-
cause they are shown in the equirectangular projection). The
estimate of�q is shown as the circular dot on the right side. (c)
After optimization: (a)–(b) rotational flow (similar to Fig. 3).

For each consecutive pair of frames, both approaches
output the rotation angles α , β , and γ for which the op-
tical flow vectors appear to be purely translational, us-
ing either the symmetry property (directional moment ap-
proach) or with a full epipolar minimization (direct epipo-
lar approach). Fig. 7 shows an example of this minimiza-
tion in one frame. Before optimization, the optical flow
field is a mix of rotation and translation and the optical
flow vectors are unaligned. After optimization, all the
vectors are aligned along the epipolar circles. Moreover,
subtracting the final optical field from the initial field re-
veals a rotation like-optical flow pattern, confirming that
there was convergence. The result for this image was
computed using the direct epipolar approach to show the
epipole location. The computation using the directional
moment error is not shown because there was no visually
noticeable difference.

Since the direct epipolar approach involves a compli-
cated non-linear least squares error, it is important to con-

Rotation Error (deg.) 

Translation Error (deg.) 

Minima

D
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r 
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Fig. 8. Direct epipolar error against translation (epipole)
and rotation errors.

firm that is is suitable for such a minimization. In order
to do this, we decided to plot the error function Ω over
a range of values of rotation and translation. The trans-
lation vector and rotation angles were each varied along
arbitrary axes in space. The same pair of images (same as
the ones used in Fig. 7) were used for this computation.
Fig. 8 shows the value of the least squares direct epipolar
error Ω plotted with respect to the translation and rota-
tion errors on these images. It can be seen that the convex
shape of this function with a single minimum is suitable
for a minimization.

Thus, two different approaches can be used for rota-
tion estimation. Both are used to track the rotation in
a frame-by-frame manner. The directional moment ap-
proach is a little less accurate in case of many texture-
less regions where optical flow direction cannot be suit-
ably determined. To a large extent, textureless regions are
taken care of by most dense optical flow approaches that
employ any sort of spatial regularization. It is a 3 DoF op-
timization which is faster than calculating the full epipolar
geometry and is enough for stabilization. Meanwhile, the
direct epipolar error is based on all 5 DoF of the epipolar
geometry. It does not make use of the symmetry condi-
tion and instead involves the epipolar direction in the op-
timization, directly optimizing the dense pixel movements
along epipolar lines. However, being a 5 DoF optimiza-
tion, it is slower than the directional moment error.

4.4. Reprojection of Optical Flow
Both proposed approaches involve derotation based

minimization. The error function or deviation from a
translational state can only be evaluated after derotating
the frame with estimates of α , β , and γ and checking the
optical flow state of the image each time. Although it
would be more accurate to re-estimate optical flow vectors
in each iteration, it could make the algorithm quite heavy.
Instead, within a reasonable limit, the optical flow vec-
tors can simply be reprojected based on the initial state.
The resulting flow will be close enough to the estimated
optical flow at that state. Given the initial optical flow
vector �fi at�x, our objective is to calculate the optical flow
vector �f at any estimate of the rotation angles α,β ,γ . �x
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lies on one frame (the one that is rotated) and�x +�fi is its
corresponding point on the next frame (that remains un-
changed). Thus, we rotate �x with the rotation matrix R
(composed as Rx(α)Ry(β )Rz(γ)) as shown in Eq. (9):

�xr = Rx(α)Ry(β )Rz(γ)×�x. . . . . . . . (9)

Following this, the optical flow vector can be calculated
by subtracting the new point �xr from�x+�fi:

�f = (�x+�fi)−�xr. . . . . . . . . . . . (10)

4.5. Initial Estimate
4.5.1. Directional Moment Approach

In the directional moment error approach, the parame-
ter vector consists only of the rotation angles α , β , and γ .
Since we follow a frame-by-frame approach, the rotations
from one frame to another are typically small (less than
10◦ in total, as noticed). Hence, for each frame, the initial
value can be simply set to zero.

4.5.2. Direct Epipolar Approach
The direct epipolar error is a non-linear least squares

problem and hence requires a good initial value for the
epipole �q(φ ,θ) in addition to the rotation angles α , β ,
and γ . It is difficult to find a suitable initial value for the
translation as it can be in any arbitrary direction in space.
Thus, for this approach, we used an initial estimate from
sparse feature points and refined it with the direct epipolar
error.

4.6. 8-Point Approach and Refinement
Using an initial value of zero rotation is applicable only

when optical flow can be easily computed from frame to
frame. In case of rapid camera movement, the orientations
of consecutive frames can significantly change, making
optical flow computation infeasible. Moreover, the direct
epipolar approach requires an initial value of the transla-
tion as well. In such cases, sparse feature point matching
with the 8-point algorithm [21] must be used to provide a
suitable starting point. It is essentially a linear solution of
the epipolar constraint equation:

x′T Ex = 0 . . . . . . . . . . . . . . (11)

where E is the essential matrix between the two images
and x and x′ are the corresponding points in the two im-
ages written in column matrix form as

[
X Y Z

]�. In our
approach, we use A-KAZE features [27] to do find an ini-
tial point matching as it is particularly suitable for highly
distorted equirectangular frames. RANSAC [4] is used to
eliminate outliers, and a linear fit of all the inliers is cho-
sen as an estimate for E. Following this, E is decomposed
into the rotation matrix and translation vector via Singu-
lar Value Decomposition (SVD). The estimated rotation
matrix is converted to the three <X-Y -Z> Euler angles
α , β , and γ and the translation vector is normalized for
magnitude and converted to spherical coordinates θ and
φ . Following this, our proposed derotation based mini-
mization is used to refine the estimate.

Fig. 9. Pipeline for creation of a virtual rotation-less camera.

5. Video Stabilization and Virtual Rotation-
Less Viewpoint

Using the proposed motion estimation, we can dero-
tate each frame in a spherical video to finally end up with
a stabilized, rotation-less video. Following this, any re-
gion on the spherical video can be unwarped to a perspec-
tive view. This forms the virtual rotation-less camera, as
shown in Fig. 9.

In order to demonstrate this, videos were recorded by
moving the spherical camera in various ways – by placing
it on an AR Drone 2.0, a Pioneer P3-DX robot, and then
by hand. The resultant videos were stabilized using both
approaches. Since there was not much visual difference in
the results from both approaches, we decided to show the
more accurate of the two – the direct epipolar approach.
The unwarped perspective view, which can be oriented as
desired, forms the virtual rotation-less camera.

As for the results, series of 3 frames from each resul-
tant video2 are shown in Figs. 10, 11, 12, and 13 in order
to demonstrate the effect of stabilization. In each case,
the unstabilized frames (equirectangular and perspective)
are shown next to the stabilized ones. The perspective sta-
bilized frames form the output of the virtual rotation-less
camera. It can be seen that the motion in the unstabi-
lized frames is haywire and it is difficult to concentrate
on the image. Whereas, in the stabilized case, the ori-
entation remains the same making the the environment
and camera displacement more easily perceptible. This
orientation can be changed as desired while viewing the
video. This is a unique way to view a spherical video
and has applications in robotics for surveying, inspection,
etc. as well as leisure and entertainment using spherical
cameras. Next, we evaluate the performance of both ap-
proaches and compare them to a similar estimation done
using sparse feature points.

2. A link for all the videos is given at the end of the paper [a].
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Unstabilized equirectangular Unstabilized perspec-
tive

Virtual rotation-less
(stabilized perspective)

Stabilized equirectangular

Fig. 10. Frames 30, 68, and 80 (top to bottom) from the AR Drone 2.0 sequence: equirectangular view and perspective undistorted
front, regular and stabilized. The fixed orientation in the virtual rotation-less camera can be noticed.

Unstabilized equirectangular Unstabilized perspec-
tive

Virtual rotation-less
(stabilized perspective)

Stabilized equirectangular

Fig. 11. Frames 100, 105, and 110 (top to bottom) from the Pioneer robot sequence: equirectangular view and perspective
undistorted front, regular and stabilized. The fixed orientation in the virtual rotation-less camera can be noticed.
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Unstabilized equirectangular Unstabilized perspec-
tive

Virtual rotation-less
(stabilized perspective)

Stabilized equirectangular

Fig. 12. Frames 1, 30, and 45 (top to bottom) recorded by moving the spherical camera by hand: equirectangular view and
perspective undistorted front, regular and stabilized. The fixed orientation in the virtual rotation-less camera can be noticed.

Unstabilized equirectangular Unstabilized perspec-
tive

Virtual rotation-less
(stabilized perspective)

Stabilized equirectangular

Fig. 13. Frames 1, 50, and 80 (top to bottom) recorded by moving the spherical camera by hand: equirectangular view and
perspective undistorted front, regular and stabilized. The fixed orientation in the virtual rotation-less camera can be noticed.
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Fig. 14. Experimental setup: AR Drone with MoCap mark-
ers and the mounted Ricoh Theta S spherical camera.

Fig. 15. One frame from the evaluation experiment.

6. Evaluation

6.1. Experimental Setup

The previous section explained and demonstrated the
generation of a virtual rotation-less view. In this sec-
tion, we evaluate and quantify the performance of both
approaches described and compare them to estimation us-
ing sparse feature information alone.

A millimeter precise motion capture system was used
in order to record groundtruth rotation information to test
the accuracy of the algorithm to estimate the motion. An
AR Drone 2.0 was fitted with the Ricoh Theta S cam-
era and several optical markers. It was flown in a room
equipped with a Cortex MotionAnalysis setup. A video
was recorded at 30 frames per second. The roll, pitch,
and yaw motions were calculated with respect to the ori-
entation in the first frame and taken to be the groundtruth.
Since the motion capture system had a recording rate of
100 frames per second, the rotation values obtained were
interpolated and converted to a 30 FPS rate in order to
match it with the recording rate of the camera. The start of
the movement in both the motion capture system and the
recorded video were synchronized manually. The setup is
shown in Fig. 14. One example frame from the evaluation
experiment is shown in Fig. 15. Around 500 such frames
were captured and processed.

The drone underwent complex motions of yaw (com-
plete 360◦), roll (from −25◦ to +15◦), and pitch (from
−15◦ to +15◦). The rotation angles were calculated from
the video in three ways and compared to the groundtruth:

using only sparse feature points with 8-pt RANSAC [21]
(pts), and using our proposed dense approaches – the di-
rectional moment approach (Moment), and using an ini-
tial value from sparse feature points (pts) and refinement
with the direct epipolar approach (pts + Epipolar). As
the directional moment error did not require any initial
value, it was tested standalone to see its performance in
relation to using sparse information. The recently de-
veloped A-KAZE features [27] were chosen to provide
the sparse point information. A-KAZE provides several
times greater performance as compared to any other de-
scriptor on spherical images. These points were filtered
in a 8-point RANSAC approach resulting in the best pos-
sible output of sparse information to be compared with.
The Farneback optical flow [22] was used to estimate
a smooth, dense flow field for all the results given in
this paper. The reason for this choice was because it is
an easy and fast approach and the amount of smooth-
ing/regularization can be explicitly controlled by chang-
ing the regularization window.

6.2. Results
The absolute errors with each approach are shown in

Fig. 16 and the averages of all absolute errors are shown
in Table 1. The results show that the dense optical flow
based methods (‘Moment’ and ‘pts + Epipolar’) are more
accurate as compared to using sparse feature points (‘pts’)
alone. As expected, the direct epipolar approach (‘pts +
Epipolar’) is a bit more accurate as compared to the di-
rectional moment approach (‘Moment’) which assumes
accurate estimation of optical flow direction from all pix-
els. These results demonstrate the superiority of using
dense information from all pixels as opposed to informa-
tion only from specific feature points. Two issues which
arise while using sparse feature information – outlier er-
rors and information bias are both solved when using the
dense optical flow field. The processing time is a bit slow
– around 1 second per frame for the directional moment
error (‘Moment’) and around 5 seconds per frame for the
direct epipolar error (‘pts + Epipolar’) on a 2.8 GHz CPU
without any parallel processing. However, the results are
more accurate and especially suited for such video stabi-
lization approaches.

The results also show other interesting properties. The
errors for all three rise and fall in an alternate manner,
especially for the yaw angle. This is because during the
experiment, the drone underwent rapid changes along the
yaw from right to left. Considering that our approach re-
lies on a frame-by-frame estimation, the drift error is ex-
pected to accumulate and then reduce with motion in the
opposing direction. Another important property of our ap-
proach can be noticed. The directional moment approach
does not require any initial value due to its small search
space. Hence, it exhibits error patterns different from the
other two approaches. Meanwhile, the direct epipolar ap-
proach uses sparse feature points (‘pts’) as an initial value
and reduced the error from that point onwards. Hence,
while it exhibits lower estimation errors, the pattern of its
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(a) Absolute roll errors

(b) Absolute pitch errors

(c) Absolute yaw errors

Fig. 16. Comparison of absolute roll, pitch, and yaw errors
using sparse information and various proposed dense optical
flow approaches. (‘pts’ – sparse feature points only, ‘Mo-
ment’ – directional moment approach, and ‘pts + Epipolar’
– initial value using sparse feature points and refined estima-
tion using the direct epipolar approach.)

Table 1. Average absolute errors (all values in deg., lowest
values in bold).

Approach
Average Abs. Errors

Pitch Yaw Roll

pts 4.09 9.84 6.29

Moment 3.05 8.53 3.54

pts + Epipolar 2.44 7.36 1.72

errors follows that of ‘pts.’ Due to the restriction of using
the indoor motion capture system, the experiment could
only be performed in a single environment. The effect of
the environment on the estimation remains as future work.

7. Conclusions

In this paper, we proposed a method of using dense op-
tical flow information to estimate the rotation of spherical
videos and stabilize them to generate a virtual rotation-
less camera. We explained two different approaches that
make it possible to estimate the frame-by-frame rotation.
The directional symmetry approach works in 3 DoF us-
ing a property of symmetry in optical flow directions on
a spherical camera. It is interesting to note that this can-
not be applied to a perspective camera and is unique to
a spherical camera as it needs estimation of optical flow
from diametrically opposite directions. The second is the
direct epipolar approach that works in 5 DoF. It can be ap-
plied to perspective cameras as well, but its effectiveness
is greatly enhanced when used with a spherical camera. It
is much slower (around 5 times) as compared to the 3 DoF
directional symmetry approach, but a bit more precise in
its estimation as it is not affected as much by regions of
missing optical flow estimation. We also described our
approach in creating a virtual rotation-less camera for a
spherical video. In this regard, the spherical camera es-
sentially serves two purposes: providing the optical flow
information from all directions for estimating the rotation,
as well as color information from all directions to provide
the view in that direction.

Using a motion capture system as groundtruth, we
demonstrated lesser errors as compared to using sparse
feature information alone, which can be affected by noise.
Drift errors are inevitable in any approach based on incre-
mental tracking and SLAM approaches attempt to solve
this by building a global map. In this work, we focused
on estimation without resorting to map building (which is
an intensive, resource consuming problem) to satisfy the
purpose of video stabilization. However, our proposed ap-
proach can be used in conjunction with global localization
and SLAM techniques to increase accuracy when using a
spherical camera. That, as well as a suitable translation
scale estimation to establish an accurate visual odometry
approach will be our future work.
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Supporting Online Materials:
[a] A few video results of our proposed stabilization can be found

at: https://www.youtube.com/watch?v=d9tqw ZlSC0 [Accessed
May 30, 2017]
They were stabilized using the direct epipolar approach. The front
and back view of the spherical image were unwarped to demonstrate
the rotation-less virtual camera. It can be seen from the results that
the stabilized videos are much easier to view as compared to the un-
stabilized ones.
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