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Optical Flow-Based Epipolar Estimation of Spherical Image Pairs
for 3D Reconstruction

Sarthak PATHAK ∗, Alessandro MORO ∗, Atsushi YAMASHITA ∗, and Hajime ASAMA ∗

Abstract : Stereo vision is a well-known technique for vision-based 3D reconstruction of environments. Recently de-
veloped spherical cameras can be used to extend the concept to all 360◦ and provide LIDAR-like 360 degree 3D data
with color information. In order to perform accurate stereo disparity estimation, the accurate relative pose between the
two cameras, represented by the five degree of freedom epipolar geometry, needs to be known. However, it is always
tedious to mechanically align and/or calibrate such systems. We propose a technique to recover the complete five degree
of freedom parameters of the epipolar geometry in a single minimization with a dense approach involving all the indi-
vidual pixel displacements (optical flow) between two camera views. Taking advantage of the spherical image geometry,
a non-linear least squares optimization based on the dense optical flow directly minimizes the angles between pixel dis-
placements and epipolar curves in order to align them. This approach is particularly suitable for dense 3D reconstruction
as the pixel-to-pixel disparity between the two images can be calculated accurately and converted to a dense point cloud.
Further, there are no assumptions about the direction of camera displacement. We demonstrate this method by showing
some error evaluations, examples of successfully rectified spherical stereo pairs, and the dense 3D models generated from
them.
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1. Introduction

Stereo vision is a powerful technique for 3D reconstruction
of environments. It usually makes use of two or three cameras
and attempts to find the disparity of image points from one im-
age to the other, which can then be transformed to 3D positions
using the intrinsic parameters of the camera. The process of
finding the disparity can be made much easier if the accurate
five degree of freedom epipolar geometry describing the rela-
tive positions of the two cameras is known [1]. The images
can be ‘rectified’ to bring the pixels of corresponding points to
the same horizontal line thereby reducing it to a 1-dimensional
search. Usually, this is done using checkerboards/special pat-
terns or by mechanical alignment of the two cameras.

Recently, spherical cameras such as the Ricoh Theta (Fig. 1)
have become popular. Their epipolar geometry is vastly dif-
ferent from that of normal cameras and has been studied be-
fore [2]. In spherical cameras, corresponding points follow
epipolar circles, instead of epipolar lines, as shown in Fig. 2.
Spherical cameras combined with stereo vision provide a pow-
erful tool for 3D reconstruction in all 360◦. Hence, many re-
searchers have attempted the use of spherical imaging systems
for 3D reconstruction ([3]–[5]). However, they all used some
special patterns (checkerboards, cubic checkerboards, etc.) or
relied on mechanical alignment for estimating or fixing the
epipolar geometry. Such methods are tedious and introduce re-
strictions in camera alignment. Moreover, they are not possible
unless there are two separate cameras fixed on a rig. One of
the main advantages of using spherical stereo cameras, i.e., to
allow camera alignment in any desired configuration, is lost.
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Fig. 1 An example of a complete spherical image in (a) equirectangular
projection (b) spherical projection. They can be rotated in any
direction without information loss.

Fig. 2 In the spherical camera model, corresponding points follow a cir-
cular path, as opposed to straight lines in regular cameras. �p1 and
�p2 are points in the real world. �x1i and �x2i are their projections in
Image i. It can be shown that they follow circles on the spherical
image [2].

Instead, we propose a new technique for automatically esti-
mating the epipolar geometry and rectifying a spherical stereo
image pair using the individual pixel displacements (quanti-
fied by dense optical flow) between them without any need for
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calibration patterns or assumptions about the direction of dis-
placement. The only necessity is that the two images be at
approximately the same orientation by hand and are not at a
prohibitively large distance (several meters or so), in order to
ensure valid estimation of optical flow vectors. Or, they can
first be approximately rectified using a feature-point based ap-
proach [6]. Given two spherical images with a small rotation
between them, our algorithm can automatically estimate the
complete five degree of freedom motion parameters between
them and perfectly align them for stereo disparity estimation
followed by 3D reconstruction. To this end, we attempt the use
of a dense optical flow approach and directly align all the pixels
displacements along the epipolar curves. In a non-linear least
squares minimization, we rotate one image while continuously
re-estimating the pixel displacements (optical flow vectors) till
we arrive at an aligned, translational state. At the end of the
minimization, we manage to split the optical flow field into its
rotational and translational components and output the relative
pose.

2. Related Work

There have been many approaches involving spherical stereo
vision [3]–[5],[7]–[9]. While [4],[5],[8], and [9] make use of
the usual pattern-based rectification, [3] and [7] work under me-
chanical alignment of the two cameras. They choose to displace
their cameras in the vertical direction, which they claim to be
accurate. However, this introduces constraints in the kinds of
alignment possible. Since the epipolar geometry is of prime
relevance to the accuracy of the estimated points (accuracy is
the least as we get closer to the epipolar direction), such con-
straints could be difficult to work with. Point-based methods
like [10] and [11] can also be used, but with the small displace-
ments in stereo images they can be quite inaccurate or unstable.
Moreover, feature-point matching always poses problems in
highly distorted spherical images. Instead, methods like those
in [12],[13], and [14] which optimize an error function over ev-
ery pixel of the image can be much more accurate, especially
in spherical images with a large field of view. However, their
work only deals with rotation estimation (not the epipolar ge-
ometry), and is not completely invariant to camera translations.
On similar lines, since we wish to deal with pixel-to-pixel dis-
placements, optical flow becomes the logical choice to quantify
them.

Optical flow on spherical cameras has been researched in
great detail before. In [15], the authors discuss the kind of op-
tical flow patterns formed on a spherical camera undergoing
pure rotation and translation. Spherical cameras contain infor-
mation from all directions. Based on this, they explain that
since any spherical camera motion is a combination of rotation
and translation, any optical flow field on the sphere can be sep-
arated into the two components. Thus, they pose the epipolar
estimation as a pattern recognition problem and theoretically
suggest multiple searches for the 5-DoF parameters along three
separate axes. This coupling of translation and rotation param-
eters along three different aces could be quite cumbersome in
practice and lead to errors. Several others like [16] and [17]
attempted similar approaches to estimate the 5-DoF motion pa-
rameters for mobile robots. Our previous research [18] pro-
posed estimation of rotation using optical flow vectors. Mean-
while, [19] proposed mapping optical flow vectors from the un-

warped images to the unit sphere and evaluated three different
conventional ego-motion estimation techniques to estimate the
rotation and translation among three frames.

3. Overview

Making use of the same theoretical basis as explained in [15],
we propose a novel single non-linear least squares minimization
to estimate the full 5 DoF epipolar geometry. Since spherical
images have information from all angles, they can be rotated
to any orientation without loss of information. Thus, the basis
behind our approach is to continuously rotate the image in a
small space around the original orientation while re-estimating
the optical flow vectors until we reach an angle at which all the
pixels in the two images are aligned along the epipolar lines, as
shown earlier in Fig. 2.

The main contributions of this paper lie in taking advantage
of spherical image geometry coupled with dense alignment of
individual pixel displacements found by optical flow to estimate
the epipolar geometry between two images and rectify them for
dense 3D reconstruction. Our approach can precisely estimate
the epipolar geometry of a pair of images clicked in a static
environment at a translation distance of less than one-fifth, and
more than one-twentieth of the average scene distance. Beyond
this distance, it was found that the pixel movements become too
large to calculate the dense optical flow field correctly. For the
same reason, another assumption made in this research is that
the images behave similar to a stereo image pair - that they are
clicked in the same approximate orientation. This assumption is
not too strict as the approximate orientations of the two images
can always be found and corrected by sparse feature matching.

In this research, we use the Ricoh Theta camera which au-
tomatically provides pre-stitched, completely spherical images
using two-oppositely pointed fisheye cameras. The Ricoh Theta
has internal calibration of all the required parameters of the two
cameras. Thus, we assume that the image is projected on a
perfect sphere and there is no need for any further calibration.
In the remainder of this paper, we first explain the theoretical
basis behind our method, i.e., the patterns of spherical opti-
cal flow, the minimization problem, followed by experimental
evaluations. We also show and evaluate some dense 3D models
generated using our method.

4. Epipolar Geometry and Spherical Motion Fields

Since our spherical camera is displaced in space, it can es-
sentially be reduced to a spherical manifold that has undergone
some unknown rotation and translation. This produces certain
patterns of optical flow on its surface. As mentioned earlier,
spherical motion fields were discussed in great detail in [15]
and multi-view geometry for spherical cameras was succinctly
explained in [2].

To describe how the flow patterns are formed, we start with
the spherical camera model. On the surface of the unit sphere
with center �c, a real world point �P is projected as the intersec-
tion of the vector from �c to �p with S , as can be seen in Fig. 3.
For pure translational motion, the image points projected on
the surface of the sphere move on its surface in a tangential
direction, diverging away from the epipole �q′ and converging
towards the diametrically opposite epipole �q, in effect, forming
a ‘source’ and ‘sink’ of the optical flow. Thus, they move along
epipolar circles joining �q′ and �q. As for pure rotational motion,
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Fig. 3 Motion fields on the unit sphere for the camera undergoing (a) pure
translation (b) pure rotation. The arrows indicate the direction of
translation and rotation, respectively.

the optical flow vectors form along loops perpendicular to the
axis of rotation. Figure 3 shows both these patterns in both the
spherical and equirectangular projections.

For a perfectly aligned pair of spherical images with no ro-
tation between them, the optical flow vectors will be aligned
along the epipolar curves (Fig. 3, Fig. 2) and the search for
corresponding pixels to calculate disparity can be restricted
to these epipolar circles. In order to confirm these patterns,
we computed optical flow patterns using artificially generated
movement. In one case, the spherical camera was moved side-
ways (to induce only translation), and in the second, it was
rotated on its axis (to induce only rotation). Figure 4 shows
the actual optical flow vectors computed on these movements.
They were calculated on the equirectangular image using the
recently developed DeepFlow algorithm [20] and projected on
the surface of the sphere by using the Jacobian of the transfor-
mation between the equirectangular image and the unit sphere.
The similarity to the patterns in Fig. 3 is clearly visible. The
alignment of the optical flow vectors along the epipolar curves
(Fig. 4 (c)) can be seen. The epipoles �q′ and �q, corresponding
to Fig. 3 can also be noticed.

Any arbitrary displacement of the cameras forms a combi-
nation of rotation and translation. In addition to the unknown
direction �q′ − �q, there is also a rotation between them, caus-
ing a misalignment of optical flow vectors. With a spherical
camera, since we can theoretically obtain the flow from any di-
rection, we should be able to uniquely distinguish between a

Fig. 4 Real motion fields on the spherical image for (a)(c) translation
(b)(d) rotation in both spherical and equirectangular projection.
Patterns similar to Fig. 3 above can be noticed, confirming the ex-
pected behavior of optical flow.

translational and rotational field. Moreover, as mentioned be-
fore, rotations in spherical images are completely recoverable.
Hence, it should theoretically be possible to ‘derotate’ the im-
age to an orientation at which all the optical flow vectors are
aligned along an epipolar direction. Our approach relies on
this principle posed as a non-linear least squares minimization
to obtain the precise epipolar geometry between two images.
Thus, we continuously ‘derotate’ one image with respect to
the other and re-estimate the optical flow vectors between them
while minimizing an error, till we reach a state resembling pure
translation in a particular direction, which forms the epipolar
direction. In such a state, the images can be said to be recti-
fied and the stereo disparity estimation can be done easily by
searching along the epipolar curves. In essence, our algorithm
tries to directly align the pixel displacements (characterized by
optical flow) along epipolar curves by minimizing their angle
with the epipolar curves over the 5 DoF epipolar parameters.

[21] also used a similar concept of aligning pixel displace-
ments. However, their approach minimizes an error in feature
point matching. Moreover, they only performed numerical ex-
periments. In the same manner as [12],[13], and [14], it would
be more stable to involve all the pixels of the image in calculat-
ing the error. In the next section, we explain our motion model
and the formulation of the error function.
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5. Epipolar Alignment by Minimization
5.1 Notation and Motion Model

First, we describe our motion model with respect to spheri-
cal images. For rotation, we define three parameters α, β, and
γ along the three x − y − z Euler axes. Thus, the rotation ma-
trix between two images becomes R = Rx(α)Ry(β)Rz(γ), where
Rx, Ry, and Rz are the individual rotations along the three axes
X, Y, and Z respectively. The reason for this choice of repre-
senting rotations is that the rotations between stereo images are
typically small and Euler angles with fixed axes ensure a small
search space as opposed to a quaternion based approach. For
every point on the sphere S , we follow the cartesian coordinate
notation and denote the radius vector of the point as �x, with the
origin being �c, the center of the sphere. Meanwhile, we indi-
cate the translation direction by the one of the epipoles �q (the
point opposite to direction of motion of the sphere). Only as
an input to the optimization, we denote �q with spherical coor-
dinates θ and φ to ensure that all five parameters take the form
of angles. Doing so ensures uniform scaling of all parameters
in the upcoming non-linear least squares minimization. Thus,
the 5 DoF parameter vector G(α, β, γ, θ, φ) uniquely defines the
epipolar geometry between two spherical images.

Meanwhile, the optical flow vector at �x is written as �F (rel-
ative to �x). �Ftrans is defined as the component of optical flow
caused by translation, which is tangential to the great circle con-
necting �x to the epipole �q (i.e. the epipolar curve). �Frot is the
component caused by rotation, tangential to the circle passing
through �x, perpendicular to the axis of rotation. All notations
can be seen in Fig. 5.

5.2 Error Formulation

To summarize the previous subsection, our optimization
space consists of 5 parameters: α, β, and γ for rotation, and
θ and φ for translation. Next, we come to the error formula-
tion. From the previous section, we can conclude that there
will always be an orientation to which an image can be rotated
at which all the pixels are displaced along an epipolar direc-
tion, resulting in a pure translational displacement. We find this
orientation by minimizing the angle between the epipolar lines

Fig. 5 Motion model and notations. All translation parameters are repre-
sented by epipole �q(θ, φ). All rotation parameters are represented
by < x − y − z > euler angles α, β, and γ. �Ftrans is the component
of optical flow caused by translation while �Frot is the component
due to rotation. The total optical flow vector �F is �Ftrans + �Frot .

and pixel displacements (optical flow).
In each iteration, we first use the current estimates of the ro-

tation angles α, β, and γ along the three x − y − z Euler axes to
‘derotate’ the image to a purely translational displacement with
respect to the other image. In this state, we estimate the dense
optical flow field, i.e., calculate all optical flow vectors �F. In
our research, we made use of the Deepflow algorithm [20] to
estimate the dense optical flow field. It would be very time
consuming to do so in every iteration. Hence, we use a sim-
ple reprojection based on the initial dense optical flow field, as
described later in Section 5.3.

In case of correct estimation of all parameters, the optical
flow field should be purely translational, and for each point �x
on the sphere the optical flow vector �F should be tangential
to the epipolar curve, i.e., the great circle connecting it to the
epipole �q (θ, φ). In other words, �Frot = 0 and �F = �Ftrans ideally.
Therefore, we can define the angular difference between �F and
�Ftrans as the error at point �x, denoted by Ω. Ω can be calculated

as follows (as shown in Fig. 6):
Since our optical flow vector �F and the ‘expected’ optical

flow vector �Ftrans are both tangential to great circles (epipolar
curves) on the spherical image, we need to find the angle be-
tween these circles. We first find the great circle Cq to which
�Ftrans is tangential, defined by �x and the epipole �q. For each

great circle on the sphere S , there exists a unique normal vector
emanating from the centre of the sphere. The normal vector �Nq

for the epipolar great circle Cq defined by �x and epipole �q can
be found by taking the cross product between them:

�Nq = �q × �x. (1)

Thus, �Nq is the normal vector to the great circle Cq along
�Ftrans that the optical flow vector is ‘expected’ to follow. The

actual optical flow vector �F also follows a great circle C f on the
sphere, which can be said to be defined by �x and (�x+ �F). Thus,
to find its normal vector Nf , we again take their cross product:

�Nf = (�x + �F) × �x. (2)

Now, the angleΩ between the expected normal vector �Nq and
the actual normal vector �Nf becomes:

Ω = arccos
( �Nf · �Nq

| �Nf || �Nq|
)
. (3)

Fig. 6 Calculating the error at �x. To find angle Ω, we take the cross
products (�x + �F) × �x and �q × �x in order to define the great circles
along �Ftrans and �F and find the angle between them.
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To summarize the error formulation in each iteration for the
5 DoF parameter vector G(α, β, γ, θ, φ), the steps are:

• ‘De-rotate’ the image with euler angles α, β, and γ

• Estimate optical flow vector �F at every point �x

• According to �q(θ, φ), estimate the angle between expected
displacement �Ftrans and actual displacement �F for every
pixel �x

• Error at point �x is taken to be this angleΩ (calculated from
�Nf and �Nq).

This error is used in a non-linear least squares minimization.
Combining (1), (2), and (3), the final optimization is posed as
follows in (4):

minimize
G(α,β,γ,θ,φ)

∑
∀�xi

(
arccos

( (�q × �x) · ((�x + �F) × �x)
|(�q × �x)||((�x + �F) × �x)|

))2

, (4)

where �F has been calculated after de-rotation with (α, β, γ),
which can be done via a simple reprojection (next subsection),
and �q is the epipolar point (θ, φ) on the sphere (converted to
cartesian coordinates). For the purpose of this research, the
popular Levenberg-Marquardt algorithm [22] was adopted.

5.3 Reprojection of Optical Flow

In our approach, the error function and its Jacobian with re-
spect to the 5 DoF parameter vector G(α, β, γ, θ, φ) can only be
calculated after rotating one image with respect to the other and
re-estimating the optical flow. This makes every iteration of the
optimization quite tedious.

To solve this issue, we propose a simplistic reprojection of
the optical flow vectors based on the initial state between the
two frames. Given the initial optical flow vector �F at �x on the
sphere, our objective is to calculate the optical flow vector �Fr

at any iteration, given the rotation angles α, β, and γ. Given
that �x lies on one image (the one that is rotated) and �x + �F
is its corresponding point in the other image, we rotate �x with
the rotation matrix R composed as Rx(α)Ry(β)Rz(γ) as shown in
(5):

�xr = Rx(α)Ry(β)Rz(γ) × �x. (5)

Since the point �x + �F on the second image is unchanged, the
new optical flow vector �Fr can be calculated as:

�Fr= (�x + �F) − �xr= (�x + �F) − Rx(α)Ry(β)Rz(γ) × �x. (6)

A visualization of this reprojection is shown in Fig. 7.

Fig. 7 Reprojection of the optical flow vector given a small rotation
α, β, γ.

5.4 Initial Estimate and Choice of Optimization Space

For most non-linear least squares minimization, a good ini-
tial value of the parameter vector, close to the optimum, is re-
quired. For our approach, the initial solution can be obtained
using sparse corresponding points, i.e. the common 8-point al-
gorithm [6]. However, the initial solution can be provided by
the initial dense optical flow field itself. Since the dense optical
flow field is also used in estimating the error in the minimiza-
tion, this approach reduces computation time and provides a
simpler solution to estimate all required information.

Since the two images in a stereo pair are taken from similar
orientations (or after correction using sparse feature informa-
tion), the initial value for rotation (α, β, γ) can be simply set
to zero. The other reason for this necessity is that optical flow
vectors cannot be computed properly if the difference between
the two images is too large. Regarding the initial value of the
epipole (φ, θ), we chose to take the vector sum of all optical flow
vectors in the initial state. The optical flow pattern is a vector
sum of rotation and translation, and the vector sum of the rota-
tional vectors is zero because of symmetry (as in Fig. 3). Thus,
the vector sum of the entire field will ignore rotation and ap-
proximately lie near the epipole (θ, φ), which suffices as a good

Fig. 8 Optical flow field on the equirectangular projection of the spherical
images (a) before optimization (b) after optimization: translational
flow (c) after optimization: rotational flow (similar to Fig. 4).
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Fig. 9 Error function with respect to translation direction (epipole) and
rotation errors, i.e. deviations from the optimum.

initial value for the translation direction.

5.5 Output

The optimization outputs the best value of the parameter vec-
tor for which the optical flow vectors appears to be of only
translation between the two images. As mentioned earlier, we
essentially try to simultaneously optimize the rotation and the
epipolar direction by directly aligning pixel displacements (op-
tical flow) along the epipolar curves. Figure 8 shows an ex-
ample of this optimization. Two images as a stereo pair were
clicked and the proposed approach was used to process them.
The initial optical flow field is rotation plus translation and the
optical flow vectors are unaligned. After optimization, the en-
tire field is aligned along the epipolar curves, as in pure trans-
lation. Finally, subtracting the optimized optical field from the
initial field results in a rotational optical flow field, confirming
that minimization worked.

Meanwhile, the translation direction and rotation were grad-
ually varied in steps from the estimate obtained from the solu-
tion of the proposed minimization between these images. The
translation direction was varied in a randomly chosen direction
and the rotation angle was varied about a randomly chosen axis
for the sake of simplicity and ease of visualization. The error
value (see (4)) was evaluated at every step and is displayed as
a graph in Fig. 9. The translation error and rotation error are,
respectively, the deviations from the final optimum estimate of
translation direction and rotation. It can be seen that the convex
shape of this function with a single minimum present at the lo-
cation where both errors are zero is suitable for a minimization.
Once we obtain this epipolar geometry, we calculate the dispar-
ity by searching for the displacement along the epipolar curves
using the previously mentioned DeepFlow algorithm [20]. Fol-
lowing this, the 3D position of each pixel can be triangulated in
a manner similar to that given in [3].

6. Experimental Evaluation
Two experiments were performed to check the accuracy of

the estimated epipolar geometry. Experiment 1 was done to
check the accuracy of the estimated epipolar direction vectors,
while Experiment 2 was performed to check the quality of the
3D reconstruction using the estimated epipolar geometry.

6.1 Experiment 1

Experiment 1 was done to check the accuracy of the esti-
mated epipolar direction vectors using a known configuration

Fig. 10 Experiment 1: experimental setup.

Fig. 11 Experiment 1: 4 stereo images captured as shown in Fig. 12.

of camera positions as groundtruth. Four images were captured
at approximately the same orientation (after rough adjustments
by hand) in a known geometric configuration using a graded
camera stand (with marked angles and distances) and the epipo-
lar direction vector between each pair of images was estimated
using the optimization. The camera (Ricoh Theta S) was placed
at the end of a 24 cm long arm with the other end attached to a
graded camera stand (with marked angles), as seen in Fig. 10.
The arm was rotated counter-clockwise around point O. At ev-
ery 90◦, the camera was adjusted to the same approximate ori-
entation and a single image was captured. Four images (shown
in Fig. 11) were captured at locations C1,2,3, and 4, resulting in
a square configuration, as shown in Fig. 12 (a). The epipolar
direction vectors (ei, j, where i, j ∈ 1, 4) between all pairs of im-
ages were estimated using the optical-flow based optimization
described.

At each image, the angles between the epipolar direction vec-
tors with respect to the other 3 images were calculated and com-
pared to the groundtruth (Fig. 12). For example, at Image 3, the
angles between epipolar direction vectors e2,3 and e1,3, and vec-
tors e1,3 and e3,4 were estimated (estimating the angles between
e3,4 and e2,3 becomes redundant).

Each angle should be 45◦, as visible from the configuration.
The results are shown in Table 1 and Fig. 12 (b). The mean
error was 0.51◦ indicating that the estimation was accurate.

6.2 Experiment 2

Experiment 2 was conducted in an artificially constructed en-
vironment to check for the quality of 3D reconstruction. Two
square slabs of cardboard (1 m×1 m) were placed at 90◦ to each
other and the camera set on a graded camera stand, as shown in
Fig. 13. One image was captured at the original position. Next,
the camera was translated towards its left by 5.5 cm and rotated
counter-clockwise around its axis by precisely 6◦. In this posi-
tion, the second image was captured (shown in Fig. 14).

The algorithm was applied to this pair of images. Stereo
disparity along the epipolar lines was estimated using Deep-
Flow [20] and the 3D structure was reconstructed by triangula-
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Fig. 12 Experiment 1: experimental configuration and results of epipolar
estimation.

Table 1 Results of estimation of epipolar direction vectors.

Image Angle Groundtruth Estimated Result
Image 1 e1,2 − e1,3 45◦ 45.53◦

e1,3 − e1,4 45◦ 44.43◦

Image 2 e1,2 − e2,4 45◦ 45.55◦

e2,4 − e2,3 45◦ 44.70◦

Image 3 e3,4 − e1,3 45◦ 45.27◦

e1,3 − e2,3 45◦ 44.52◦

Image 4 e1,4 − e2,4 45◦ 44.49◦

e2,4 − e3,4 45◦ 45.51◦

Fig. 13 Experiment 2: experimental setup for 3D reconstruction.

tion [3]. Figure 15 shows the results of the algorithm on these
two images, namely, the original optical flow, the separated ro-
tational and translational flows, and the disparity map obtained.

Fig. 14 Experiment 2: spherical stereo image pair of the setup shown in
Fig. 13.

Table 2 Rotation angle error and average planar deviation in Experiment
2.

Error in Rotation Angle Average Planar Deviation
0.05◦ 0.51%

Table 3 Calculation times for various steps in Experiment 2.

Process Average time
Initial optical flow estimation 36.20 s
Optimized optical flow estimation 18.5 s
Disparity Estimation using DeepFlow [20] 36.25 s
3D structure [3] 0.28 s
Total 91.13 s

The rotation angle was found to be 6.05◦, which indicates an
error of 0.05◦. The results of the reconstruction are shown in
Fig. 16. One perspective view and the side view is shown next
to the actual structure for comparison and the similarity with the
original structure can be seen, thus proving that this algorithm
is suitable for dense 3D reconstruction. In order to check the
quality of the 3D reconstruction, the planarity of the two planes
in the structure was calculated separately by plane fitting and
the average planar deviation of the structure (from both planes)
was found as a percentage of the length of the side. It was found
to be 0.51% of the side length. Both the rotation angle estima-
tion error and planar deviation are reported below in Table 2.

6.3 Calculation Time

All the processing was done on a computer equipped with a
2.8 GHz Intel Xeon processor, without any parallel processing.
The calculation times obtained for various steps in Experiment
2 are given below in Table 3. The image resolution used was
1500×750 pixels. The most time-consuming step of the process
is the deepflow algorithm used for dense optical flow computa-
tion, which occurs twice in the process. It takes very long for
a higher image resolution. A possible workaround could be to
estimate the epipolar geometry (initialization and optimization)
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Fig. 15 Experiment 2: output of the algorithm applied to the image pair
in Fig. 14.

at a lower resolution, and the disparity estimation and 3D re-
construction at a higher. A further speed-up can be obtained by
using a GPU for this step.

7. Discussion
7.1 Factors Affecting Accuracy and Limitations of Esti-

mation

The main factors that affect the accuracy of the estimation
are as follows - 1) The presence of textures in the environment -
This is because textures help in the estimation of accurate dense
optical flow, on which our method is based. Without sufficient

Fig. 16 Experiment 2: 3D reconstructed views of the setup from Fig. 13.

textures, the estimation of dense optical flow becomes ambigu-
ous and unstable. 2) The type of camera translation - This forms
an important limiting factor for our approach. Dense optical
flow computation is based on the assumption that pixel move-
ments are small. Thus, if the translation of the camera is too
large, the pixel movement becomes too large and it can induce
errors in the measurement. It was observed empirically that if
the distance moved was more than around one-fifth of the av-
erage scene distance, the pixel movements became too high to
compute dense optical flow properly. Thus, neither epipolar es-
timation nor reconstruction are possible. On the other hand,
if the distance moved was less than one-twentieth, it was ob-
served that the optical flow vectors were too small and affected
by noise to compute any meaningful reconstruction. However,
epipolar estimation was still possible in this case. Conversely,
due to the same reason, accurate 3D reconstruction was possi-
ble for all regions located at a distance of within 5 times to 20
times the translation distance of the camera.

Another factor that can affect the accuracy is a camera per-
formance limitation. In this research, we assume that all points
are projected to a perfect sphere. However, a small distance ex-
ists between the two lenses of the Ricoh Theta camera causing
points too close to the camera - within 20 cm, as per our obser-
vations - to be distorted. Thus, points too close to the camera
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can induce errors and cannot be reconstructed properly.
It is also important to note that 3D reconstruction errors be-

come large near the camera stand, as can be seen in Fig. 16 (b).
This is because of multiple reasons. First, the portion occluded
by the camera stand cannot be seen by the spherical camera.
Second, our approach uses the movement of pixels as computed
by dense optical flow. For points too close to the camera, pixel
movement is too large to be accurately estimated by dense opti-
cal flow which tries to constrain the movement of pixels. More-
over, as explained earlier, a slight gap exists between the cen-
ters of the two individual fisheye cameras. This does not affect
points sufficiently away from the camera. However, points very
close to the camera center (within 20 cm) will not be projected
to a perfect sphere and can be distorted.

7.2 Applications

One of the applications being considered for this research
is the inspection of large infrastructures. Large infrastructures
like bridges, dams, etc. need to be observed from a very close
distance to check for cracks or other defects. Due to their large
size, many approaches have been proposed using flying robots
or drones equipped with cameras. These drones can fly close to
the structure and inspect it with much more ease as compared to
a human. A 3D model of the infrastructure can be constructed
and inspected offline on a computer.

In such cases, a perspective camera that can only see a small
portion of the large structure will have difficulty in tracking im-
age information. A spherical camera that can observe the entire
structure at once can be very effective. A video can be con-
tinuously recorded by a spherical camera and keyframes satis-
fying the limitations of the proposed approach can be selected
by measuring the average pixel movements. An accurate dense
3D reconstruction can be constructed and merged together in a
visual-SLAM like approach.

With regards to localization, we showed an average local-
ization error of 0.51◦ with respect to two image localization in
Experiment 1. That corresponds to an error or around 0.89%,
obtained by converting the angle to radians and multiplying by
100). Meanwhile, in Experiment 2, the rotation error was 0.05◦.
With regards to 3D reconstruction, the error obtained was a pla-
nar deviation of 0.51%. These are suitable for practical appli-
cation. Further experiments are necessary to evaluate the accu-
racy in a continuously moving video. The calculation time of
around 91 s is high, but there is no requirement for online com-
putation for this application. Further speed-ups can be obtained
by using a GPU for optical flow computation.

8. Conclusion

In this paper, we have shown a method to automatically esti-
mate the epipolar geometry for spherical image pairs. The main
contribution of our paper is to perform this estimation using an
error minimized directly over dense pixel displacements (op-
tical flow) in the entire image, instead of just a few keypoints.
Taking advantage of spherical image geometry, we showed how
a spherical flow field can be split into its rotational and trans-
lational components. As indicated by Experiment 1, the esti-
mation of the epipolar geometry was quite accurate (std. dev.
of error = 0.51◦). 3D reconstruction was also demonstrated in
Experiment 2.

The method is especially suited for dense 3D reconstruction

as it directly aligns all the pixels in the image along the epipolar
curves. We can generate accurate dense disparity maps without
fixing two cameras or calibration. We demonstrated this in Ex-
periment 2 by showing the densely reconstructed 3D model. In
future, we would like to extend this approach to process a full
video, frame-by-frame.
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