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Abstract 

In this paper we present an online unsupervised method based on clustering to find defects in concrete structures 
using hammering. First, the initial dataset of sound samples is roughly clustered using the k-means algorithm with 
the k-means++ seeding procedure in order to find the cluster best representative of the structure. Then the regular 
model for the hammering sound, the centroid of this cluster, which is assumed to be the non-defective sound model, 
is established and finally used as a reference to conduct diagnosis on the whole dataset. During the model genera-
tion phase, topological information on the spatial distribution of samples is used to attribute varying importance to 
each sample and therefore take into account meticulous diagnosis of certain areas. The algorithm is fast and reli-
able enough to allow efficient diagnosis by running it each time a new sample is acquired. Tests on two commonly 
found types of defects, namely delamination and void type defects, were conducted on experimental test blocks and 
yielded satisfying results. This method also performed well in field environments.
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Background
The designation concrete covers a large spectrum of 
composite materials composed of aggregates bonded 
by a fluid cement, hardened over time. This material is 
extremely common in modern societies, especially in 
social infrastructures such as tunnels. As any other mate-
rial, concrete can be greatly affected by aging and envi-
ronmental conditions. In some cases, these factors may 
lead concrete structures to structural failure [1–3]. In 
order to guarantee their safe use, careful maintenance 
is needed. Among all the operations taken to maintain 
these structures, the diagnosis for defects is critical since 
it is a decision-making step.

Among all the available non-destructive testing meth-
ods [4], a popular one for concrete structures is called 
hammering test (Fig.  1). In this study, we focused only 
on one variation of hammering called “tapping”?. This 

method, consisting of an operator perpendicularly hitting 
one point on the surface of the structure with a hammer 
and assessing the presence of defects from the perceived 
sound, has the advantages of being non-destructive and 
not needing heavy equipment. However, it requires a 
skilled operator to be able to correctly analyse the sound 
and given the huge population of structures in need of 
examination currently in service [5], testing them all with 
this traditional method reveals to be problematic. There-
fore, the automation of the hammering test is demanded.

Various attempts to adapt the hammering test in an 
automatic form have been made in order to obtain a 
faster, more reliable and objective method to find defects 
in concrete structures. References [6, 7] were focused in 
finding sound features enabling differentiation between 
defective and non-defective spots as well as on the explo-
ration of new methods to replace or aid the human oper-
ator holding the hammer in order to get more regular 
and reliable sound samples. References [8–11] were more 
focused on the data analysis part of the problem and used 
supervised learning to correctly distinguish sounds from 
non-defective areas and sounds from defective areas. 
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These approaches have given promising results, however 
their main drawback is the necessity to train the algo-
rithm first using a training set. Depending on various fac-
tors, especially during the hardening phase, concrete can 
greatly differ from one structure to another, even if they 
were made from the same batch, thus choosing the ade-
quate training set can be difficult. Our proposed method 
takes a new approach to this task using unsupervised 
learning, based on clustering, and therefore bypasses the 
need of training sets.

In our previous method [12], the major cluster from 
which the centroid to be used as model was deter-
mined by finding the cluster with the biggest number 
of samples in it. This method was acceptable when 
diagnosis was conducted following a regular grid. 
However, in practice, defective areas of the structure 
are more carefully examined: this could result in hav-
ing more defective samples in the dataset and non-
defective ones and thus, the method wrongly choosing 
the wrong centroid as regular model. In this paper, we 
introduce a weight system to balance the respective 
influence of samples in accordance with their spatial 
distribution on the tested structure surface. This ena-
bles proper balancing of each sample’s relevance given 
their mutual spatial proximity.

Concrete structure inspection is generally divided into 
two stages [13]. The first one, called primary inspection, 
is a rough one, conducted on the whole structure. If any 
defect is found during this process, the secondary inspec-
tion is conducted only at these spots to accurately iden-
tify the defect. Given the nature of our proposed method, 
adaptable and based on statistical irregularity detection, 
it can be considered particularly suited for the primary 
inspection of concrete structures.

In this paper, we propose a method to allow training 
set-free, real-time, adaptive hammering testing of con-
crete structures. This allows hammering testing to be 
conducted on a unknown structure, obtaining a primary 
inspection diagnosis and narrowing down spots for sec-
ondary inspection.

Methods
Concept
The main assumption is that most of the tested structure 
is non-defective. That means that defects, such as cracks 
and voids, do not occupy the majority of the tested sur-
face. This assumption is acceptable since concrete struc-
tures subject to severe deterioration are blatant and 
therefore do not require to be tested, a simple inspection 
by naked eye is enough. Considering this, it becomes 
possible to characterize the non-defective sound as the 
regular sound found on the tested surface.

This approach has been motivated by two main rea-
sons. First, interview conducted with actual profession-
als in charge of conducting hammering tests revealed 
that they were, in fact, more focused in hitting multi-
ple spots on the structure at high speed and looking for 
sounds that stands out rather than relying in past expe-
riences and knowledge. In this aspect, our proposed 
method is closer to what human operators do. Secondly, 
as stated earlier, it has been observed that concrete is 
extremely sensible to physical conditions such as tem-
perature, humidity, etc., that especially during the hard-
ening phase of the fabrication process. The result is that 
even among concrete blocks that were made from the 
same source, non-defective spots do not return similar 
hammering sounds at all. This was observed at various 
occasion with concrete test blocks we used in our exper-
iments: even tough they were made in a single batch, 
non-defective spots in two different blocks returned dif-
ferent sounds.

More precisely, given an initial dataset of hammer-
ing samples, we can distinguish 4 steps in our proposed 
method as illustrated in Fig. 2:

1.	 Regroup hammering samples that are similar.
2.	 Find the major group of the tested structure.
3.	 Extract the centroid of this group and establish it as 

the regular, non-defective model.
4.	 Use the generated regular model as a reference to 

conduct diagnosis on the samples.

Regrouping hammering samples
Description of a hammering sample
In this paper, two elements are used to define a hammer-
ing sample:

Fig. 1  Hammering test conducted by a professional on the ceil-
ing portion of a tunnel: only a simple hammer is needed thus the 
popularity of this non-destructive testing method. Still, there is the 
need of skilled operators to correctly differentiate hammering sounds 
and given the great population of structures in need of testing, 
automation is actively demanded. Also, since it relies heavily on the 
operator’s skills, the final result remains subjective
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1.	 The recorded sound.
2.	 The location where the sample was recorded.

As it is usually done when handling audio data, Fourier 
spectrum is used as feature vector for a hammering sound.

Given a sound sample Xi defined by (x0, . . . , xN−1), N 
being the sampling rate multiplied by the recording dura-
tion, collected on a particular location Li on the structure, 
its Fourier spectrum (a0, . . . , aN−1) is obtained using Fast 
Fourier Transform (FFT).

Metric
In order to compare sounds, i.e to give a value of how 
much two hammering sounds are similar, a meaningful 
distance measure between sound samples in the Fourier 
spectrum space has to be defined.

Given two Fourier spectrum A and B, respectively 
defined by (a0, . . . , aN−1) and (b0, . . . , bN−1), the sample 
Pearson correlation coefficient is defined as in Eq.  (1).

The sample Pearson correlation coefficient has the 
advantage of providing a zero mean and unit standard 

(1)rAB =

∑N−1

l=0
[(al − a)(bl − b)]

√

∑N−1

l=0
(al − a)2

√

∑N−1

l=0
(bl − b)2

deviation normalizations. Features of the Fourier spec-
trum of each sound sample used for comparison are only 
related to the general shape and amplitude variations, 
directly influenced by the applied hammering force, 
are not taken into account. Therefore, it can be consid-
ered robust towards changes of the force applied by the 
human operator of the hammer that induces sounds of 
different amplitude being recorded, i.e. this mitigates 
the need to take into account the input to the system for 
our method and a simple hammer can still be used for 
testing.

The sample Pearson correlation coefficient ranges in 
[−1,1]. Negative values signifies a negative correlation, 
and positive values corresponds to correlation. Values 
close to zero implies there is no correlation between the 
two samples. We can define a distance measure based on 
this coefficient, a correlation distance, as in Eq.  (2).

The defined distance is ranging in [0,1], returning small 
values the more the compared sounds are alike and zero 
if the sounds are identical. Cases of negative correlation 
are located in the [0.5,1] range since negative correlation 
is in our case not a similarity.

(2)d(A,B) =
1− rAB

2

Fig. 2  Main steps of our proposed method given a dataset of samples: 1 roughly cluster in order to swiftly make groups of similar sound samples. 
2 Find the major cluster i.e. the cluster best representative of the tested structure. 3 Extract the regular model from this cluster, in this case, the cen-
troid. 4 Use the previously found regular model as a scale, reference for the non-defective sample to conduct diagnosis on the whole dataset



Page 4 of 10Louhi Kasahara et al. Robomech J  (2017) 4:13 

Rough clustering using k‑means++
In our case, we do not need quality clusters since cluster-
ing is not our goal, i.e. clustering is not conducted as a 
step for further cluster analysis. The final aim is to obtain 
the regular model. Moreover, to work toward a system 
with the capability to conduct diagnosis in real-time, a 
fast algorithm would be useful. Considering the usual 
dataset of hammering samples, usually around a few hun-
dred in our application, we found the k-means algorithm, 
usually used in data consolidation or pre-clustering, being 
adequate: it is simple and computationally fast enough.

Even if defective samples can be spread out in feature 
vector space (defects are unpredictable and can be of 
several variations in a single structure), more compact-
ness can be expected for non-defective samples: k-means 
should not fail to put at least one centroid in the non-
defective sample group.

In order to obtain more consistent runtime for the 
k-means algorithm, the k-means++ seeding procedure 
[14] is used. In our proposed method, only two clusters 
are needed, therefore the procedure is applied for only 
two seeds. The first seed is chosen randomly following 
an uniform distribution. For the second seed, a probabil-
ity distribution to reflect the similarity to the first seed is 
devised: each sample Xi has a probability P(Xi), as defined 
in Eq.  (3), based on the previously defined metric to the 
first seed S1, d(Xi, S1), to be chosen. Unlike the regular 
seeding process where the seeds are simply chosen ran-
domly, this procedure allows the seeds to be spread trough 
the dataset and therefore close to the final centroids loca-
tion. Other than the acceleration of the algorithm for large 
datasets, the advantage to use this seeding procedure is 
that it stabilizes the run time by not being entirely random 
such as the regular k-means seeding method.

With both the metric and the seeding procedure defined, 
k-means is used to cluster the dataset of hammering 
sound samples, transformed into Fourier spectrums, into 
two clusters.

Finding the major cluster
In our approach to this task, the cluster best describing 
the tested structure has to be found.

Defining the regular model based on the number of 
sample contained in each cluster would be enough in 
the case of samples being collected following a grid: each 
sample would then have the same weight in the final com-
parison. However, when collecting samples freely on the 
structure, defective areas tend to be tested meticulously 
and therefore, the number of samples from defective spots 

(3)P(Xi) =
d(Xi, S1)

2

∑Nsample

i=1
d(Xi, S1)2

tend to surpass the number of samples from non-defec-
tive spots. If this happens, such simple implementation 
would wrongly recognize the defective sound as being the 
regular sound and thus the non-defective sound model.

To overcome this problem, a weight symbolizing the influ-
ence of one sample is defined. More concretely, for each 
sample can be considered an area around it where it is the 
representative of. In this paper, we simply choose to define 
this area as a disc centered on the location of the correspond-
ing sample Li (Fig.  3). This location is simply collected by 
painting the hammer head in red and tracking it using image 
processing: when a hammering sound is detected by the trig-
ger and recording begins, the location of the hammer head at 
that moment is saved along with the sound data.

Given a sample Xi contained in dataset D among 
Nsample samples, with its location Li, the radius of the 
sample’s area is defined as half of the Euclidian distance 
to its nearest neighbor:

The surface of this disc is then used as a weight for this 
sample:

With this method, the importance of samples is depend-
ent of their topological distribution and therefore, it is 
possible to conduct a diagnosis that takes into account 
what has been already obtained in the previous runs of 
the method.

To determine the cluster containing most of the non-
defective samples, the weight devised in Eq.   (5) is 

(4)Ri =
1

2
∗min
∀j∈D

∥

∥Li − Lj

∥

∥

(5)Wi = R2
i

Fig. 3  Illustration of the proposed weight associated to each sample: 
a disc centered on the spot hit with the hammer with a radius half 
of the Euclidian distance to the nearest neighbor. This intends to 
symbolize the area around the sample where it is relevant, i.e. where 
it could be assumed that the returned sound would be extremely 
similar to the one collected. The value of the radius was chosen in 
order to avoid overlapping
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expanded to clusters: for a cluster Cli, its weight WCli is 
defined as the sum of weights of all samples contained 
within it. This means to represent how much spatial 
importance this cluster has on the structure.

Then, the major cluster is defined as the one with the big-
gest weight:

Generation of the regular model and diagnosis
With the regular cluster Clmajor, containing Nmajor sam-
ples, found previously, its centroid Cmajor is used as our 
regular model:

Each sound sample of the dataset is finally compared to 
the model using once again the correlation-based dis-
tance defined in Eq.  (2), i.e. the generated regular model 
is used as reference to scale and evaluate the samples. 
Since the model represents the most regular sound shape 
in the dataset, irregularities, i.e. distant sound samples 
can be recognized as characteristic of defects on the 
structure, distance to the regular model can be expressed 
as a similarity value (Fig. 4). From there, a simple thresh-
old can be enough to determine if a sample is defective or 
not. Given a threshold value Th, a boolean value defective 
for a sample Xi could be defined as:

(6)
WCli =

∑

∀Xj∈Cli

Wj

(7)Clmajor = (Clj|WClj = max
i

WCli)

(8)Regular Model = Cmajor =
1

Nmajor

∑

∀Xi∈Clmajor

Xi

(9)defective(Xi) =

{

false if d(Cmajor ,Xi) < Th
true if d(Cmajor ,Xi) > Th

The pseudo-algoritm presented in Algorithm (1) briefly 
sums-up the mechanics of our proposed method. The 
clustering step being fast enough, online implementation 
was possible by simply running it each time a new sample 
is added to the dataset.

Data: dataset of hammering samples
Result: distance of each sample to the regular model
initialization;
while Nsample < Ninitial do

keep collecting samples;
end
run k-means++ with k=2;
find major cluster Clmajor;
get its centroid Cmajor ;
foreach Xi do

calculate d(Xi, Cmajor);
end
while testing is ongoing do

if new sample is acquired then
add new sample to the dataset;
run k-means++ with k=2;
find biggest cluster Clmajor ;
get its centroid Cmajor ;
foreach Xi do

calculate d(Xi, Cmajor);
end

end

end
Algorithm 1: Pseudo algorithm for the proposed

Nsample, has reached the
Ninitial, for a first run of the clustering.

method: the algorithm begins when the number of
samples in the dataset,
desired value,
After that, since in practice the clustering step was fast
enough, simply running it each time a new sample is added
to the dataset proved sufficient.

Results and discussion
Experiments using a traditional hammer
The used setup is illustrated in Fig.  5 and experiments 
were conducted on concrete test blocks containing vari-
ous man-made defects to simulate natural ones. For each 
block, defective spots are marked in red on the corre-
sponding schematic.

Test blocks were hit at 210 locations once following 
a 14 by 14 square grid that covers the whole block. The 
used hammer was a KTC UDHT-2 (head diameter 16 
mm, length 380 mm, weight 160 g), commonly used in 
hammering test by professionals and sound was recorded 
at 44.1 kHz using a Behringer ECM8000 microphone 
coupled with a RolandUA-25EX sound board and a 

Fig. 4  In this feature vector space where only relative distances are 
obtainable, the regular model serves as a reference for the whole 
dataset. Since it is meant to be an example of non-defective sound 
sample, further a sample is from it, the more likely it is that it is from a 
defective spot
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laptop for data analysis. Fourier spectrums were com-
puted by FFT with a window of 1024, thus in vectors of 
length 512 due to symmetry.

A simple trigger was implemented to conduct clipping 
to get each hammering sound as a single sample and the 

hammer head was painted in red in order to be tracked 
so that the Cartesian coordinates of each sample could be 
collected.

Delamination‑type defects
Delamination is a phenomenon mostly observed in rein-
forced concrete structures. These structures are often 
subject to reinforcement corrosion: the reinforcement 
metal is oxidized and its volume increases. This results in 
internal stresses in the concrete structure and the appari-
tion of cracks diagonal to the surface of the structure.

Tests were conducted with 500× 500× 150  mm con-
crete blocks presenting cracks at an angle of respectively 
15°, 30° and 45°. The schematics of these test blocks are 
presented in Fig.  6. Using these schematics as ground 
truth, receiver operating characteristic (ROC) curve was 
calculated for each of these blocks (Fig. 7) by varying the 
threshold value Th used in Eq. 9. It can be noticed that the 
area under the ROC curve decreases from 0.94 to 0.80 as 
the crack angle increases from 15° to 45°. This could be 
attributed to the defect depth: the bigger the crack angle, 
the deeper the crack runs in the concrete, resulting the 
sound to be more and more muffled as the crack angle 
increases, rendering analysis more difficult (Table 1).

In [15], Computer Vision is used to detect cracks on 
the surface of concrete. Depending on the used preproc-
essing techniques, the area under the curve varied from 

Fig. 5  Experimental setup: concrete test block (A), hammer with red 
head for position recognition by image processing (B), web camera 
(C) and microphone (D)

Fig. 6  Schematics of the test blocks used for the delamination detection experiments, these blocks present crack of various inclination from the 
surface: a 15°, b 30° and c 45°. It is worth noticing that these defects were man-made with the intention to closely reproduce field-found delamina-
tions (dimensions specified in mm)
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0.87 to 0.99. Our proposed method could therefore be 
considered acceptable.

In Fig.  8 the correlation distances from the model for 
non-defective and defective hammering samples of 
the 15°. delamination test block is shown (in total 210 
samples). Except a dozen defective samples that were 
incorrectly given small distance to the model, it can be 
observed that our proposed approach successfully sepa-
rates the two types of samples.

Always for the 15° delamination defect test block, 
in Fig.  9 the Fourier spectrums of the computed model 
for non-defective sample, a non-defective sample and a 
defective sample are shown. It can be seen that the pro-
duced model is a Fourier spectrum that more closely 
resembles the Fourier spectrum of a non-defective sam-
ple than of a defective sample.

Time taken for the algorithm to return a result at each 
new sample was measured. After stabilization, when 
around 200 samples were collected, the average process-
ing time for a new sample was 454 ms. This allows the 
hammer to hit the structure about twice in one second 
and therefore enables our proposed method to keep up 
processing when hammering is done manually. Since 
hammering is usually conducted locally, around a sus-
pected area on the structure’s surface, the dataset of sam-
ples is not expected to grow up to very large sizes and 
therefore it can be considered that, in the scope of our 
application, it is satisfying.

Void‑type defects
For various reasons such as a foreign body or the infil-
tration of water/air, defects we could call void-type can 
appear on concrete structures in the field. Basically, dur-
ing the hardening phase, the concrete was not able to 
completely fill the required volume. This type of defects 
is considered extremely dangerous since for one part they 
tend to make large portions of concrete beneath them 
to be instable and fall off, and for the other part because 
unlike delaminations, they are usually not visible at the 
surface of the structure. The hammering test is in this 
case a trusted tool for inspection.

A test block containing cuboid-shaped polystyrene 
bodies were used to simulate this type of defect (mold-
ing a block of concrete with a controlled volume of air 
inside was impossible). Its schematics is presented in 
Fig. 10.

As with the delamination’s case, the ROC curve was 
established on this block (Fig. 11) for defects of depth 30, 
50 and 75 mm. Due to abnormality during production, 
the defect at 15 mm depth was not available for testing. 
Again, the value of the area under the curve were calcu-
lated (Fig. 11) and are shown in Table 2.

Fig. 7  ROC curve for the delamination type blocks. Higher values of 
delamination inclination means deeper defects and therefore less 
audible, recordable sounds. This causes a drop in performance in 
pair with the inclinaison of the delamination. However, considering 
the still high efficiency for delaminations up to 45° and knowing that 
the vast majority of field-found delamination falls in this range, our 
proposed method can be considered satisfying

Table 1  Area under  the ROC curve for  each delamination 
type blocks: the maximun value obtainable is 1 and closer 
to it the method scores, the better it is

In our case, for each test blocks, high values of the area under the ROC curve 
were obtained. This illustrates the efficiency of our proposed method for the 
delamination type defects up to an inclination of 45°

Delamination angle (°) Area under the ROC curve

15 0.94

30 0.90

45 0.81

Fig. 8  Non-defective and defective samples for the 15° delamination test block plotted according to the correlation distance from the devised 
model. It can be noticed that non-defective samples have lower values than defective samples as the model successfully represents the non-
defective sample
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Experiments on the field
Our proposed method was tested under field conditions 
at an experimental tunnel made in order to naturally 
present defects. It is worth noticing that these defects 
are different from the ones on the previously presented 

Fig. 9  Fourier spectrums of a the computed model, b a non-defec-
tive sample and c a defective sample from the 15° delamination test 
block. The model’s spectrum bears more similarities to the non-
defective spectrum than to the defective spectrum: the correlation 
distance between the model and the non-defective sample was 0.10 
whereas it was 0.33 for the defect sample

Fig. 10  Schematic of the test block used for the void detection experiment: a polystyrene block of 200× 200× 30 mm was placed at a depth of 
30 mm in order to simulate a void type defect given the impossibility to induce a controlled volume of air inside a concrete block. (Dimensions 
specified in mm)

Fig. 11  ROC curve for the void type block

Table 2  Area under the ROC curve for void type block

Once again, our proposed method presented a high efficiency and was able to 
accurately spot the area directly above the void type defect

Void Area under the ROC curve

30 mm depth 0.94

50 mm depth 0.81

75 mm depth 0.71
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test blocks since, though induced, they occurred natu-
rally. Therefore, no ground truth was available in order to 
quantitatively evaluate our proposed method. However, 
in order to effectuate a qualitative evaluation, a profes-
sional operator conducted hammering and our proposed 
method was tested on the found defects. The schematic 
specifying the dimensions of this tunnel is presented in 
Fig.  12 and the picture in Fig.  13 shows both our setup 

for data collection and the general area were defects were 
concentrated.

The tested spot on the tunnel was a void type defect 
identified on the side of the tunnel, at a height of 
approximately 4 m. The result obtained then is shown 
in Fig. 14, the threshold value Th was manually adjusted 
in order to get the best discrimination of defective 
samples.

Conclusions
Our proposed method was able to successfully identify 
both delamination and void type defects without the 
need of any training set, in a real-time fashion and by 
allowing adaptive hammering testing. The method was 
also able to show a similar performance on the field, on 
an unknown and untested structure, and to this regard, 
it could be judged adequate for the purpose of primary 
inspection, successfully narrowing down areas for sec-
ondary inspection. For future work, we would like to 
improve this method to ensure increased robustness, 
especially on the field where sources of noise such as 
wind are abundantly present. Another point worth fur-
ther investigating would be on the hammering force; 
although its influence can to be considered to have 
been mitigated by normalizations in our devised met-
ric, there is no guarantee that it does not influence the 
shape of hammering sound spectrums. Therefore, it 
would be interesting to either measure the hammering 
force and incorporate this aspect in the diagnosis. Also, 
with the recent development of automatic hammering 

Fig. 12  Schematic of the experimental tunnel used in field environment testing for our proposed method (dimensions specified in mm)

Fig. 13  Experimental tunnel for field testing. This tunnel is identi-
cal to many found in service but has been made so that it would 
generate natural defects after a short period after its production. 
This provided us with natural defects in field environment to test our 
proposed method
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modules, that would enable consistent hammering with 
the same force for the whole structure, the performance 
of this method in combination with these robots should 
also be investigated.
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