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ABSTRACT: In this paper, a novel method is proposed to estimate the driving styles of other drivers based on a driving risk 

feature. This new feature is proposed using a dynamic potential field method wherein the distribution changes depending on 

the relative number of adjacent vehicles. A more appropriate description of driving risk is obtained compared to other indices. 

The proposed feature dramatically improves the accuracy of estimating the driving style. To estimate the driving styles, this 

study considers a problem of the fundamental model under a scenario wherein the target vehicle follows the preceding vehicle. 

The proposed estimation method is validated through experimental results. 

KEY WORDS: Safety, Accident avoidance/Collision prediction, Intelligent/Computer application [C1]

1. Introduction

According to a survey conducted by the Japan Metropolitan 

Police Department, as much as 90 % of the car crashes have been 

due to human mistakes (1). Many methods have been proposed to 

decrease the accident rate in the driving support system, such as 

automatic detection of lane changes of other drivers (2)(3). These 

systems use machine-learning techniques and work by analyzing 

common patterns that drivers generally exhibit on an average. 

However, these approaches have limitations because of the 

differences in the driving styles of each driver. Generally, drivers 

have different driving styles influenced by several conditions such 

as personality, driving environment, and mentality. According to a 

previous research (4), driving styles were found to affect driving 

patterns in unique ways even if the drivers are under similar 

conditions, thus limiting the performance of intelligent support 

systems. 

Many studies have been conducted to determine the driving 

style. Quintero et al. employed an approach to classify a driver as 

either aggressive or as moderate (5). This method analyzes the 

changes in the longitudinal and lateral positions by using the 

throttle, brake, and steering as features. However, these features are 

specific to each vehicle, making it impossible to estimate the 

driving styles of other traffic participants. To prevent car crashes, 

it would be better to estimate the driving styles of other drivers than 

that of the primary driver. 

Aljaafreh et al. defined driving styles and categorized them into 

below normal, normal, aggressive, and very aggressive (6). They 

proposed a method to estimate the driving style based on 

acceleration patterns. The acceleration and deceleration in 

longitudinal and lateral directions were used as features. However, 

this method focused only on the movement of the target vehicle 

without considering the relationship with adjacent vehicles, which 

should have been considered valuable information in determining 

the driving styles. 

The driving style can be explained using the driving risk, which 

is defined as an index used to evaluate the possibility of crashing 

into another vehicle. It is associated with improperly maintaining 

the position and inconsistent or excessive acceleration 

(deceleration) (7). An aggressive driver often shows a risky driving 

pattern whereas a cautious driver maintains the appropriate velocity 

and distance to avoid crashing with other vehicles. Hence, it is 

important to appropriately evaluate the driving risk considering the 

relationship with adjacent vehicles to improve the accuracy of 

estimating the driving style. Many indices have been proposed to 

evaluate the driving risk. Among them, the time-to-collision (TTC) 

and 𝐾dB, which is a perceptual risk index, are generally used in the

cases wherein the concerned vehicle is following the preceding 

vehicle (8)(9)(10). These indices are calculated using the relative 

velocity and the distance between the following and preceding 

vehicles. However, there are some limitations when the velocity of 

the following vehicle is equal to that of the preceding vehicle. 

Considering the above limitations, we propose a novel feature 

to appropriately evaluate the driving risk and improve the accuracy 

of determining the driving style. Only the measurable information 

regarding the primary vehicle was used to determine the driving 

styles of other drivers. Moreover, it was possible to evaluate the 

driving risk without restricting specific conditions, as observed in 

previous indices. To satisfy these requirements, we employed a 

dynamic characteristic potential model (11). This model helps in 

generating a drifted potential field depending on the velocity 

relative to adjacent vehicles. The proposed method is used to obtain 
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the repulsive potential energy from the preceding vehicle as a 

feature. This repulsive potential energy makes it possible to 

overcome the limitations observed in previous indices. When the 

target vehicle is faster than the preceding vehicle at a close range, 

the target is at a high risk of crashing. In this case, it can be 

considered that the target driver shows an aggressive driving style. 

Using the proposed method, a high repulsive potential energy is 

generated in the preceding vehicle, which reflects a high driving 

risk. However, a low repulsive potential energy is generated when 

the target vehicle is slower than the preceding vehicle while 

maintaining a sufficient distance. In this case, it can be considered 

that the target driver is less likely to crash, i.e., the risk is low and 

the driving style is cautious. As described previously, our approach 

can be used to appropriately evaluate the driving risk regardless of 

the conditions, thus improving the accuracy of determining the 

driving style. 

In addition, an error correction is implemented based on the 

assumption that the driving style remains the same within a short 

period. Kumar et al. implemented a Bayesian filter at the output of 

the support vector machine (SVM) (12). However, this method 

refers to the training dataset but the target driver. Therefore, this 

method is ineffective when the target vehicle shows a different 

pattern with respect to the training dataset. In contrast, the proposed 

method focuses on the target vehicle considering the tendency of 

the past estimation results until the current time. Thus, temporary 

errors different from the past tendency could be removed, which is 

expected to improve the estimation accuracy. 

The remainder of this paper is organized as follows. Section 2 

presents the problem setting and the overview of the proposed 

method. Section 3 explains the method of obtaining the new feature 

using the dynamic potential model. Section 4 describes the 

classification method. Section 5 presents the error correction. 

Section 6 explains the experiments using a driving simulator and 

presents the evaluation results. Finally, Section 7 presents the 

conclusions and future work. 

2. Overview 

2.1. Problem Setting 

 

In this study, the scene is modified to obtain a straight two-lane 

infinite highway, which has only one side as shown in Fig. 1. The 

primary vehicle, indicated using white color in Fig. 1 (a), houses 

measurement devices such as a GPS and laser scanners. The 

primary vehicle obtains the longitudinal vehicle gap 𝐷𝑥, relative 

velocity in the longitudinal direction 𝑉𝑟,𝑥 , and relative angle 𝜃 

between the target and preceding vehicles as shown in Fig. 1 (b). 

The red vehicle is the target vehicle for which the driving style is 

estimated. The proposed method focuses on a situation wherein the 

target follows the preceding vehicle, indicated in blue color. The 

primary vehicle considers the movement of the target vehicle, the 

driving style of which is estimated at each time step. 

The revision to previous studies shows a prevalence of driving 

style estimation using either two or three levels. In this paper, the 

driving style is categorized into three levels: cautious, normal, and 

aggressive, as observed in a previous study (13). The proposed 

method is used to determine the type of driving style of the target 

among the three given levels. 

 

2.2. Overview of Proposed Method 

 

To overcome the limitation of the previous methods, the 

proposed method focuses on the driving risk and extracts a novel 

feature. Figure 2 shows the schematic of the proposed method. It 

comprises three parts: feature extraction using a dynamic potential 

model, SVM-based classification, and error correction. The relative 

velocity in the longitudinal direction 𝑉𝑟,𝑥 , relative angle 𝜃 , and 

vehicle gap 𝐷𝑥 with respect to the preceding vehicle are obtained 

using measurement devices installed on the primary vehicle. Using 

(a) 

(b) 

Fig 1 Problem setting: (a) relationship with vehicles adjacent to the 

primary vehicle, and (b) definition of proposed features. 

Fig. 2 Overview of proposed method. 
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this information, the feature is extracted. The proposed method 

considers the driving risk, which is defined as the possibility of 

crashing into a preceding vehicle. The dynamic potential model is 

used to evaluate the driving risk. The vehicle gap and the relative 

velocity with respect to the preceding vehicle are considered 

simultaneously in this approach using the dynamic potential model. 

The repulsive potential energy of the preceding vehicle is obtained, 

which is used as a feature. This part is the main contribution of this 

study. In Section 3, the feature extraction method is explained. 

Next, a machine-learning technique is used for the 

classification. The SVM is used in the proposed method, which is 

reliable for low-dimensional classification. The driving style of the 

target is outputted at each time step. The details are described in 

Section 4. 

Finally, the error correction is performed to improve the 

estimation accuracy based on the assumption that the driving style 

remains unchanged within a short period. In the proposed method, 

the probability of each class in the SVM is used, and the probability 

of each driving style is updated using the statistics of past 

estimation results. Using this approach, temporary errors that are 

different from the tendency of the past results could be eliminated. 

The details of these approaches are discussed in Section 5. 

3. Feature Extraction 

3.1. Driving Risk Feature 

 

The driving risk can be evaluated using the relationship 

between the target and preceding vehicles. When the target is faster 

than the preceding vehicle, despite the small vehicle gap, it is 

assumed that the target driver is driving with a high risk. In this 

case, the target driver is considered to show an aggressive driving 

style. However, when the target vehicle is slower than the 

preceding vehicle with a sufficient vehicle gap, it is considered that 

the target driver is driving with a low risk, which is categorized as 

the cautious driving style. 

As mentioned in Section 1, several indices have been proposed 

to evaluate the driving risk. Among them, 1/TTC and 𝐾dB  are 

generally used. However, they cannot be employed when the 

relative velocity is zero with respect to the preceding vehicle. 

1/TTC is calculated as follows. 

 

1/TTC =
𝑉𝑟,𝑥

𝐷𝑥
,                                     (1) 

 

where 𝑉𝑟,𝑥 represents the relative velocity between the target and 

preceding vehicles, and 𝐷𝑥 is the distance between the two vehicles. 

𝐾dB is derived as follows (8)(9). 

 

𝐾dB =  10 log10(|4 × 107 ×
𝑉𝑟,𝑥

𝐷𝑥
3 |)sgn(𝑉𝑟,𝑥),          (2) 

 

The distance between the vehicles does not affect the indices in the 

case wherein the velocity of the target vehicle is equal to that of the 

preceding vehicle, even though this case is often observed during a 

following behavior.  

To solve this problem, a novel feature is proposed using a 

dynamic potential field method to simultaneously consider both the 

vehicle gap and the relative velocity. Using this approach, the 

driving risk could be evaluated without restricting the situation 

observed in the previous indices. 

The potential field method is generally used for robot 

navigation (14). This method helps in generating a repulsive energy 

from an obstacle to avoid a collision. In a normal potential model, 

only the distance between the robot and the obstacle is considered 

whereas both the relative velocity and the distance are considered 

in the dynamic model (15). By applying this dynamic model for 

driving, a method of generating a drifted potential field depending 

on the relative velocity was proposed (11). In the proposed method, 

the repulsive potential energy of the preceding vehicle is used as a 

feature to evaluate the driving risk. The greater the repulsive 

potential energy, the higher is the driving risk. The repulsive 

potential energy 𝑈 can be derived as follows. 

 

𝐺(𝑉𝑟,𝑥, 𝜃) =
1

2𝜋𝐼0(𝑘(𝑉𝑟,𝑥))
exp[𝑘(𝑉𝑟,𝑥) cos 𝜃],                (3) 

 

𝐻(𝐷𝑥) =
1

2𝜋𝜎
exp [−

𝐷𝑥
2

2𝜎
],                             (4) 

 

𝑈 = 𝛼𝐺(𝑉𝑟,𝑥 , 𝜃)𝐻(𝐷𝑥),                              (5) 

 

where 𝜃  represents the relative angle, 𝜎  is the variance of the 

vehicle gap, and 𝛼 is a coefficient. The relative angle is the angle 

between the relative position of the target with respect to the 

preceding vehicle. Equation (3) represents the von Mises 

distribution, and 𝐼0(∙) is the modified Bessel function of order zero. 

This distribution is uniform with a circular shape when the 

parameter 𝑘  is zero. If the parameter 𝑘  is large, the distribution 

tends to angle 𝜃. In this study, the parameter 𝑘 is adjusted using the 

relative velocity 𝑉𝑟,𝑥. The drifted direction of the potential field is 

then determined.  

Figure 3 shows the conditions of the vehicles with regard to the 

generated potential field based on the relative velocity. The red and 

blue vehicles are the target and preceding vehicles, respectively. 

With regard to the colors of the generated potential field, the red 

and blue circles indicate the high and low repulsive potential 

energies, respectively. When the velocity of the target is equal to 

that of the preceding vehicle, the potential field is uniform 

depending only on the vehicle gap as shown in Fig. 3 (a). When the 

target is faster than the preceding vehicle, the potential field drifts 

toward the target as shown in Fig. 3 (b). Consequently, the target is 

affected by the large potential energy, implying that the target is at 

a high risk of crashing with the vehicle ahead. In contrast, when the 

target is slower than the preceding vehicle, the potential field is 

generated forward as shown in Fig. 3 (c). Even if the target drives 

close to the preceding vehicle, the driving risk is low because of the 

relative velocity. The low driving risk is reflected in the small 

repulsive potential energy. Equation (4) expresses the repulsive 

potential energy, which is inversely proportional to the vehicle gap. 

This equation shows that if the target drives close to the preceding 

vehicle, it is affected by the large repulsive potential energy. 

However, if the target is farther away, the repulsive potential 

energy is lower. 

If the target driver exhibits a cautious driving style, the driver 

would maintain a considerable distance from the preceding vehicle 

and drive slowly. In this situation, it can be considered that the 

driver is driving with a low risk, which is reflected in the low 
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repulsive potential energy. However, when the target driver has an 

aggressive driving style, the driver closely follows the preceding 

vehicle with a high risk of crashing. Moreover, the driver would 

rapidly approach the preceding vehicle. Therefore, the target is 

affected by the high repulsive potential energy. 

 As explained previously, our approach using the dynamic 

potential model makes it possible to evaluate the driving risk 

regardless of the relative velocity while simultaneously considering 

the vehicle gap. The repulsive potential energy generated by the 

preceding vehicle is defined as the driving risk feature (DRF), 

which is used as the feature. 

 

 

3.2. Feature Vector 

 

The feature vector comprises three features: the vehicle gap 

with respect to the preceding vehicle, the relative velocity with 

respect to the preceding vehicle, and the DRF. The feature vector 

𝐱𝑡 at time 𝑡 can be represented as follows. 

 

𝐱𝑡 = [𝐃𝑡 ,   𝐕𝑡 ,   𝐔𝑡]T,                                             (6) 

 

𝐃𝑡 = [𝐷𝑥,𝑡−(𝑊−1) , …,   𝐷𝑥,𝑡−1 ,   𝐷𝑥,𝑡],                   (7) 

 

𝐕𝑡 = [𝑉𝑟,𝑥,𝑡−(𝑊−1) , …,   𝑉𝑟,𝑥,𝑡−1 ,   𝑉𝑟,𝑥,𝑡],              (8) 

 

𝐔𝑡 = [𝑈𝑡−(𝑊−1) , …,   𝑈𝑡−1 ,   𝑈𝑡],                          (9) 

 

where 𝑊 is the size required to capture a continuous process. The 

proposed method considers the transition of the features. For 

example, 𝐃𝑡 is a sequence comprising 𝑊 data until time 𝑡. 

In the absence of scaling, the estimation accuracy is largely 

influenced by the differences in the values. Thus, the proposed 

method conducts normalization using an average and a standard 

deviation, which are calculated during the training phase. 

4. SVM-Based Classification 

In the proposed method, the SVM is used to determine the 

class of the feature vector among the three defined driving styles. 

The proposed method deals with the driving style as a class in the 

SVM, and the driving style is determined via a multiclass 

classification. 

In the proposed method, the radial basis function (RBF), which 

is the most effective kernel for low-dimensional classification, is 

selected. The RBF is defined as follows. 

 

𝐾(𝐱, 𝐱′) = exp(−𝛾‖𝐱 − 𝐱′‖2),                   (10) 

 

where 𝛾 is the kernel parameter. The proposed method uses an 

approach for the multiclass extension of the binary SVM using a 

one-versus-one strategy. The estimated driving style 𝑆𝑡 at time 𝑡 

can be derived as follows. 

 

𝑆𝑡 = argmax
𝑗

𝑦𝑗(𝐱𝑡),                          (11) 

 

where 𝑗  represents the index of the driving styles. The driving 

style 𝑆𝑡  denotes the output from the SVM without the error 

correction, explained in Section 5. 

5. Error Correction 

The proposed method conducts the filtering based on the past 

estimation results when it is not convinced of the output of the 

estimation model. The SVM always outputs at least one class 

among the candidates even if there is no significant difference in 

the probability of each class. To overcome this limitation, the past 

estimation results are referred to in the proposed method when it is 

difficult to establish the output from the SVM. The probability of 

each class in the SVM is calculated using a method proposed by 

Platt (16).  

The proposed method refers to the past results until the current 

time, as shown in Fig. 4. Thus, the proposed filtering method has a 

higher adaptability to the target than the Bayesian filter (12). The 

(a) 

(b) 

(c) 

Fig. 3 Generated potential field using dynamic potential model: (a) 

the relative velocity is zero between the target and preceding 

vehicles, (b) the target is faster than the preceding vehicle, and (c) the 

target is slower than the preceding vehicle. The distribution of the 

potential field changes depending on the relative velocity. 
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proposed method adjusts the probability of the output class of the 

SVM as follows. 

 

𝑃′(𝐗0:𝑡|𝑆𝑡 ∈ 𝐴) = 𝑃(𝐗0:𝑡|𝑆𝑡 ∈ 𝐴)
𝑓(𝐴)

∑ 𝑓(𝑗)𝑀
𝑗

,              (12) 

 

𝐗0:𝑡 = [𝐱0, 𝐱1, … , 𝐱𝑡],                              (13) 

 

where 𝑓(𝐴)  represents the number of cases that the estimated 

driving style belongs to class A until time 𝑡, 𝑗 is the index of the 

driving style class, and 𝑀 is the number of candidates. Finally, the 

corrected driving style 𝑆𝑡
′ is derived as follows. 

 

𝑆𝑡
′ = argmax

𝑗=1,2,…,𝑀
𝑃′(𝐗0:𝑡|𝑗).                        (14) 

 

Compared to 𝑆𝑡 given in Section 4, 𝑆𝑡
′ is a more accurate result 

because the temporary errors that are different from the tendency 

of the past estimation results could be removed using the filtering 

technique.  

6. Results 

6.1. Experiments 

 

In this study, a driving simulator (DS) named as “D3 Sim 

(Mitsubishi Precision Co., LTD.)” was used to collect the training 

dataset to develop the estimation model and the testing dataset for 

evaluation. This simulator showed visual information on display 

devices comprising five monitors as shown in Fig. 5 (a). In addition, 

the driving seat comprises a steering, an acceleration pedal, and a 

brake pedal as shown in Fig. 5 (b). The data was recorded at 120 Hz. 

A total of ten subjects (drivers A, B,..., and J) of different ages 

participated in the experiment with different simulator and driving 

experiences. Their informed consent was obtained before starting 

the experiments. 

An experimental scene was modified wherein a straight two-

lane infinite highway having only one side was considered, as 

shown in Fig. 6 (a). The red car is the vehicle operated by the 

subjects in the experiments, which is the target in the driving style 

estimation. The blue car is the preceding vehicle, and the yellow 

car represents the lead vehicle, which is on a lane adjacent to that 

of the target. Both the preceding and lead vehicles blocked the 

roads of the subject vehicle as shown in Fig. 6 (b) while the 

velocities changed randomly. Thus, the subject vehicle was not 

allowed to overtake them. Consequently, the target was forced to 

follow the preceding vehicle for 60 s per one trial. The driving style 

was instructed to the subjects before the measurement. The order 

Fig. 4 Error correction based on past estimation results. 

 

 

(b) 

Fig. 5 Experimental setup: (a) driving simulator, and (b) system 

diagram. 

 

(a) 

(a) 

(b) 

Fig. 6 Aspects of experiments: (a) experimental scenario, and (b) 

displaying scene to subjects. 
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of the instructed driving style was normal, cautious, and then, 

aggressive. First, the subjects drove the vehicle under no specific 

instruction, and the data were recorded as normal driving style. 

Second, the subjects were instructed to “drive cautiously,” and the 

data obtained were classified as the cautious driving style. 

Thereafter, the subjects were instructed to “hurry,” and the data 

were recorded as the aggressive driving style. Twenty trials were 

conducted under each driving condition. Totally, 600 trials were 

conducted in the experiments.  

 

 

6.2. Estimation Results 

 

Figures 7 and 8 show the results of one trial among the testing 

dataset. The ground truth in Fig. 7 is cautious, and the ground truth 

in Fig. 8 is aggressive. In Figs. 7 (a) and 8 (a), the X and Y axes 

denote the time and normalized features, respectively, used in the 

proposed method. The blue, green, and red lines indicate the 

vehicle gap, relative velocity, and DRF, respectively. The greater 

the values, the wider is the gap, the faster is the velocity, and higher 

is the repulsive potential energy, respectively. It is confirmed that 

Table 1 Average of features for each driving style. 

 

 Cautious Normal Aggressive 

𝐷𝑥 [m] 66.1 56.5 36.1 

𝑉𝑟,𝑥 [m/s] -0.905 -0.871 -0.871 

𝑈 [J] 0.148 0.224 0.479 

 

 

the driver maintained a wider vehicle gap 𝐷𝑥 under the cautious 

driving style than that under the aggressive style. Similarly, the 

cautious driver was influenced by the low repulsive potential 

energy 𝑈, the DRF, whereas the aggressive driver was influenced 

by the high repulsive potential energy. In contrast, there was no 

difference in the relative velocity 𝑉𝑟,𝑥  between the two driving 

styles. Table 1 presents the average of the features under each 

condition.  

Figures 7 (b) and 8 (b) show the estimated driving styles at each 

time step obtained using the proposed method. The driving style 

Fig. 7 Estimation results of one event where the ground truth is cautious: (a) proposed features, and (b) driving style estimated using 

proposed method. 

 

Fig. 8 Estimation results of one event where the ground truth is aggressive: (a) proposed features, and (b) driving style estimated using 

proposed method. 
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was successfully estimated based on the ground truth. The results 

demonstrate that the driving style could be estimated correctly 

using the proposed method. 

 

 

6.3. Feature Evaluation 

 

The effectiveness of the DRF was compared with the previous 

indices, 1/TTC and 𝐾dB . The evaluation as a single variable 

classifier is one of the general methods for feature selection. The 

accuracy was calculated for the features, and they were compared 

with each other. The 𝐹1 measure was used as an evaluation metric. 

The 𝐹1 measure is represented for every class against the remaining 

two classes as follows. It can be derived as follows. 

 

precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,                              (15) 

 

recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,                                (16) 

 

𝐹1 = 2 ×
precision×recall

precision+recall
,                         (17) 

 

where TP, FP, and FN denote the true positive, false positive, and 

false negative, respectively. Among the 600 trials of the dataset, 

300 trials were used for training and the remaining was used for the 

evaluation. Table 2 lists the results sorted with the features based 

on their estimation accuracies. 

It is clearly confirmed that the DRF, which is the proposed 

feature, is the most valuable feature for determining the driving 

style compared to the other indices 𝐾dB and 1/TTC. The accuracy 

of the DRF was the highest among the candidates, which was 

53.4 %. Moreover, 1/TTC and 𝐾dB exhibited largely the same or 

lower accuracy with respect to the vehicle gap. The results prove 

that these indices cannot consider the vehicle gap and the relative 

velocity simultaneously. Despite the increased amount of 

information, the performance decreased in the case of 𝐾dB. In most 

cases, cautious drivers maintain a considerable distance from the 

preceding vehicle compared to aggressive drivers as shown in 

Table 1. The vehicle gap achieved an estimation performance with 

an accuracy of 51.8 % whereas the relative velocity showed the 

lowest performance with an accuracy of 27.9 %. Using this 

evaluation, we demonstrated that the DRF is significantly effective 

in determining the driving style.  

 

 

6.4. Evaluation of Estimation Performance 

 

It was confirmed that the DRF is the most effective feature as 

a single variable classifier. However, there is a possibility that the 

best set of features do not contain the best individual feature.  

Hence, it is possible to obtain a better estimation performance with 

1/TTC or 𝐾dB, though the DRF is the most effective feature as a 

single variable classifier. The performance of the proposed method 

was compared with set 1 (the vehicle gap, relative velocity, and 

1/TTC) and set 2 (the vehicle gap, relative velocity, and 𝐾dB). 

Table 3 lists the results of the estimation performance for each set 

of features. This comparison was conducted under the same 

conditions, except the features. The accuracies of the sets 1 and 2 

Table 2 Estimation performance of features. 

 

Ranking Feature 𝐹1 

1 DRF (proposed) 53.4 % 

2 1 / TTC 51.9 % 

3 Vehicle gap 51.8 % 

4 𝐾dB 47.5 % 

5 Relative velocity 27.9 % 

 

 

Table 3 Performance comparison. 

 

Feature set 𝐹1 

Set 1 

(vehicle gap, relative velocity, 1/TTC) 
63.8 % 

Set 2 

(vehicle gap, relative velocity, 𝐾dB) 
65.1 % 

Proposed 

(vehicle gap, relative velocity, DRF) 
71.0 % 

 

 

were 63.8 % and 65.1 %, respectively, whereas the proposed 

features achieved the highest performance with an accuracy of 

71.0 %. Thus, it was proven that the DRF is not only the best 

individual feature but also included in the best set of features for 

the driving style estimation. 

Using the above evaluations, we demonstrated that the DRF, 

our proposed feature, is the most effective feature for estimating 

the driving style, outperforming the previous indices in estimating 

the accuracy. 

7. Conclusion 

In this study, a novel feature was proposed to evaluate the 

driving risk using a dynamic potential field method and determine 

the driving styles of other traffic participants. The experimental 

results demonstrate that the proposed method outperforms previous 

indices in terms of the estimation accuracy. The proposed feature 

was evaluated as a single variable classifier. The proposed feature 

was significantly more effective than 1/TTC and 𝐾dB. In addition, 

the best set of features was evaluated, and the proposed features 

achieved an average of 71.0 % for the 𝐹1 measure. The results show 

that the proposed method is very effective in determining the 

driving styles of other drivers. 

In the future, the parameters optimization will be discussed for 

the DRF. The effectiveness of the DRF depends on the values of 

the parameters. We plan to propose a method to determine the 

parameters without the trial-and-error process. 

 

This paper is written based on a proceeding presented at JSAE 

2017 Spring Annual Congress. 
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