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Fuzzy Clustering of Spatially Relevant Acoustic Data
for Defect Detection

Jun Younes Louhi Kasahara , Hiromitsu Fujii, Atsushi Yamashita, and Hajime Asama

Abstract—Efficient diagnosis of concrete structures is a growing
issue in modern societies where concrete is an omnipresent ma-
terial. The hammering test is a traditional nondestructive testing
method that has been employed in the field for a long time and
for which automation is highly desirable. The problem consists in
determining from the sound returned after a hammer strike on a
structure’s surface if there is a defect beneath or not. In this letter,
we present an unsupervised learning approach for the automation
of hammering test. First, mean shift is used with Mel-frequency
cepstrum coefficients at various parameter values in order to find
a stable mode configuration. Then, the corresponding peaks are
used to obtain seeds for spatial fuzzy c-means to cluster ham-
mering samples while combining audio and position information.
Experiments have been conducted in indoor artificial environment
on concrete blocks containing man-made defects. Results showed
the effectiveness and robustness of the proposed solution on detect-
ing different types and number of defects. Our approach showed
promising performance also in tests performed in outdoor environ-
ment using a fully automated hammering system.

Index Terms—Robotics in construction, robot audition.

I. INTRODUCTION

CONCRETE is a material omni-present in modern soci-
eties and heavily used in construction, notably for social

infrastructures such as bridges and tunnels. As it is the case
with any material, concrete can be subject to damage by time
and environmental factors. Therefore, diagnosis for defects in
those structures is a paramount issue to guarantee user safety.
There are several inspection methods for concrete such as ul-
trasonic CT and Computer Vision, however, for large scale in
depth inspection, the hammering test in one of the most used
methods. A human operator hits the surface of the structure with
an inspection hammer, as shown in Fig. 1, and uses the returned
sound to infer if the hit spot is a defect or not. This traditional
method is popular for its non-destructive nature as well as for not
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Fig. 1. Hammering test conducted by a professional: a hammer is used to
hit the surface of the concrete structure and the returned sound used to assess
whether a defect lies beneath the surface or not.

requiring heavy and/or precise tools for execution, making it
suitable for systematic inspection of big structures such as high-
ways, bridges or tunnels. However, despite it apparent ease of
use, the hammering test requires a skilled operator to correctly
analyze hammering sounds. Other than making the diagnosis
subjective, the growing number of structure to test demands
a more efficient alternative [1]. Therefore, automation of the
hammering test is highly desirable.

Besides direct methods such as the work in [2], where several
testing methods were fused in a 3D visualization program, pre-
vious works in this field mainly used machine learning and can
be distinguished between supervised and unsupervised learning
approaches.

In [3] authors based their work on another yet similar acous-
tic non-destructive testing method for concrete structures which
consists in dragging chains across the structure’s surface. Phys-
ical noise reduction was conducted by sound-proofing around
the chains and Linear Prediction Coefficients were used for de-
tection. A modified Independent Component Analysis was used
to separate noise from hammering sound and to train a Radial
Basis Function neural network based on Mel-Frequency Cep-
strum Coefficients (MFCCs) to classify hammering samples in
[4]. In [5] the authors used ensemble learning techniques with
time-frequency analysis in order to achieve a classifier able to
detect defects and classify them according to their depth from
the surface. This work was later expanded to encompass detec-
tion of crack propagation direction beneath the surface in [6].
These approaches have yielded remarkable results. However,
the main drawback of these supervised learning approaches re-
side in their reliance on training sets. Those training sets, hav-
ing a large influence on performance, are difficult to obtain,
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especially in the case of concrete structures, due to logistical
and legal reasons: data collection requires structures to be tem-
porarily put out of service and there are legal issues if defects are
found. Furthermore, due to many factors such as chemical com-
position, humidity and temperature during the hardening phase,
concrete is a material with high variability. This results in ham-
mering sounds being different from one structure to another,
i.e., training sets being structure-specific.

An unsupervised learning approach based on rough clustering
of hammering sounds’ Fourier spectrum by k-means to obtain
a model for the non-defect hammering sound was devised in
[7]. That model was then used as a reference to conduct diagno-
sis using a correlation metric and thresholding. Despite yield-
ing promising results in laboratory and field environment, the
threshold selection by user at the final step hindered practicabil-
ity and applicability for some cases. In our previous work, spatial
fuzzy c-means and MFCCs were employed [8]. The proposed
methodology showed high performance in the case of single and
multiple delaminations. However, the fixed number of clusters
restricted cases where this method was applicable. Indeed, in
real-world conditions, the number and types of defects can vary
greatly between structures. Another shortcoming was the ran-
dom seeding process for fuzzy c-means: initial conditions, i.e.,
seeds, heavily influence the final clustering output. Therefore, a
step to estimate the number of clusters on the inspected structure
and an adequate seeding process are necessary.

In this letter, an offline unsupervised learning method for de-
tection of defects in concrete structures, able to estimate the
proper number of clusters present in the dataset and conduct
clustering by discriminating defects, is presented. The letter
is organized as follows: an overview of our proposed method
is presented in Section II. Details on the estimation of num-
ber of clusters through mean shift are reported in Section III.
Section IV describes the clustering of hammering samples based
on audio and position data by spatial fuzzy c-means. Experimen-
tal tests and results performed in indoor artificial environment
and outdoor on a mock tunnel are reported in Section V. Dis-
cussion is conducted in Section VI and conclusion are drawn in
Section VII.

II. OVERVIEW OF PROPOSED METHOD

Humans operators conduct hammering by usually hitting the
structure’s surface on multiple adjacent points and in quick suc-
cession: it can be thought that a hammering sample is not ana-
lyzed alone but as part of a group, i.e., operators would collect
a certain amount of samples and look for samples that “do not
sound like the others”. Therefore, we choose to incorporate
the notion of spatial autocorrelation in our approach. This can
be roughly translated as “samples being located physically close
together are more likely to belong to the same group” [9]. Since
defects are localized and compact on a concrete structure, this
concept fits well in this particular context. Humans’ ability to
conduct the hammering test also indicates that the human ear’s
perception range is good, or at least acceptable, to discrimi-
nate defect hammering samples. To emulate their performance,
MFCCs are used as sound feature for hammering samples. This
feature is devised to simulate human hearing and is popular in

Fig. 2. Flowchart of proposed method.

the field of speech recognition as well as other related fields
such as music information retrieval [10], [11].

Spatial fuzzy c-means was shown to have sufficient discrim-
inative ability to differentiate hammering samples [8]. Further-
more, it is a staple in several fields and its simplicity allows for
easy traceability of results.

However, the number of cluster K and seeds need to be
chosen carefully. For this reason, mean shift is used to find stable
mode configurations, i.e., cluster number, and the corresponding
peaks in the probability function distribution are used as seeds
for spatial fuzzy c-means. Mean shift only requires the tuning
of one single parameter, namely bandwidth. Selection of this
parameter is not a trivial task and heavily influences the output
[12]: a low value of bandwidth tends to over-segment the data
while higher values tend to merge clusters. To find an adequate
value of bandwidth and successfully estimate K, stable mode
configurations are searched by parsing the bandwidth parameter.

A flowchart of our proposed method is shown in Fig. 2. We
assume that all hammering data has been collected and available
prior to analysis.

Our contributions can be summarized as follows:
� We explore an unsupervised method for this issue.
� Previous work used a pre-determinated fixed number of

clusters. Our proposed method has the capability of choos-
ing a value of K adapted to the considered dataset.

� In addition to the determination of K, appropriate seed
selection for clustering is conducted.

III. SEEDING USING MEAN SHIFT

Mean shift is a mode-seeking algorithm first proposed by
[13]. It is appealing due to its non-parametric nature and has
been popular in Computer Vision and Image Processing.

Mean shift considers that samples from a dataset are drawn
from sources, most often modelled as Gaussian distributions. In
the estimation of K, this assumption is accepted and an appro-
priate value of K and corresponding cluster centers are retrieved.
Then, the proper cluster is conducted by spatial fuzzy c-means
using mean shift’s output. Spatial fuzzy c-means, contrary to
mean shift, does not assume any model on data distribution.
Furthermore, physical positions of samples are included in the
analysis.



2618 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

A. Feature Extraction

Considering a dataset of hammering samples D =
X1 , . . . ,XN comprised of N samples, a hammering sample
Xi = {li ,xi} is defined as:

1) Spatial Information: A physical location, point of contact
between the hammer head and the structure’s surface, noted
li = (lxi , lyi ). The physical distance between two samples is the
Euclidian distance, noted ‖li − lj‖.

2) Audio Information using MFCCs: MFCCs of the sound
resulting from the impact of the hammer head to the structure’s
surface, noted xi .

A metric based on the sample Pearson correlation coefficient,
as we devised in [7], [8], is used for audio feature distance.
Given the MFCCs a = (al)[l=1,...,M ] and b = (bl)[l=1,...,M ] ,
d(a,b) is computed as in (1), with M being the dimension of
MFCCs and a and b being the average coefficient of a and b,
respectively.

d(a,b) =
1
2

⎛
⎝1 −

∑M
l=1[(al − a)(bl − b)]√∑M

l=1(al − a)2
√∑M

l=1(bl − b)2

⎞
⎠

(1)

B. Cluster Pruning and Bandwidth Selection

Due to the presence of outliers, clustering algorithms tends to
produce irrelevant clusters, only containing a very small number
of samples. Those irrelevant clusters correspond to either cases
of over-segmentation by mean shift for low values of band-
width or outliers, in spatial or feature domain, that end up being
attributed their own individual cluster. Mean shift being used
here to estimate K prior to actual clustering by spatial fuzzy
c-means, the creation of those irrelevant clusters is highly unde-
sirable. Therefore, to increase robustness against outliers and to
seek “true” meaningful mode configurations of the dataset, we
conducted cluster pruning, i.e., clusters that contain less than a
certain percentage of the considered dataset were eliminated.

In order to obtain an appropriate value for the bandwidth pa-
rameter, stable mode configurations obtained by mean shift are
investigated [14]. The bandwidth is tested for a range of pos-
sible values and the number of clusters or underlying peaks in
the distribution, before and after the pruning step, of the dataset
is observed. This results in plateaus in the number of cluster
which indicates stable and meaningful mode configurations.
Since slight over segmentation is preferable to under segmenta-
tion, the first plateau where the pruned and non-pruned number
of cluster match is taken as the appropriate number of clusters.
For the bandwidth value itself, the value of the middle of that
plateau is chosen.

C. Seeds Extraction From Mean Shift

Fuzzy c-means presents the weakness of requiring the num-
ber of cluster to be known beforehand. Furthermore, the initial-
ization step or seeding process can heavily influence the final
clustering, i.e., a bad seeding process can lead the algorithm
to be stuck in a local minima. To solve these two issues, we
use the output of mean shift: to find in a data-driven approach
the appropriate number of clusters for the considered dataset

and to provide adequate seeds for fuzzy c-means in the form of
centroids resulting from the clustering by mean shift.

IV. CLUSTERING USING SPATIAL FUZZY C-MEANS

Fuzzy c-means is a clustering algorithm widely used in many
fields such as Computer Vision, more specifically for image
segmentation [9].

A. Update Rule

1) Audio Feature Update Rule: The regular fuzzy c-means
update is first conducted in MFCCs space using the correlation
distance defined in (1). For each sample Xi toward each clus-
ter center cj , fuzzy membership coefficient uij expresses how
strongly the sample belongs to a cluster. With (cj )[j=1,...,K ] the
cluster centroids and m a parameter controlling the fuzziness of
the system, the update rule is conducted as in (2):

uij =
1

∑N
l=1

d(x l ,ci )
d(xj ,cj )

2/(m−1) (2)

2) Spatial Feature Update Rule: Defects and non-defect ar-
eas are compact, e.g., a single non-defect sample physically
surrounded by defect samples is likely to be a classification er-
ror, given that samples are physically close enough. In order to
reduce these errors, first a spatial neighbourhood NB(Xi) for
each sample Xi is defined as in (3): a disc of radius γ based
on Euclidian distance over samples’ physical locations. Then,
based on this neighbourhood, a spatial estimator hij , the “ex-
pected” fuzzy membership of sample Xi for cluster j based on
other samples in proximity, is defined as the average of corre-
sponding fuzzy memberships, as shown in (4), with |NB(Xi)|
being the number of neighbours for sample Xi . Compared to
simply conduct a smoothing step after a regular fuzzy c-means,
spatial fuzzy c-means enables to find a balance between these
inputs of different nature, namely position and audio informa-
tion, by conducting smoothing at each iteration and combining
it with clustering in audio space.

NB(Xi) = (Xi ∈ D | ‖li − lj‖ ≤ γ) (3)

hij =
1

|NB(Xi)|
∑

k∈NB(Xi )

ukj (4)

Finally, with p and q weighting exponents on each fuzzy
components, an additional spatial update is conducted as in (5):

uij → up
ijh

q
ij∑

k up
kjh

q
kj

(5)

The centroid update rule remains unchanged from the regu-
lar fuzzy c-means. Conversion to a crisp clustering is done by
maximum membership: each hammering sample is assigned to
the cluster with the highest fuzzy coefficient.

B. Cluster Identification

Our proposed method does not distinguish between defect
types, i.e., every type of defect are regrouped under the label
defect.
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Here, a couple of different cases arise. If mean shift seeding
step returns a single cluster, it is assumed that no defects are
present in the considered dataset. There is the possibility that
the whole dataset is composed of defects, however, assuming
that the defects do not occupy the majority of the structure and
the dataset covers a large enough area, this possibility can be
reasonably put aside: if the inspection target was damaged to
such extend, precise diagnosis would not be required, a simple
visual inspection would suffice. If two clusters are identified, the
method used in [7], [8] is applied: a weight for each cluster based
on hammering samples’ physical distance to nearest neighbour
ri , as shown in (6), is computed, as in (7), to find the cluster
occupying the largest area of the structure cnon-defect, as in (8).

ri =
1
2
∗ min

∀Xj ∈D
‖li − lj‖ (6)

wck
=

∑
Xi ∈cj

r2
i (7)

cnon-defect = carg max
k

(w c k
) (8)

In the last case of more than two clusters, as previously
weights for each cluster are computed and the largest cluster
is labelled as non-defective with its center cref. Then, other
clusters are ranked based on the correlation distance from that
cluster and labelled non-defective if they fall under a threshold
T , defective otherwise, as shown in (9), with labelci

the label
attributed to the j-th cluster.

labelci
=

{
defective if d(ci , cref) ≥ T

non-defective otherwise
(9)

V. EXPERIMENTS

A. Devices and Settings

The used experimental setup is illustrated in Fig. 3. Loca-
tion of a hammering sample was a 2D position, achieved by
color-tracking the hammer head. The used hammer was a KTC
UDHT-2 (length 380 mm, weight 160 g, head diameter 16 mm),
commonly used in hammering test by professionals.

Sound was recorded at 44.1 kHz using a Behringer ECM8000
condenser microphone coupled with a Roland UA25EX sound
board and a laptop PC for data analysis. Fourier spectrum were
obtained by Fast Fourier Transform (FFT) using a window size
of 1024 and then MFCCs were computed using 26 triangular
filters after zero mean and unit variance normalization. Only the
first 10 coefficients, excluding the zero coefficient, were then
kept. The zero coefficient represents the average log-energy of
the input signal and does not interest us here since zero mean
normalizations are effected. Higher coefficients represents fast
changes in the Mel filterbanks energies and are known to degrade
recognition capabilities [15]. p and q were set to unity, m = 2
and γ was set so that every sample would have at least one
neighbour. A laptop with a Core i7 at 2.60 Ghz was used in the
experiments and only a few seconds was needed for analysis.

Fig. 3. Experimental setup in laboratory conditions showing a hammer on top
of (a) a concrete test block, (b)microphone and (c) camera.

Fig. 4. Schematic of concrete test blocks: red area shows defects. Dimensions
in mm. (a) Generic schematic of the delamination type concrete test block.
(b) Schematic of the void type concrete test block.

B. Using Concrete Test Blocks

For testing purposes, concrete test blocks containing man-
made defects were made, as shown in Figs. 4 and 5. The cor-
responding graphs used for bandwidth selection are shown in
Fig. 6. The outputs returned for each case using normalized
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Fig. 5. Concrete test blocks containing man-made defects used in our experiments. The red areas shows ground truth of defects. (a) Case 1: single delamination.
(b) Case 2: dual delamination. (c) Case 3: delamination & void. (d) Case 4: no defects.

Fig. 6. Evolution of the number of clusters found by mean shift for various values of bandwidth parameter. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

Fig. 7. Results of normalized spectral clustering on the considered cases. (a) Result of normalized spectral clustering on Case 1. (b) Result of normalized spectral
clustering on Case 2. (c) Result of normalized spectral clustering on Case 3. (d) Result of normalized spectral clustering on Case 4.

Fig. 8. Results of [8] on the considered cases. (a) Result of [8] on Case 1. (b) Result of [8] on Case 2. (c) Result of [8] on Case 3. (d) Result of [8] on Case 4.

spectral clustering [16] (with Fourier spectrum, Euclidian dis-
tance metric and setting K = 2), our previous work [8]
and our proposed method were examined and are shown
in Figs. 7–9, respectively: red dots and green circles rep-
resent hammering samples classified as defects and non-
defects respectively, location of samples correspond to Fig. 5.
Performance in each case was quantified under the val-
ues of precision, recall, and accuracy and are presented in
Table I. Hammering action was here conducted by human while
trying to follow a regular grid pattern as much as possible with
the hammer strike motion: this allows most samples to have the
same number of neighbours and thus to establish a fair spatial
estimator.

1) Case 1. Single Delamination: The tested concrete block
is shown in Fig. 5(a) and contained a single delamination.
The dataset is composed of 462 samples: 272 non-defects and
190 defects. Referring back to Fig. 4(a), α = 30 deg., l =
200 mm, d = 115.5 mm and L = 230.9 mm. In Fig. 6(a)
is shown the evolution of cluster number K with the band-
width. It can be noticed that K stabilizes first at a plateau
of K = 2. The value of 0.025 was chosen for this case. As
shown in Fig. 7(a), normalized spectral clustering returned
an overall good result (Table I). Some misclassified samples
on the left side, where the defect runs deeper, can be noted.
The work of [8] and our proposed method returned similar
outputs.
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Fig. 9. Results of our proposed method on the considered cases. (a) Result of proposed method on Case 1. (b) Result of proposed method on Case 2. (c) Result
of proposed method on Case 3. (d) Result of proposed method on Case 4.

TABLE I
PERFORMANCE OF VARIOUS METHODS ON EXPERIMENTS CONDUCTED USING CONCRETE TEST BLOCKS

Values of precision, recall and accuracy, usually used to measure a classifier’s performance, were computed.

2) Case 2. Dual Delamination: The corresponding concrete
test blocks are shown in Fig. 5(b). To simulate the presence of
multiple delaminations in the tested area, two concrete blocks
containing each a single delamination were put together. This
dataset is composed of 270 samples: 155 non-defects and 115
defects. For the left side block α = 15 deg., d = 40 mm, l =
149.3 mm, and L = 154.5 mm. For the right side block α =
15 deg., l = 200 mm, d = 53.6 mm and L = 207.1 mm. The
number of clusters in the bandwidth selection process stabilized
at a value of K = 2 and this plateau is meaningful i.e., matches
the curve of cluster number after cluster pruning at 10% of the
dataset (Fig. 6(b)). Results shows that our proposed method
and the approach in [8] returned better performance than using
normalized spectral clustering, as illustrated in Figs. 7(b)–(b).
Compared to the work in [8], our proposed method yielded a
slightly lower precision for a little gain in recall and accuracy,
as indicated in Table I.

3) Case 3. Delamination and Void: The corresponding con-
crete test blocks are shown in Fig. 5(c). Here, one concrete
block containing a delamination (left side block, the same as
the one used on the right in case 2) and another one contain-
ing a polystyrene cuboid to simulate a void (right side block,
schematic shown in Fig. 4(b)) were put together. This aimed
to simulate the co-existence of defects of different nature in a
tested area. This dataset is composed of 254 samples: 159 non-
defects and 95 defects. According to Fig. 6(c), the setting K = 4
seemed appropriate. The result outputted by normalized spectral
clustering mostly managed to differentiate the two blocks, with-
out being able to discern the defects embedded in each of them.
This resulted in poor performance, as indicated in Fig. 7(c) and
Table I. Using MFCCs and spatial fuzzy c-means, it is interest-
ing to note that the method in [8] managed to perfectly discern
the delamination but failed to detect the void defect due to the
setting K = 2, as shown in Fig. 8(c). Our proposed method
on the other hand achieved to discern both defects, Fig. 9(c),

with high performance values of precision, recall and accuracy
(Table I).

4) Case 4. No Defects: The corresponding concrete test
block is shown in Fig. 5(d). This particular concrete block did
not contain any defects and the dataset is composed of 80 non-
defect samples. Fig. 6(d) shows that the number of clusters dives
straight to a stable and meaningful at 10% plateau at K = 1,
strongly suggesting that the data is composed of a single cluster.
Both normalized spectral clustering and the method in [8] di-
vided the data into two clusters, as shown in Figs. 7(d) and (d).
The difference in outputs can be explained by the different audio
feature used (Fourier spectrum and MFCCs).

To summarize, our proposed method was successfully able
to replicate the results presented in [8] in cases 1 and 2, with
comparable performance. Moreover, it showed its ability to cor-
rectly estimate the number of clusters and conduct clustering
in case 3 and 4, where the previous approaches failed to return
satisfying results.

C. In Field Conditions

The performance of our proposed method was tested in field
conditions using a mock tunnel, shown in Fig. 10(a). It is located
outside and in scale with tunnels currently in service. Also,
in opposition with the concrete test blocks presented earlier,
defects in this tunnel occurred naturally. Therefore, it can be
assumed that this setting is identical to actual inspection sites for
hammering with the benefits of availability for experimentation.
The defects here being natural, we were limited in the types of
defects available for testing. Ground truth was obtained here by
meticulous inspection by a seasoned professional. Since there
was no time constraints, the results of this inspection can be
considered superior of what is usually conducted regularly in
the field and thus very close to the actual ground truth. Due to
inaccessibility of true ground truth and limited number of areas
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Fig. 10. Field conditions experimental setting. (a) Mock tunnel: located outdoors and in real scale, this tunnel exhibits naturally occurred defects and closely
matches real-life field conditions. (b) Hammering module mounted on Variable Guide Frame: this system allows automatic hammering and data collection
anywhere inside a tunnel [17]–[19].

Fig. 11. Results of our proposed method on portions of the mock tunnel. (a) Area 1: delamination. The red area shows ground truth of defects. (b) Evolution of
number of cluster with bandwidth. (c) Result of proposed method on Area 1. (d) Area 2: no defects. (e) Evolution of number of cluster with bandwidth. (f) Result
of proposed method on Area 2.

of interest in the tunnel, we restricted ourselves to qualitative
analysis of the few obtained results.

Hammering was effected and data collected using an auto-
mated hammering module mounted on a system called Variable
Guide Frame, as illustrated in Fig. 10(b) [17]–[19]. This setup
allows to conduct hammering virtually anywhere on the surface
of the tunnel, in a fashion similar to human operators by careful
design of the hammer swing motion to reproduce human-like
hammering sounds.

1) Area 1. Delamination: The first area considered on the
mock tunnel contains a delamination. Furthermore, this area has
been subject to rainwater leakage, resulting in the white lines
visible in Fig. 11(a). Fig. 11(b) shows that a plateau exists for
K = 2. The curve after cluster pruning confirms that this mode
configuration is meaningful. Our proposed method’s output in
this case, shown in Fig. 11(c), shows that most of the samples
seem to have been correctly classified.

2) Area 2. No Defects: Here, a stable mode configuration of
K = 2 for bandwidth around the value 0.001 would seem to
exist. However, it appears that this is due to outliers as that par-
ticular plateau does not appear after cluster pruning. Therefore,
the correct value of K = 1 can be selected.

In summary, our proposed method was able to return satis-
fying results in field conditions by successfully estimating the
cluster number in the cases of delamination and absence of
defects using a fully automated hammering system.

VI. DISCUSSION

Case 1 and 2 in artificial indoor environment showed that
our proposed method matched the performance of our previous
work [8]. As MFCCs contains most of the meaningful infor-
mation in the first coefficients, dimension reduction does not
seem to have impacted significantly performance. Furthermore,
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in these cases our proposed method also indicated that the cor-
rect number of cluster was 2, as the user speculated in [8]. In
case 3 consisting of two blocks with delamination and void type
defects, the approach in [8] failed. This is certainly due to the
fixed value of K = 2: the dataset could be more easily split
between samples of each block than between defects and non-
defects. Blocks in this case were from different batches: this
would explain the difference in number of clusters compared to
case 2, i.e., the non-defect areas of each blocks sounded differ-
ent enough to be each attributed a cluster. The result obtained
using [8] shows that the delamination defect was successfully
discriminated but the void defect was grouped in the non-defect
cluster. Our proposed method on the other hand successfully es-
timated a correct number of cluster along with seeds that yielded
enough “clustering resolution” for defects in each block to be
given a cluster each: 2 clusters for non-defect samples (one per
block), 1 cluster for delamination and 1 cluster for void. This
case shows best the limitation of a fixed number of clusters used
in previous works and the need of an selection step for K. In
case 4, where there was no defects, i.e., a single cluster, direct
use of the method described in [8] could not provide satisfying
results: fuzzy c-means class would forcibly divide the dataset to
try to match the value of K given by the user. Analysis of mean-
ingful modes by mean shift here enables to overcome one of
fuzzy c-means’ fundamental weakness. However, the problem
of the current identification step is obvious here: in the presence
of a single cluster, there is no real guarantee that this cluster is
non-defective.

Analysis of meaningful mode configurations for the estima-
tion of K was shown to be valid in field conditions as well,
although the plateau were less obvious. This is certainly due
to the presence of noise that is bound to be recorded along
hammering sound in an outdoor setting. Some samples on the
upper portion in Area 1 were mislabeled as defects: this could
be attributed to the poor surface condition caused by rainwater
leakage that resulted in degraded hammering sounds.

VII. CONCLUSION

In this letter, we proposed an unsupervised learning approach
for accurate and robust detection of defects in concrete struc-
tures. The proposed method allows for proper selection of num-
ber of clusters in considered hammering datasets and seeding for
clustering using spatial fuzzy c-means. Experiments conducted
in both indoor and outdoor environments demonstrated the va-
lidity of the proposed solution. Results showed that our method
exhibit excellent performances in case of single and multiple
delamination detection. Moreover, it yielded remarkable results
also in the presence of multiple defects of different nature as
well as in the case where no defects were present. Furthermore,
results of the experiments performed in outdoor environment
are also very promising.

In the future, we would like to continue development of this
approach, especially in the identification phase after clustering,
in order to avoid the need for user input and to add the capa-
bility not only to discriminate defects versus non-defects but
also classification of types of defects, i.e., achieve multi-class

classification as a final output instead of the current bi-class clas-
sification. This could be achieved by more careful analysis of the
fuzzy clustering prior to the crisp clustering conversion through
defuzzification. Bringing other sources of information, such as
visual information, in order to conduct multi-modal inspection
is also in consideration. Furthermore, with the recent advances
in automatic hammering modules, easier hammering data ac-
quisition can be expected in the near future: given enough data,
incorporation of deep learning techniques could yield extremely
promising results.
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