自律分散型ロボットシステムのための
通信機能の設計と通信シミュレータの開発

石田慶樹* 浅間 一** 尾崎 功*** 松元 明弘*** 遠藤 熊**

Design of Communication System and Development of a Simulator for an Autonomous and Decentralized Robot System

Yoshiki ISHIDA Hajime ASAMA Koichi OZAKI
Akihiro MATSUMOTO Isao ENDO

An autonomous and decentralised robot system, ACTRESS, is being developed as an intelligent robot system, which performs complex tasks individually or cooperatively. In this paper, the concept of ACTRESS is introduced. ACTRESS is consist of various kinds of robotic agents, for example, robots, equipments, and computers. Then, communication framework, between them is proposed. In ACTRESS, communication is indispensable function, therefore communication framework is one of the most important topics in ACTRESS. This communication framework is designed for both achieving reliable communication and exchanging diverse information. In order to analyze and evaluate implementation of communication framework, a communication simulator has been developed, which simulates parallel behavior of robotic agents and communication between them. This simulator is useful for designing and developing the system, especially its communication function. Finally, by using this simulator, the optimal distribution of function is evaluated. Functional distribution is one of the main characteristics of ACTRESS, therefore the configuration of functional distribution among robotic agents should be designed carefully. The simulator is also useful for evaluating optimality of functional distribution from the viewpoint of communication.

Key Words : Autonomous and Decentralized Robot System, Communication Framework, Protocol, Communication simulator, Functional distribution

1. はじめに

自律分散型ロボットシステムは，複数の自律性を持つロボットなどのエージェントにより構成される．自律性は各エージェントがセンシング機能と判断力を持つことにより実現される．一方，分散型システムにおいては，複数の要素を組み合わせることによりある目標を実現する．自律分散型ロボットシステムは，制御を分散し各要素が自律したロボットシステムの構築を目指すものである

原稿受付 1991年6月6日
* 東京大学工学部 ** 理化学研究所 *** 東洋大学工学部
JRSJ Vol.10 No.4 —118— August, 1992
性を実現するために必要となる機能の一つである通信機能に着目し、その基本設計について述べ、設計結果を評価するために開発したシミュレータについて紹介する。このシミュレータを用いることにより、自律分離システムでの各エージェントに対する機能の配分の形態の評価を行うことも可能である。

2. 自律分離型ロボットシステムACTRESS

現在我々は自律分離型ロボットシステムACTRESS（Actor-based Robots and Equipments Synthetic System）の研究開発を行っている。ACTRESSは大規模プラントの保全作業などを、高度で複雑な作業のロボット化を目指している。ACTRESSはFig.1に示すように、ロボター（Roboter）と呼ばれる自律性を持ち複数のロボット要件（agent）から構成される。ロボット要件としては、移動ロボットなどの様々な機能を持つロボット、既存の様々な設備や機器、視覚などのセンサおよびコンピュータなどがある。各ロボット要件は通信により情報（message）の交換を行ない、各々が自律的あるいは協調的に問題解決を行なう。全体としての目標を遂行する。

このACTRESSの特性は、
1. 自律分離性
2. 多様性
3. 協調性

の3点であり、システム全体の設計理念としては「機能分散」と「協調」の2つの概念に沿うことができる。

ACTRESSに代表される自律分離システムの長所としては以下の3点が挙げられる。

・システム全体の機能が決定的に規定されていなかったために、未知の状況や事態では決定することが不可能

・ある目標を達成するための方法が複数存在し、しかも冗長性を持つために、不測の事態が生じても何らかの試行を行うことが可能で、システム全体としての頑健性が向上する。

一方、短所としては次の2点が挙げられる。

・各要素が自律的に問題解決を行うために、システム全体としての適応性が保証されない。

・意思疎通を密に行うことが現実的には不可能であり、そのためデッドロックなどが発生する可能性がある。

ACTRESSにおいては保全作業における多様な作業に対応するために、作業に対する最適性よりも頑健性を重視している。また、通信機能や自律要件が持つ問題解決の戦略にデッドロックを解決するための枠組を用意することにより、全体として整合性をとれるシステムにすることを目指している。このため、ネットワークにおいては、解決するための枠組として数々のレベルを設定し、最終的には人間の判断により問題解決を行うという枠組で検討を進めている。

3. 通信機能の設計

通信を実現するために要求される仕様としては、
1. 通信性のある通信の実現
2. 多様な形態や内容への対応

がある。この2点を満たすように、通信のための紐錬であるプロトコルの設計を行う。

通信の実現形態としては、Fig.2に示すように（a）有線通信型、（b）無線（電波、光）通信型、（c）有線・無線通信併用型の3つの形態が考えられる。ACTRESSにおいては、このうち（c）の形態を取るものと
Fig. 3 Categories of Information in Robotics

Fig. 4 Three Types of Negotiation

Fig. 5 Framework of Message Protocol Core
Fig. 6 Protocols in ACTRESS

る必要がなくなる。
しかしこのような場合には、各レベルとは独立にACTRESSを構成するメッセージ・プロトコルとして必ず実装している部分が必要となる。この部分を「メッセージ・プロトコル・コア」あるいは単に「コア」と呼ぶ。コアには、情報の交換と様々な交渉を行う機能が必要である。実際にコアに用意したものとしては、以下の5種類がある。

1. Negotiation：様々な取り決めを行う（交渉）。
2. Announce：ある情報を広範囲に知らせる（通知）。
3. Inquiry：特定の情報を獲得する（問合せ）。
4. Offer：特定の情報を提供する（提供）。
5. Synchronize：協調動作の同期をとる（同期）。

さらにNegotiation には次の3種類を用意する。

(a) Task Negotiation：ある動作を行っている際にその対象が変化した場合に解決の方法について交渉する。

(b) Cooperation Negotiation：協調作業を行う場合にその形態について交渉する。

(c) Communication Negotiation：メッセージ・プロトコルにおいてどのように通信するかを交渉する。このNegotiationの例をFig. 4 に示す。第1のTask Negotiation ではお互いに相手のいる方向に走行し、衝突が生じる可能性のある状況下で、双方が通信でどちらが先に交渉し決定する。（b）のCooperation Negotiation ではある作業が1台のロボットで不可能な時に、協力者を探してどのロボットと協調作業を行うかを交渉し決定する。（c）のCommunication Negotiation ではメッセージ・プロトコルのレベルの中でどのレベルを用いて情報交換を行うかを交渉し決定する。

Fig. 5 にコアの構成を示す。各メッセージは送信元となるToフィールド、発信元のFromフィールド、メッセージの緊急度を表すControlフィールド、メッセージのクラスによりどのレベルもしくはコアであるかを表すClassフィールド、その中の型を表すTypeフィールドから構成される。

Fig. 7 Objects in the Simulator

ACTRESS の通信機能として、通信プロトコルとしてOSIプロトコルを用いた場合をFig. 6 に示す。階層構造化した通信プロトコルではオーバーヘッドがあるために、特に高速な情報交換を要求されるメッセージ・プロトコルの下位レベルにおいては、レイヤの省略を行う。このレイヤの省略は予め固定的に行う場合と、Communication Negotiation により行う場合の両方が起こり得る。

4. 通信シミュレータの開発

ACTRESSにおいて、通信機能の設計あるいは機能分散や協調の戦略を決定するためには、純粋な理論的な解析だけでは不十分であり、様々な実験による評価が必要である。このような実験を行うための土台の一つとして、現在ソフトウェアによる通信シミュレータを構築し、様々な状況下での評価を行っている。

本通信シミュレータに要求される仕様としては以下の点が挙げられる。

1. ロボター間のメッセージ交換を容易に実現できること。
2. 通信の様々な特性を設定することができます。
3. 環境との相互作用をシミュレートできること。
4. 平行動作を容易に記述できること。
5. 異なる視点に基づく評価が可能となっていること。

これらの仕様を満たすために、本シミュレータはオブジェクト指向型言語 Smalltalk-80 によりインプリメントしている。Smalltalk-80 を利用した理由は以下の通りである。

・オブジェクト指向型言語では、オブジェクト間のメッセージの受け渡しにより計算が進行する。ロボターをオブジェクトとすると、ロボター間のメッセージ交換をオブジェクト間のメッセージ交換としてそのまま実現することができる。

・シミュレータを構成する全ての要素をオブジェクトとすることによりそれぞれの特性の変更が容易である。

・マルチプロセスOSに用意されているプロセスを並列に実行するための機能を模倣的に実現することができるので、並行動作の記述が比較的容易である。
Table 1. Comparison of amount of exchanged information

<table>
<thead>
<tr>
<th>Type</th>
<th>Constructing Environmental Information</th>
<th>Exchanging Information for Path Planning</th>
<th>Publishing Object Information</th>
<th>Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>m+n</td>
<td>m</td>
<td>(n+1)m+n-2m</td>
<td>n</td>
</tr>
<tr>
<td>m</td>
<td>m+mm</td>
<td>m</td>
<td>(n+1)m+n-2m</td>
<td>n</td>
</tr>
<tr>
<td>m</td>
<td>m+n</td>
<td>m</td>
<td>(n+1)m+n-2m</td>
<td>n</td>
</tr>
<tr>
<td>m</td>
<td>2m+n</td>
<td>m</td>
<td>(n+1)m+n-2m</td>
<td>n</td>
</tr>
<tr>
<td>m</td>
<td>m+n</td>
<td>m</td>
<td>(n+1)m+n-2m</td>
<td>n</td>
</tr>
<tr>
<td>m</td>
<td>m+mm</td>
<td>m</td>
<td>(n+1)m+n-2m</td>
<td>n</td>
</tr>
<tr>
<td>m</td>
<td>m+n</td>
<td>m</td>
<td>(n+1)m+n-2m</td>
<td>n</td>
</tr>
<tr>
<td>m</td>
<td>m+n</td>
<td>m</td>
<td>(n+1)m+n-2m</td>
<td>n</td>
</tr>
<tr>
<td>m</td>
<td>m+mm</td>
<td>m</td>
<td>(n+1)m+n-2m</td>
<td>n</td>
</tr>
</tbody>
</table>

Fig. 8: Hardcopy of the Simulator

Smalltalk-80は統合的プログラミング環境が提供されているため、簡単なエージェント、インタラクティブなプログラミングを実現できる。システムにおいては元々のプログラムが提供することにより、使用環境を提供するエージェントが存在している。通常のRobotにはメモリが存在するためメモリを用いてメッセージを伝送する。
5. 通信シミュレータを用いた評価

ここでは通信シミュレータを用いることにより解析した機能分散の評価結果について述べる。機能分散の評価対象は移動ロボットのための環境情報の管理形態である。環境情報の管理形態として集中型管理と分散型管理が考えられる。

このとき、機能分散の形態としては、Fig. 9 に示すように

(A) 環境モデラは集中的に環境情報に管理する。
(B) 全ての移動ロボットが環境情報を個々に管理する。
(C) 大域的な環境を環境モデラが管理すると同時に、各移動ロボットは個々に局所的情報を管理する。

の3種類を考察することができる。ここで、様々な作業の実現のために全ての要素間に通信が可能であるとする。

そこで、対象とする作業を荷物付けとする。すなわち、作業空間内に複数個の荷物が存在し、これらを複数台の移動ロボットにより片付けるものとする。荷物がm個、移動ロボットがn台存在し、1個の荷物について状態変化が生じた場合について1回の情報交換が行われるとした時、(A) (B) (C) のそれぞれについて通信量(通信回数)を解析した。ただし、これで求めた通信量は環境情報の交換だけに必要な通信量である。

Fig. 10 Evaluation of Minimum Information Transmission

まず環境情報を初期化するために、(A)、(B)、(C)のいずれの場合においても、すべての環境マネージャに荷物m個の情報を伝達する必要がある。このためには1台の環境マネージャに対してmの通信量が必要である。初期化のために必要な通信量は、(A)、(B)、(C)でそれぞれ m, nm, m+nm となる。次に数値計画時には、(A)の場合では1個の荷物を移動させるための計画を行う毎に環境モデラから移動を計画している移動ロボットに全ての荷物の情報を伝えずする必要があるためmの通信量が必要となり、m個の移動を行うために必要な通信量はm²となる。一方の場合は各移動ロボットが環境情報を持っているために情報交換は必要ない。(C)では、移動ロボットの台数が荷物の個数より多い時には(n≥m)，最初の移動で全ての荷物の移動が実行され、この過程計画には初期情報だけで済むために、情報交換は必要ない。移動ロボットより荷物が多い時には(n<m)，最初に移動で残ったm-n個の荷物のそれぞれを移動する場合に、移動を計画している移動ロボット以外の移動ロボットn-1台が移動した荷物n-1個の情報が必要となるために、合計で(n-1)(m-n)の通信量が必要である。最後に1個の荷物の移動が完了すると、それを全て自力以外の環境マネージャに伝達する必要があるために、m個の荷物では(A)、(B)、(C)でそれぞれm、(n-1)m, mの通信量が必要となる。

この解析をまとめたものを Table 1 に、また、この結果についてm, nをパラメータとして通信回数が急激に低下する場合をグラフ化したものを Fig. 10 に示す。この解析によると、移動ロボットの台数が荷物の個数よりも多い場合には(A)の形態が最も小さとなり、荷物の個数によって移動ロボットが極めて少数である場合には(B)の形態、それ以外の場合には(C)の形態が最小となることがわかる。実際には、移動ロボットの台数は荷物の個数より少なく、しかも移動ロボットの台数自体はある程度
表2 シミュレーションの結果

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>6</th>
<th>10</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>(B)</td>
<td>24</td>
<td>26</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>(C)</td>
<td>84</td>
<td>90</td>
<td>78</td>
<td>86</td>
</tr>
</tbody>
</table>

n: the number of objects
m: the number of packets

一度存在することが考えられるために、(C)の形態が最も好ましい。また、情報の整合性のある管理を考えると、(A)>(C)>(B)の順に有利であるので、これらの通信量と整合性的両者を満たすものとして(C)の形態が好ましいと結論が得られた。

この結果を通信シミュレータで用いて評価を試みた。そこで、各通信シミュレーション作業開始や新しい情報を持たない場合には、まずそれを獲得する。協同者である環境情報の管理者が、誰であるか知らなければならない時には、"Co-operation Negotiation"を行い、協同者を捜す出す。そして協同者に対して、"Inquiry"により環境情報の間を問い合わせ、作業終了時に"Offer"により終了報告を行う。実際の通信量にはこれらが含まれる。

この評価を行うために次のような仮定をおいた。まず、通信においてエラーが生じないものとし、通信量は通信回数（バケット数）で評価することとした。次に、作業が一定時間で1台の無知ロボットにより実行されるものであるとし、また荷物の取り合いなどの作業の経過は生じないとする。

この仮定下での評価を表2に示す。また、これをグラフにプロットしたもので、Fig.11 である。

これらの結果により、以下のようなことが考察として得られる。

1. シミュレーションによる評価結果は理論的解析と傾向として一致している。
2. 結果は全体のインプリメンテーションに依存する。
3. 実際に周囲情報の管理の形態によって結果が異なる場合もある。例えば、(C)が常に持つ情報の更新が頻繁に行われた場合では、(A)の場合と同じになる。
4. (B)や(C)の形態を実装するためには情報の整合性を保つことに注意する必要がある。これは分散データベースの主要な課題と同様である。
5. パケット数より通信量の評価を行ったが、実際には通信内容によりパケットの大きさが異なってくる。特に周囲情報の形式によっては結果に影響を与える可能性がある。
6. また、これによりシミュレータを検証することが可能である。

1. 本シミュレータは通信機能を中心としてロボットの様々な機能をシミュレートすることが可能である。また、本システムを用いることにより様々な評価が可能である。
2. 容易に実装形態を変更することが可能であるため、様々な状況下の評価が可能となる。
3. シミュレータのインプリメンテーションの実際のロボットに移植することも可能である。
4. 本シミュレータはACTRESSならびにロボットの設計と開発にとって有効である。

ACTRESSの設計と開発のためには様々な評価が必要である。ここでは通信の視点から評価するためのシミュレータを構築し、それを用いて機能分散の評価を行った。これにより、機能分散の最適性の評価が可能などでなく、シミュレータの適用性についても検証できた。

6. おわりに

本論文では、はじめに自律分散型ロボットシステムACTRESSの概要について紹介した。ACTRESSは「機能分散」と「協調」を基本概念としたものである。

次にACTRESSの通信機能を設計した。通信機能についてはまず形態を定め、通信のためのプロトコルを設計した。プロトコルとしては通信形式を規定するプロトコルと通信内容を規定するメッセージプロトコルにわけ、さらにメッセージ・プロトコル内にレベルを用意する。

通信機能の評価を行うために通信シミュレータを開発した。通信シミュレータはSmalltalk-80 により記述された。
れ、複数のロボットの挙動とメッセージ交換をシミュレートできる。

最後に通信シミュレータを用いて機能分散の評価を行った。これにより機能分散が評価できればかりでなく、通信シミュレータの適用性についての検証も行った。

今後は、実際の通信の実現、通信に基づくディジタルの解消、協調作業の実現などに取り組む予定である。

参考文献

1) 谷田, ワレリター: “複数の自律移動ロボットの協調行動のアーキテクチャ”, 第1回ロボット学会ロボットシンポジウム予稿集, pp.67-72, 1991

2) 谷田, ワレリター: “複数の移動ロボットの協調に関する検討—遅延的の協調の提案—”, 第8回ロボット学会学術講演会予稿集, pp.887-890, 1990。

3) 坂本, 佐藤, 丸山: “ロボット視覚のための分散協調センシングシステム”, 第8回ロボット学会学術講演会予稿集, pp.907-908, 1990

尾崎功一 (Keichi OZAKI)

1967年6月10日生。1992年東洋大学大学院博士課程前期課程修了。現在、筑波大学大学院情報理工学研究科情報システム専攻助手。自律分散型ロボットシステムの研究に従事。日本のロボット学会会員。

松元明弘 (Akihiko MATSUMOTO)

1958年6月8日生。1983年東京大学大学院工学系研究科精密工学科修士課程修了。1983年日本科学技術振興会「情報処理九州研究開発センター」プロジェクトに参加。現在、同研究会プロジェクトリーダー、同学校付属スマートロボットセンター主任研究員。精密工学会日本ロボット学会会員。

遠藤康 (Isao ENDO)

1940年8月14日生。1966年東京大学工学部化学工学科卒業。1970年東京大学大学院工学系研究科情報処理専攻修士課程修了。現在、東京大学大学院工学系研究科情報処理専攻助手、同大学理工学部応用物理学科教授、同大学産業技術研究所講師。日本ロボット学会会員。

日本ロボット学会誌10巻4号 125号 1992年8月