通信を用いた複数自律移動ロボットの相互衝突回避

尾崎 功*1 浅間 一*2 石田 広樹*3
松元 明弘*4 速藤 熱*2

Collision Avoidance using Communication between Autonomous Mobile Robots

This paper addresses mutual collision avoidance between multiple mobile robots based on a layered strategy. In this strategy, static motion generation and dynamic motion generation of several levels are provided, and a proper level of dynamic motion generation is selected for mutual collision avoidance according to the complexity of the situation. We have implemented two typical methods in the layered strategy, which are rule-based local collision avoidance and negotiation-based global one using communication. In each method, a robot detects collision and applies as a local method as possible. Experimental results show two actual mobile robots can achieve mutual collision avoidance based on the layered strategy.

Key Words: Multiple Mobile Robots, Collision Avoidance, Communication, Traffic Rule, Negotiation

1. はじめに

最近では、複数の自律した移動ロボットで構成されるシステムやそれらの協調に関する研究[1]が注目されている。このようなシステムでは、お互いのロボットが協調的に行動するものにより、柔軟性とロバスト性を実現することが期待されている。これまで我々は、作業に必要な情報を複数のエージェント間に分散させた自律分散型ロボットシステムACTRESS[2]の開発研究を進めてきた。ACTRESSは、複数のロボット（移動ロボットを含む）あるいは機器（計算機）など複数の自律エージェントから構成され、各エージェントには通信機能が装備されている。これまで我々は、複数のロボットによる行動形態を、(1)個々のロボットがそれぞれ並列的に動作する形態（個別行動）、そして(2)協力して動作する形態（協力行動）、とに分類した。本論文では、前者の行動形態の例として、移動ロボット間の衝突回避問題を取りあげ、これらについて考察する。

これまで、移動障害物を対象とした衝突回避のための経路計画[3]～[6]が提案されている。しかし、これらのシミュレーションの内容を論じており、実際にロボットでどのように計画に必要な情報を入手するかについては検討されていない。また、実際にロボットを用いた衝突回避については、センサ情報を基づいて衝突回避行動を決定する方法[7][8]が提案されているが、これらの手法では、センサから局部的な情報しか得られないため、複雑な状況ではデッドロックに陥ることが予想され、また、衝突対象（移動障害物）との情報交換がない。Yutaらは、遠隔の協調を提案し、移動ロボットが互いに、遅れの発生による衝突回避の実験を行った[9]。この移動ロボットは通信によりロボットの状態を認識するが、通信をしながら走行しなければならないので、ロボットの台数の増加に伴い通信の処理にかかる負荷が非常に高くなる。また、加藤らは、交通ルールの適用により衝突回避を実現した[10]、センサ情報のみによってルールの条件を判断しなければならないが、状況に応じて多様なルールを用意しなければならない。

本論文では、実際の移動ロボットへの適用を考慮し、複数の行動を基に階層化された衝突回避戦略について提案する。本戦略では、単純な状況では局所的な方法で、複雑な状況では通信による大局的な方法で、相対的に衝突回避を行う。本研究では、特に、本戦略に基づいてルールと通信を利用した二つの手法を開発し、実際の移動ロボットによる衝突回避実験を行う。
2. 移動ロボット間の衝突回避戦略

2.1 静的動作生成と動的動作生成による戦略

本論文では、移動ロボットなどを移動する物体に関する情報（位置、姿勢、速度など）を動的環境情報と呼び、壁や静止した障害物など静的物体に関する情報（地図）を静的環境情報と呼ぶ。移動ロボットは、ゴールまでの経路を計画する際、環境情報を知ることが必要となる。しかし、複数のロボットが行動する環境では、動的環境情報を常に把握することは困難であると考えられる。したがって本研究では、動的環境情報は管理せず、静的環境情報のみを管理することとした。

そこで本論文では、移動ロボットにおける動作生成の流れをFig.1とした。ロボットは、まず、静的環境情報だけに基づいて、経路を計画し、動作を生成する（静的動作生成）。そして、動的環境情報に基づいている場合で、衝突の可能性の検査（以下、衝突検出と呼ぶ）を行いながら進行し、衝突検出を行うたびに、動的環境情報に基づいて衝突回避のための動作を生成する（動的動作生成）。

2.2 センシング機能と通信機能の特性

一般的なセンサでは、通信と比較して、局所的な検出領域を持ち、負荷を制限して利用することができる。しかし、検出対象が想定されているため、それからはずると信頼性の高い情報が得られることができない。また移動ロボットには、電源や処理能力の制限により、限られた性能のモジュールが搭載できない。これにより、効率的な情報発送が求められる。

通信情報は、ロボットが状況を知らせる場合など、メッセージとして伝達される。一方、ロボットが示す情報を発する情報であるため、信頼性は高く、通信プロトコルを整備することにより、多くの情報を伝達することが可能である。しかし、通信は大規模な情報伝達領域を有するため、エージェントの台数に伴い、システムにおける通信処理の負荷が高まる。

2.3 衝突回避のための階層型動作生成戦略

複数の移動ロボットが行動する環境であるため、衝突による問題が発生するが、システム全体の効率を考慮すると、簡単な問題では、できるだけ局所的な情報を交換するだけで解決することが望ましい。しかし、問題が複雑になると、大規模に状況を把握して解決することが必要となり、すべての状況を局所的に処理のみで満足することはできない。そこで本論文では、システムの効率を維持しながら、複雑な問題にも対処できるように、問題の複雑さおよびロボットの性能に応じた複数の衝突回避手法を用意し、それぞれを階層化し、手法を使い分けるような戦略を設計することとした。衝突回避問題における要求を以下にまとめる。

1) 各々の問題に応じて複数の解決手法を用意すること。
2) 可能限り局所的・分散的に問題を解決すること。

本論文では、以上から、「集中一分散」「大目一局所」という観点から、Fig.2のような衝突回避のための階層型動作生成戦略を提案する。Fig.2は、複雑な問題を解決するために用意された手法を階層的に表している。この戦略は、静的動作生成と動的動作生成から構成される。動的動作生成については、一般的な経路計画手法を用いる。一方動的動作生成では、ロボットは低いレベルの手法を適用し、その手法で動作が続行できない場合に、レベルを一段上げ、より大規模な情報を収集し動作を生成する。本戦略では、低いレベルでは衝突する当事者どうしの問題解決を行い、高いレベルになると、ネットワークを解決する新たなエージェントが大規模に問題解決を行い、さらに最終的

---48---
手法として、人間の介入も考慮している。ただし、レベルが上がると、エージェント間の通信の役割が重要となる。

移動ロボットどうして対処するレベルでは、局所的なアルゴリズムによる衝突回避手法が最も低いレベルとし、センサ情報による反射的な行動などがこれに相当する。次のレベルでは、ルールに基づく動作生成を行う。ロボットは、センシングによって状況を認識し、ルールを適用することにより衝突を回避する。

ロボットを適用できない場合に、次のレベルとして、ロボット間通信に基づいた衝突回避を行うこととした。ロボットは、通信を用いることにより、衝突対象の位置、速度、経路などの情報を得ることができ、さらに相手との交渉によって回避動作を決定できる。さらに次のレベルでは、ある台のロボット（リーダ）が、大囲い情報を取り集め、衝突回避のための動作を生成し、それを指示することとした。

3. 衝突回避手法の構築および実験

3.1 プロトタイプシステムの構成

我々は、これまでにACTRESSのプロトタイプシステムを開発した。今回その一部を用いて衝突回避手法を構築した。

Fig.3 はその構成であり、2台の自律型移動ロボット（MR-1、MR-2）、大気の環境管理計算機（Global Environment Manager: GEM）とヒューマンインタフェース計算機（Human Interface System: H/F）から構成される。移動ロボットは無線通信機能を装備し、GEMは無線通信と有線通信（Ethernet）を接続するためのゲートウェイの役割を果たす。

2台の移動ロボットは、3輪の車輪操舵型移動ロボットである。移動ロボットにはラップトップパソコン（J-3100GL/CPU: 80286/287/12MHz）が搭載されており、このパソコンにより走行制御が行われ、さらにパソコンのリアルタイムインタフェース（RS-232C）に接続された無線モデムを介して通信することが可能である。通信速度は約2000bpsである。移動ロボットの構成はFig.4に示す。このロボットは、2軸のサーボモーターにより、2軸の駆動輪および1輪の操舵輪を駆動し走行する。

ロボットには、駆動輪の左右輪に位置検出のためのエンコーダを装備し、外部センサとして、前方に2点および左右側方に各1点ずつの超音波センサ、および近接検出用の光電センサと衝突検出用のタッチセンサ3点を装備している。

GEMは、静的環境情報（地図）を管理し、移動ロボットからの要求に応じて、この情報を提供する。H/Fは、大気と移動ロボット間の通信を行うためのシステムであり、具体的には、航行開始の合図や、マップの際の行動指令などを行う。

3.2 実験環境と移動ロボットの制御

本論文では、屋内環境における複数の移動ロボットの自律走行を実現することを前提としており、敷地環境を対象とした衝突回避手法の開発を行った。Fig.5に示す。それぞれのロボットは、敷地の中央に配置することとし、ロボットの相対的な座標でゴールを与えることとした。各ロボットのゴールは、ロボットの前方7mとした。ただし、各ロボットには、互いのロボットの走行経路に関する情報は与えないものとした。外界センサーに関しては、センサの出力信号の干渉による誤動作を防ぐために、MR-1は、広域と狭域の二つの領域を検出できる光電センサー、MR-2は、超音波センサーを用いたものとした。走行の制御に関しては、MR-1は、エンコーダに馴染みの左軸の駆動輪の回転角度をドアドレバリングに基づいて走行を行うこととし、MR-2は、超音波センサーによる壁沿い走行によるビーガンドを行うこととした。各ロボットの走行速度は、7cm/sとした。

3.3 動的動作生成論に基づく衝突回避手法の構築

移動ロボットは、まずH/Fから、ゴールおよび作業開始が指示されると、GEMから静的環境情報を獲得し、これがに基づきゴールまでの経路を計画し、移動を開始する。そして、衝突検出を行うと、踏切の動作生成理論に基づき、状況に
応じた衝突回避手順を適用する。階層的動作生成戦略において、局所的に適用できる衝突回避手順として仮想インビジブルスパース [3] などの方法が、集中的に適用できる衝突回避手法としてFujimura [4] などが提案されている。そこで本研究では、その間に位置するFic.2の網掛け部の階層に位置する「ルールに基づく衝突回避手法」および「通信に基づく衝突回避手法」の構想を行った。また、この二つの手法で解決できない場合を考慮し、その場合には、集中的に行う手法で最大に位置する「ヒューマン・オペレータによる問題解決」を用いることとした。ただし、ヒューマン・オペレータによる問題解決では、通信を用いてHI/FIに状況を報告することとした。各手法が、下位の階層で優先的に選択される流れをFig.6に示す。

3.3.1 ルールに基づく衝突回避手法

本実験では、廊下を環境としているため、側方からの衝突を考える必要があるので、以下のルールを構築した。

(1) Rule 1: 左方回避行動ルール (Fig.7)

if (相手の位置 = 正面接近 and 相手の速度 = 逆方向 and 回避行動に必要な空間が存在) then (左側へ回避路をとる)

(2) Rule 2: 左方回避ルール (Fig.8)

if (相手の位置 = 正面接近 and 相手の速度 = 同方向) then (一時停止を行おう)

これらのルールを適用するに当たっては、MR-1 は、光電センサの広域と狭域の検出の感度の変化により、前方のロボットの位置および速度を測定し、前方のロボットの位置および速度を測定する。この測定値から、相手の位置および速度の条件を判断できる。

左方回避ルールでは、ロボットに回避行動制御パターンをあらかじめ与えている。この動作制御パターンでは、ロボットの向きが左 45 [deg.] 方向になるように左右に操舵回を切り旋回行動し、その後、向きが正方に向けように右に操舵回を切り旋回する。この作動制御パターンで衝突を回避するためには、衝突を検出した位置から、前方 120 [cm]、左方 80 [cm] の空間が必要となる。この空間は実験的に求めた値である。ロボットは、あらかじめ GEM から環境情報（地図）を得ているので、その回避領域が存在するか（障害物がないか）を判断できる。

もし、適用できるルールがない場合には、ルールに基づく衝突回避手順を踏み、一つ上の階層に位置する通信に基づく衝突回避手法の適用を試みる。

3.3.2 通信に基づく衝突回避手法

ルールを適用できない状況を設定するために、廊下に障害物を設定することとした。ただし、障害物の位置は、障害物が壁に接するか 2 台のロボット間の任意の位置に設定するようにした。その環境をFig.12に示す。この障害物の寸法および位置は、各ロボットにあらかじめ与えるることとしたので、ロボットはルールを適用できないことを判断することが可能である。

通信に基づく衝突回避手法では、まずロボットは停止し、衝突検知を行ったことを通信し、衝突対象となるロボットの特定（ロボット ID の認識）を行い、その後、このロボットが何らかの行動を開始するかを交渉し決定する。このでの通信では、交渉するための仲間であるメッセージ・プロトコル・コア (Message Protocol Core) [2] を用いる。この交渉の順序を以下に示す (Fig.9).

(1) 前方のセンサを用いて、衝突を検出したロボットは、衝突の警告をプロードキャストする。

(2) 本実験では、ロボットのみを用いているので、センサを受信したロボットは、衝突対象であると判断することで可能となる。そして、そのロボトは停止し、自分のID と状態（優先度）を返答する。

(3) これらを受信したロボットは、相手と自分の状況からどちらが先に回避するかを判断し、回避行動の指示を返答する。

(4) この指示を受信したロボットは、指示の確認を返答する。

本実験では、このような回避動作を決定するために、優先度を示すこともした。移動ロボットは、交渉により自分の優先度を比較し、優先度の高いものが先に通過することとした。優先度は、以下の点を考慮する必要がある。

(1) 前方の環境に関する優先度 C0：回避動作を行うための空間が存在するかを示す。その空間が障害物によって存在されていると、衝突回避を行えない。したがって、回避が可
Table 1 Priority points concerning environment

<table>
<thead>
<tr>
<th>Environmental situation</th>
<th>Ce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoiding action is not constrained</td>
<td>10</td>
</tr>
<tr>
<td>Avoiding action is constrained</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2 Priority points concerning task requirements

<table>
<thead>
<tr>
<th>Motion conditions</th>
<th>Ct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movement in an emergency state</td>
<td>5</td>
</tr>
<tr>
<td>Movement without task execution</td>
<td>2</td>
</tr>
<tr>
<td>Movement with task execution</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3 Priority points concerning robot performance

<table>
<thead>
<tr>
<th>Locomotion type</th>
<th>Cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin type</td>
<td>2</td>
</tr>
<tr>
<td>Steering type (with a small turn)</td>
<td>1</td>
</tr>
<tr>
<td>Steering type (with a large turn)</td>
<td>0</td>
</tr>
</tbody>
</table>

能な場合の優先度 Ce の値を非常に大きくし，逆に回路が不可能な場合の優先度 Ce の値を非常に小さくすることとした。

(2) 作業に関する優先度 Cl : 作業内容に対する優先度を示す。
本研究では，緊急の作業は優先度 Cl を最も大きくし，そうでない場合には，作業中ではないロボットの優先度 Cl を高める。これは，作業中のロボットより，作業を行っていないロボットの方が回路避難を行えばよいためである。

(3) ロボットの動作特性に関する優先度 Cp : この優先度はロボットの動作性の高さを表している。すなわち，動きやすいロボットが回路避難を行ったほうが，効率的である。したがって動きやすいロボットの優先度 Cp を高くし，そうでないロボットの優先度 Cp を低くした。
本論文では実験的に，優先度 Ce を Table 1，優先度 Cl を Table 2，そして優先度 Cp を Table 3 のように設定した。これらの優先度は，上記の議論を考慮し，意図的に

$Ce > Cl > Cp$

のような重み付けがされている。総合的な優先度 C は，以下の式で与えられるとした。

$C = Ce + Cl + Cp$

交渉に失敗し，通信用に基づく衝突回避手法が適用できない場合は，その状況を HI/F に報告する。

3.4 動的動作生成戦略に基づく衝突回避手法の実験結果

ルーールに基づく衝突回避手法による実験を行った。この実験結果から得られたロボットの軌跡を Fig.10 および Fig.11 に示す。これらの図では，三角形の各頂点はロボットの軌跡の点を示しており，MR-1 は白抜き，MR-2 は黒線で表現し，停止は黒で表現した。また，ロボットの位置は 5 秒間隔で記録し，矢印はロボットの進行方向を示している。Fig.10 では，2 台のロボットが，前方のロボットを互いに検出し，左方回避行動ルールを適用し，相互に衝突を回避している。また，Fig.11 では，MR-2 が同一方向に進行する MR-1 を検出し，一時停止ルールを適用し，相互に衝突を回避している。

3.4.2 通信に基づく衝突回避手法の実験結果
本実験では，あらかじめロボットの動作特性に関する優先度を，小回りのきく MR-1 は $Cp = 1$ とし，小回りのきかない MR-2 は $Cp = 0$ とし，Fig.12 に示す状況について，衝突回避実験を行った。なお，両ロボットも作業中ではない（単なる移動中）状態とし，作業に関する優先度を $Cl = 2$ と設定した。
その結果の軌跡を Fig.13，また，この実験より得られた交渉の通信ログ（通信内容の記録）を Fig.14 に示す。

Fig.13 および Fig.14 において，移動ロボットの位置と通信の対応を明確にするため，おのおのに対応するアルファベットを付した。本実験結果では，MR-1 が先に衝突を検出した。
Fig.14 List of communication (negotiation) Log

Fig.15 Photograph of collision avoidance using negotiation

まず、MR-1は停止し、衝突の警告を通知している。通信(a)では、対象のロボットが特定されていないため、通信先（Toフィールド）を（＊＊＊＊）としてブロードキャストを行っている。通信(b)により、MR-2は、衝突が生じることを認識するため、MR-1へ衝突回避要求に同意することを通信している（通信(c)）。ロボットの優先度はControlフィールドに記載されており、MR-1およびMR-2は、これによりお互いに相手の优先度を認識することができる。この実験では、両者とも衝突回避が困難な状況であるため、ともにCe=10となる。そのため、MR-1の優先度はC=13、およびMR-2の優先度はC=12となる。したがって本実験では、MR-1が先に回頭動作を行っている。MR-1はMR-2へ停止命令を依頼（通信(c)）し、この同意（通信(d)）が得られると衝突回避行動を実行する。そして、MR-1は衝突回避動作を実行後、MR-2に移動の再開（通信(e)）を指示する。Fig.15にそのときの衝突回避実験の様子を示す。

以上のことから、通信を用いることによって、ルールで解決できなかった状況に対応して、衝突回避が可能であることが実験によって示された。またここで、優先度として「周囲の環境」、「作業」、「ロボットの動作特性」を考慮することで、状況に応じた回避が可能となったことが明らかとなった。

4. おわりに

本論文では、実際に移動ロボットに効率的に相互衝突回避を行うための階層型動作生成システムを提案した。そして、この戦略に基づき、ルールおよび通信に基づく衝突回避手法を開発した。さらに2台の移動ロボット間に、本手法に基づく動作アルゴリズムを構築し、衝突回避実験を行った。この実験結果から、ロボットは状況に応じて2台の動作生成手法を使い分けて、衝突回避を実現できることができた。今後、優先度をいかに定量的に表現するかについてより詳細に検討する予定である。

本論文では、2台のロボットに提案した手法を適用したが、干渉を防止できるセンサを利用することによって、より多くの台数のロボット間衝突回避にも、本戦略を適用することが可能であると考えられる。また、衝突の対象となるロボットの特定に関しても、交渉によって、位置等の情報交換を行うことによって可能になると考えられる。

謝辞
実験を手伝っていただいた板倉昭宏氏、内田康幹氏、渡辺健一氏、川上俊昭氏に感謝する。

参考文献
[1] 浅間 二：“複数の移動ロボットによる協調行動と群知能”，計測と制御，vol.31，no.11，pp.1155-1161，1992。
[2] 石田重樹，浅間 二，尾崎功一，松元明弘，遠藤 賢：“自律分散型ロボットシステムのための通信機能の設計と通信シミュレータの開発”，日本ロボット学会誌，vol.10，no.4，pp.544-551，1992。
[5] 坂本孝司，谷花MainFrame，有本 卓：“平面を移動する複数の移動障害物とその速度を考慮した移動ロボットのプランニングとシミュレーション”，日本ロボット学会誌，vol.12，no.5，pp.1029-1037，1994。
[8] 石川輝樹，浅間 二：“移動障害物に含むような動的変化を伴う行走環境における自律移動ロボットの走行制御方法”，日本ロボット学会誌，vol.11，no.6，pp.856-867，1993。
[10] 加藤 晋，西山政雄，武野純：“交通ルールの適用による複数の移動ロボットの協調行動”，日本ロボット学会誌，vol.12，no.2，pp.291-298，1994。
尾崎功一（Koichi Ozaki）
1967年6月10日生。1993年東洋大学大学院博士前期課程修了。1995年埼玉大学大学院博士後期課程修了。1995年理化学研究所化学工学研究室助手。1996年京都大学工学部助手、現在に至る。自律分散型ロボットシステム、複数移動ロボットの協調、ロボット間通信に関する研究に従事。博士（工学）。日本機械学会、精密工学会の会員。
（日本ロボット学会正会員）

石田慶樹（Yoshihiko Ishida）
1961年10月18日生。1988年東京大学大学院工学系研究科精密機械工学専攻修士課程修了。1988年東京大学工学部助手。1994年九州大学大学院情報システム専攻センター講師。九州大学総合情報システム運用センターに勤務し、分散ロボットシステムやマルチメディアシステムにおける協調と通信に関する研究に従事。WIDEプロジェクトに参加。IEEE、Internet Society、日本ソフトウェア学会などの会員。
（日本ロボット学会正会員）

遠藤 誠（Isao Endo）
1940年8月14日生。1970年東京大学工学部研究科工学専攻修士課程修了。理化学研究所化学工学研究室勤務。現在、同主任研究員。1989年埼玉大学理学部科学科客員教授、生物工学、特にバイオプロセス工学を中心に研究活動。1978年化学工学協会論文賞受賞。1994年ベルリン工科大学名越工学博士。ニューヨーク科学アカデミー、アメリカ化学会、化学工学会などの会員。
（日本ロボット学会正会員）

淵倉 明（Hajime Asama）
1959年1月18日生。1984年東京大学大学院工学系研究科精密機械工学専攻修士課程修了。1986年理化学研究所化学工学研究室研究員、現在研究員。自律分散型ロボットシステム、複数移動ロボットの協調、群知能、ロボットの評価、バイオプロセスの知能化技術の開発に従事。工学博士、IEEE、ニューヨーク科学アカデミー、精密工学会、日本機械学会、化学工学会などの会員。
（日本ロボット学会正会員）

松元明弘（Akihiro Matsumoto）
1958年6月8日生。1983年東京大学大学院工学系研究科精密機械工学専攻修士課程修了。1983年東京大学工学部助手、1988年東京大学工学部講師、1990年同助手、現在に至る。工学博士、1994-1995年ルイボスウール・ストラスブール第1大学（フランス）訪問研究員。ロボット言語、自律分散型ロボットシステムの研究に従事。精密工学会、日本機械学会、IEEEの会員。
（日本ロボット学会正会員）