論文

複数移動ロボットによる協調物体操作計画

非会員 山下 淳 (東京大学)
非会員 太田 順 (東京大学)
非会員 河野 功 (ソニー（株）)
非会員 福地正樹 (ソニー（株）)
非会員 新井民夫 (東京大学)
正員 濱原 一 (理化学研究所)

Motion Planning for Cooperative Manipulation of an Object by Multiple Mobile Robots

Yamashita Atsushi, Non-member, Ota Jun, Non-member (The University of Tokyo), Kawano Kou, Non-member, Fukuchi Masaki, Non-member (SONY), Arai Tamio, Non-member (The University of Tokyo), Asama Hajime, Member (The Institute of Physical and Chemical Research (RIKEN))

In this paper, we propose a motion planning method for manipulation of an object by multiple mobile robots. In the previous cooperative works by multiple mobile robots, manipulation technique based on force-control has been proposed. However, mobile robots are moving by position-control, and motion errors can often arise. Then, we build the manipulation technique, which is suitable for mobile robots by position-control. We propose the manipulation method without using sensor information, and consider the motion errors of mobile robots and the indefinite element of environment from the planning stage. We compute the contact position to the object where the object is stable. And the order of operation is generated from the result of these analyses. After that, we compute the sticks' paths and each robot's motion by considering the limitation of robot motion. We verify the effectiveness of our proposed method through simulations.

キーワード：複数移動ロボット，動作計画，協調，物体操作，センサレスマニピュレーション，誤差

1. 序 論

ロボット技術の進歩により，工場内においては産業用ロボットが作業を行うようになって既に久しく，生産効率・製品の品質の向上が図られている。今後は，工場内のみで動作する産業用ロボットだけではなく，流通分野や各種一般施設でのメンテナンス，原子力プラントに代表される人間が作業を行うには危険性が高い特殊施設，更には家庭等，生産現場以外でのロボットの利用が期待されている。しかしそれな来自産業用マニピュレータには移動能力が欠けた付け型であるため，可動範囲が小さく，これらの場所での作業には適していない。そこで，移動ロボットによる作業の遂行が期待されている。

実社会での移動ロボットの利用法について考えると，家庭では，食事の運搬・配膳・下膳や，整理・掃除等，移動ロボット本体と比較して小さな物体を取り扱う作業が中心となる。ここでは，移動ロボットが作業を行う環境の整備や，その作業に適した形態の移動ロボットを開発することが必要である。そこで，環境整備についての研究も多数行われており（21），現在では既に家庭用ロボットが市販され，また多数のロボットが開発中である。

それに対して，家庭以外では，流通分野における倉庫からの物品の搬送や整理，病院等の各種一般施設から原子力プラント等の特殊施設における機器の搬入や搬出，メンテナンス等，移動ロボット本体と比較して大きな物体を取り扱う作業が多い（21）。しかもそれら，アクチュエータ等の機能の限界により，単体移動ロボットに上記の作業を行わせることは難しい。また，現状では一人の人間と同等の作業を単体移動ロボットでは遂行不可能である。そこで，複数台の移動ロボットが協同して作業を遂行する作業形態--複数移動ロボットによる協調作業--が提案されている。

前述の通り，小型移動ロボットが多数台協調して大型物体を搬送する作業に対する需要は大きい。これまで，協調搬送に関する研究では，二次元平面における経路計画問題や，目標軌道追従制御問題が取り扱われてきた（31）（37）。しかしながら，ドアをすり抜ける際に高さ方向も考慮して対
象物の姿勢を変化させる等、三次元空間における物体の操作も重要である。そこで、本文論では複数移動ロボットによる協調物体操作について取り扱うこととする。

移動ロボットは固定型マニピュレータと比較して、動作時の移動誤差が大きい。更に、ロボットが環境と固定されないため、作業中にセンサーや得情報は、ノイズや環境の不定性の影響で非常に弱い。従って、制御御ベースで動作させることは困難である。また、移動ロボットに高速な動作や複雑な軌道追従を行うことは困難であり、その動作は制限される。従って、本文論では、

- 物体の操作者である移動ロボットは、移動誤差が生じ、位置制御ベースで動作する
- 移動ロボットの動作には制限がある

ことを考慮し、移動ロボットによる物体操作手法を構築する。

2. 物体操作手法

(2-1) 複数移動ロボットによる協調物体操作

複数移動ロボットによって大型物体を取り扱うことを考えると、固定型マニピュレータと同様に、対象物を把持し持ち上げ、物体操作することは困難である。そこで、対象物が環境に接触した状態で物体操作を行うこととする。対象物が環境に接触している場合には、対象物の全質量を移動ロボットが支える必要があり、小さなことで操作可能となる。また、下台以上のロボットが対象物の１つを接触状態に保持した状態で物体操作を行う際、同時に下台以上のロボットは安定した接触状態を維持するため、物体操作が困難である。そこで本文論では、文献(4)で提案されているように、各ロボットの合計を容易に形成し、かつ対象物への接触面積が大きくなり安定した接触状態を実現することから、調和的な頂点を協調して取り扱い、棒を用いて物体を操作する(図1)。

(2-2) 従来研究

移動ロボットによって物体を取り扱う研究においては、ロボットの移動誤差に対応するために、作業中にフィードバックを行い、位置を補正しながら作業を遂行する手法が提案されている(13)。(14)。

二次元平面内において物体を押して搬送する作業について、押しきれ作業において従来マニピュレータの研究分野で得られた知見(15)をもとに、基本的な搬送計画をたて、作業中はセンサ情報を用いて行動する手法が提案されている(16)。物体を移動ロボットによって把持し、持ち上げて搬送する作業に関しても、把持機構に位置された力センサの情報を利用してフィードバックを用いる手法が提案されている(17)。三次元空間における物体の姿勢変化については、移動ロボットの先端にある力覚センサの情報により、適切なフィードバックを行う。物体に変化手法を提案した研究(18)がある。しかし、物体形状が直方体に限定されている。また、この手法は固定型マニピュレータと同様に手法(19)を移動ロボットに適用したものであり、移動ロボットは非常に高精度かつ高速にセンサフィードバックが可能である必要があり、通常の移動ロボットに適用することは現実的ではない。

これらの手法では、物体の搬送経路や搬送手順を予め求める必要がある、求められる軌道に正確に追従することにより作業を成功させる。しかし、追従すべき軌道を求める前では誤差の影響を定量的に評価していないため、予想外に誤差が大きくなると作業を遂行出来ないことがある。

つまり、移動ロボットにより物体を取り扱う研究においては、移動誤差に対応するためにオンラインで力情報を用いたセンサフィードバックを行うことが必要である。なぜなら、センサ情報が正確に取れないことや、誤差が蓄積して大きくなった場合には、作業が失敗する危険性が大きい。従って、実際に作業を行う前の搬送経路や搬送手順を求める段階で、オンラインで誤差を考慮することが重要である。

そこで、操作方法をオンラインで計画する研究に注目すると、二次元平面での押し操作により物体を目標位置まで移動させる作業に関して、センサ情報を必要とせず、環境の不確定要素を考慮して物体操作者の行動を計画したセンサレスマニピュレーションの手法が提案されている(20)。この作業では、物体の接触状態を常に接触状態を把握することが困難である。そこで本文論では、文献(4)で提案されているように、各ロボットの合計を容易に形成し、かつ対象物への接触面積が大きくなり安定した接触状態を実現することから、2台以上のロボットが対象物の１つを接触状態に保持した状態で物体操作を行う。従来に比べて、作業は効率的に実行でき、作業の変更が容易に行うことができる。

つまり、移動ロボットの動作の制限を考慮した三次元空間における物体操作計画手法は提案されていない。

(2-3) 本論文のアプローチ

本論文においては、移動誤差が生じることを考慮し、物体操作手法を提案する。物体の操作手法をマニピュレータで実行する場合、物体の操作手法をオンラインで計画する。また、物体の動作を計画するだけでなく、移動ロボットの動作も同時に計画する。以下に本論文のアプローチを示す。

移動ロボットは位置制御ベースで動作し、移動誤差が生じることが考えると、物体の操作手法は限定される。物体周りの環境が変化することで、物体に課される変化が大きくなることが考えられる。以下に本論文のアプローチを示す。
3. 物体操作の解析

(3-1) 問題設定 対象物の操作法に関しては、対象物の形の面が床面に接触している状態からその支持面が床面に接触する状態への、対象物の回転軸の軸がし操作を考慮する。ここで、対象物の回転軸の軸がし操作は、三次元モデルで表現可能である。この対象物を回転させる操作を繰り返すことにより、任意の面が床面に接触した姿勢に変化することが可能である。

移動ロボットに関しては、把持する円筒状の様は高さ h_{min}から h_{max}まで上に移動させることが可能であるとする。二次元平面内でロボットの移動及び把持の上下動きにより、対象物への接触位置を変化させる。ロボットの運動に関しては、一定範囲内の位置誤差が生じる危険性があるとする。移動による累積誤差が位置決め誤差の最大値として与えられる、その値は既知であるとする。また、床面に対して垂直な周囲の対象物の回転は考慮しない。

対象物に関しては、以下の問続設定を行い、解析を行う。

* すべての運動は単純である
* すべての対象物は凸多面体で表現可能である
* 対象物の形状・重心位置・接触係数等は既知である
* クーロン摩擦の法則に従う（摩擦おき点接触モデル）
* 与えられた対象物の質量及び重心位置、対象物と床面、様との接触係数にもある一定の誤差があるものとする。

本論文では、以上の物体操作手法をオフラインで事前に計画し、移動ロボットによる物体姿勢変化を実現する。

(3-2) 力学的条件の定式化 図3に示した対象物を単純に操作するための条件は、以下の通りである。

\[F_x + F_e + F_0 = 0 \] \hspace{1cm} (1)

\[p_y \times F_x + p_y \times F_0 = 0 \] \hspace{1cm} (2)

ただし、振図系については、図3に示した通り、水平方向をx軸、垂直（鉛直）方向をy軸とする。対象物と床面の接触位置Oを基点とする。また、辺iにおける慣性中心と対象物の接触位置Sをp_{i} = (x_{i}, y_{i})、対象物の重心位置Gをp_{g} = (x_{g}, y_{g})で表す。F_iは点Sにおける力、F_eは点Oにおける力、F_g = (0, -mg)は点Gに加わる重力であるとする。

ここで、F_eを点Sにおける対象物の慣性中心方向への力とし、F_eを点Oにおける床面法線方向への力とすると、F_e及びF_gを分解した結果は以下となる。

\[F_e = f_n e + e_{x} \mu_e f_e d_e \] \hspace{1cm} (3)

\[F_e = f_n e + e_{x} \mu_e f_e d_e \] \hspace{1cm} (4)

\[n_e = (0, 1), d_e = (1, 0), n_s = (u_n, v_n), d_s = (u_d, v_d) \] は単位ベクトルである。ここで、右辺第1項は垂直力、第2項は摩擦力を表す。に精度な時の摩擦力は最大静摩擦係数以下であるため、1から0までの値を取りうる変数 \(\alpha \)を用い、\(\alpha \mu_e \)で表す。予め決定した最大静摩擦係数を表す。式(3), (4)を代入すると、式(1)は式(5), (6), (7)式(7)と直結直結することができる。

\[f_n u_n + \alpha \mu_e f_e u_d + \alpha \mu_e f_e = 0 \] \hspace{1cm} (5)

\[f_n u_n + \alpha \mu_e f_e u_d + f_e - mg = 0 \] \hspace{1cm} (6)

\[f_s (x_{v} - y_{v}) + \alpha \mu_e f_e (x_{v} - y_{v}) \]
\[-mg(x_{g} \cos \theta - y_{g} \sin \theta) = 0 \] \hspace{1cm} (7)

ただし、F_eは点Sにおける力の大きさ、F_eは点Oにおける力の大きさ、mは対象物の質量、\(\mu_e \)は点Sにおける最大静摩擦係数、\(\mu_o \)は点Oにおける最大静摩擦係数、\(\theta \)は対象物の角度である。様の接触位置を表すパラメータを\(\alpha \)とすると、(u_n, v_n), (u_d, v_d)は対象物の角度の関数であり、(x, y)は\(\alpha \)の関数となる。従って、式(5)～(7)における未知数は、f_e, \(\alpha \), \(\alpha \)である。F_maxをロボットの最大力とし、対象物の安定条件は、式(8)～(10)で表現される。

\[f_e \geq 0 \text{ かつ } f_e \geq 0 \] \hspace{1cm} (8)

\[|\alpha| \leq 1 \text{ かつ } |\alpha| \leq 1 \] \hspace{1cm} (9)

電気学会 C. 121巻 3号, 平成 13年 551
ここで、式 (8) は対象物が楕と床面から離れることを意味する。式 (9) は、\(a_{e,i} \leq 1\) が 1 以下であることから、\(-\mu_{a,i} \leq a_{e,i} \leq \mu_{a,i}\) となり、どちらの方向にも対象物に加わる力が静止摩擦係数を超えないことを意味する。つまり、これらの制約条件のもと、式 (5)～(7) を解くことで、安定した操作が可能かどうかを判断できる。具体的には、\(\theta\) と \(a_i\) を用いて、安定した操作が可能な条件が算出される。

\[f_s \leq F_{max} \] \hspace{1cm} （10）

（3-3）安定領域グラフ 以上の解析結果により、安定した物体操作が可能な対象物の姿勢及び操作条件を求める。ここでは、物体姿勢 \(\theta\) を横軸、物体の接触位置 \(a_i\) （辺番号）を縦軸として、上記の安定条件を満たす領域を「安定領域」としてグラフに用いて表現することとする。ただし、\(0 \leq a_i \leq 1\) であり、接触位置は \(a_i = 0\) のとき頂点 \(i\), \(a_i = 1\) のときは頂点 \(i+1\) である。図 4(a) に示した直方体形状の対象物の辺1の安定領域グラフを図 4(b) に示す。このグラフにおいて安定領域内で操作を行うことにより、安定的な操作を行えることが可能となる。

安定領域グラフでは、対象物の安定条件を加え、棒の可動範囲に関する制約条件を考慮する。具体的には、棒の可動範囲を \(\theta\) 及び \(a_i\) を表現し、安定領域グラフの結果に反映させる。図 5(a) に示す辺の安定領域グラフを示す。

ここで、摩擦係数が非常に小さい場合や、物体の質量が非常に大きい場合、あるいは棒の可動範囲に制限がある場合には、すべての辺における安定領域グラフについて、ある角度まで安定領域が存在しないことがある。この場合、本論文における操作手法では物体を目標姿勢まで変位できないことを意味し、本論文では構築の動作計画においては解は存在しない。

（3-4）誤差の考慮 移動ロボットに生じる移動誤差、対象物情報の精度、及び環境に関する不確定要素を考慮する。接触位置の誤差は、二次元平面内でのロボット自身の走行誤差と棒の高さの位置決め誤差から求められる。本論文で考慮している誤差パラメータは以下の通りである。

- 接触位置：\((x \pm \Delta x, y \pm \Delta y)\)
- 対象物の質量：\(m \pm \Delta m\)
- 対象物の重心位置：\((x_0 \pm \Delta x_0, y_0 \pm \Delta y_0)\)
た場合にノードが移動する。そこで、誤差がない場合のスタート及びゴールノードに対応したノードを、誤差が存在する場合のスタート及びゴールノードとする。ただし、誤差が非常に大きい場合は、スタート及びゴールノードが存在しなくなり、その条件では解は存在しない。

次に操作グラフ上のノードをアークで接続する。操作グラフにおいて、アークは、(a)連続操作、(b)持ち替え操作、(c)受け渡し操作の3種類の操作方法に相当する。

横方向のノード間の移動（例：ノード①→②）は、連続操作を意味する（図6(a)）。この操作においては、移動するノードは変化させずに、物体の姿勢を連続的に変化させることができることがある。この操作では、安定領域グラフにおける入力が連続的に変化させることに相当する。

縦方向のノード間の移動（例：ノード①→③）は、持ち替え操作を意味する（図6(b)）。この操作においては、物体の姿勢を変化させずに、接続するノードが変化させることができる。この時点で、操作が新たに生成される。本論文における横方向のノードの接続については、操作計画結果で求められる操作の手順において、操作の回数が少なくなることを図示している。つまり、連続操作を行った場合には、可能な限り目標姿勢まで動き続けることができ、操作の回数を減らすことを目的としているため、各操作が安定領域で持ち替え操作を行う。ここで、姿勢の変化させずに持ち替え操作は、ロボットに移動誤差が生じた場合には実現可能であるが、物体に移動誤差が生じる場合には、大きな内力が生じる危険があるため、実現不可能である。従って、実際には、次の受け渡し操作と同様に、物体の姿勢及び移動接続するノードを同時に変化させる操作となる。

斜め方向のノード間の移動（例：ノード②→④）は、受け渡し操作を意味する（図6(c)）。この操作においては、物体の姿勢及び移動するノードを同時に変化させることが可能である。この操作は、2つのノード間で安定領域がなく、ロボットに移動誤差が影響する内力が発生する危険性がある状況を回避するために用いられる。なお、図6(c)においては、グラフが複雑になって見にくくなることを避けるため、斜め方向のアークは4か所しか図示していないが、実際に、辺が異なるすべてのノード間で斜め方向のアークは存在している。

以上の操作が決定した後に、その操作を実現するための各移動ロボットの動作を生成する必要がある。各操作におけるロボットの動作の生成方法については、次節以降で述べる。

また、操作グラフにおけるノード①の横軸（対象物姿勢θ）の値は、操作が上から下へ一定の値（θk）として表現されるが、誤差がある場合には、ある範囲の中で変動する。この範囲の影響についても、動作の生成方法で述べる。

最後に、操作の曲面をコストとして表現し、操作グラフの各アークの長さに対応させる。各アークの長さを設定することにより、物体操作計画は、設定された操作グラフ上の最短経路問題に帰着させることができる。初期姿勢（ノード①）から目標姿勢（ノード②）までの距離の長さは操作の困難を相当する。従って、最短経路を選択することにより、最も簡単で効率的な操作を選択することになる。

ここで、(a)連続操作、(b)持ち替え操作、(c)受け渡し操作における操作コストをcosta,b,cとする。実際の作業においては、ロボットに移動誤差が存在しない場合には、(a)連続操作、(b)持ち替え操作、(c)受け渡し操作の順に操作が困難となる。誤差が存在する場合には、(b)持ち替え操作、(c)受け渡し操作は同じ動作であるため、操作の困難さは同じ評価関数で設定されるべきである。以上を考慮し、以下のノードを結ぶアークの長さは式（11）（Aa,b,c = 10^4, Ba,c = 0, Bb,c = 0）と設定した。ただし、θθ[rad]は対象物の姿勢変化値である。式（11）において、Aa,b,cは物体の姿勢変化させる困難さを表すパラメータであり、Ba,b,cはその操作個体を行うことの困難さを表すパラメータである。

\[
\text{costa,b,c} = Aa,b,c(\Delta \theta + Bb,c) \quad (11)
\]

4.2 操作手順の決定 操作グラフにおけるノード・アーク及び各ノードの長さが決定した後に、最短経路を求めることにより、最適な操作手法が計画される。

本論文では、最短経路探索にDijkstra法の手法を用いて操作コストを持つ最小となる操作手順を求めた。また、操作グラフにおいて、スタート及びゴールノードを複数枚の場合は、操作コストが最小となるスタートノード及びゴールノードの組み合わせを選択し、解とした。

ただし、この操作手法決定の段階では、連続操作における対象物への接触位置αa、持ち替える操作及び受け渡し操作
における各移動ロボットの動作は決定されていない。

（4-3）各操作における移動ロボット動作生成 操作順が決定された後、その操作を実現するための各移動ロボットの動作を作成する必要がある。本論文では、ロボット自身が移動することにより棒の横方向の位置を変化させ、棒を上下させることにより棒の縦方向の位置を変化させる。

ここで、ロボットの動作指令（アクチュエータへの指令）が連続的に変化する場合には、制御者が複雑となる。簡単な制御を行うためには、ロボットへの指令が一定であることが望ましい。ロボットの移動速度を一定に保って移動する場合には、棒の横方向の運動は直線となり、棒の上下の速度を一定に保って動作させる場合には、棒の縦方向の運動は直線となる。従って、簡単な動作を組み合わせると、棒は直線軌道上を動作することとなる。よって、本論文では棒の中点ないし直線軌道の組み合わせて生成し、移動ロボットに適した物体操作手法を計画する。

（a）連続操作

連続操作は、対象物をある姿勢から別の姿勢まで連続的に変化させる動作である。従って、対象物の安定的な安定状態を保たなければならない。姿勢を連続的に変化させるための棒の接触位置 a_i の軌道（ロボットの動作）を生成する必要がある。

ここで、固定型マニピュレータで物体操作を行う場合には、操作力が最小となる軌道が選択されることが多い。しかしながら、操作力を最小化すると、接触位置の軌道が複雑となる。つまり、操作力を最小化する軌道を達成するためには、移動ロボットの移動速度が常に変化する非常に複雑な動作を行わなければならない。移動ロボットによって物体操作を行う場合には、以上の複雑な動作は現実的ではない。

そこで直線軌道上を動作させることで、物体操作を実現することとする。具体的には、連続操作開始時（θ_{start}）と終了時（θ_{goal}）において、操作力が最小となる a_i を求め、それらを直線で補間した軌道を生成する（補間した軌道を十分細かく間隔で分割し、分割した場所での a_i を求める）。次に、補間した軌道における各場所での a_j を安定軌道においてあるかどうかを安定領域グラフにおいて求める。すべての場所において a_i の値が安定領域内であった場合には、その軌道を連続動作の棒の接触位置の軌道として選択し、移動ロボットの動作に変換して、動作を生成する。すべての場所において a_i の値が安定領域内になかった場合には、角度 $\theta_{mid} = (\theta_{start} + \theta_{goal})/2$ における操作力が最小となる a_i を求め、角度θ_{mid}からθ_{mid}と角度θ_{goal}まで直線軌道を分割して、すべての軌道が安定領域内に入るまでこの手順を繰り返すこととする。以上により、安定領域グラフにおいて必ず安定に操作可能な領域内で操作が行われる軌道が生成される。図4(a)に示した対象物における、連続操作の軌道生成結果と安定領域上での軌道を図7(a)に示す。

（b）持ち替え操作

持ち替え操作では、移動ロボットに誤差が生じない場合には、対象物の姿勢を変化させずに持ち替え操作を行うことが可能であるが、実際に誤差が存在する場合には、受け渡し操作と同様に、対象物を手放して受け止めることとなる。

ここでは、対象物と棒の目標以外の場所で接触せず、かつロボット同士で干渉しない動作を生成する必要がある。持ち替え操作を行う前に対象物に接触している棒をA、持ち替え操作前に接触している棒をBとすると、移動ロボットの動作生成法は以下の通りである（図7(b)）。

（1）棒Bが目標位置の高さまで移動（垂直方向に移動）。ただし、棒Bの目標位置は、移動ロボットの誤差を考慮して、最悪の場合でも対象物と接触せず、かつ安定領域内にある位置を選択する。

（2）棒Bが目標位置まで右方向（水平方向に移動）。ただし、棒Aの目標位置は、移動ロボットの誤差を考慮して、最悪の場合でも対象物と接触しない位置を選択する。

（4）棒Aが次の操作に備えて対象物と干渉しない位置まで移動（水平方向に移動）。以上により、簡単な直線軌道の組み合わせで、持ち替え操作が実現される。

（c）受け渡し操作

受け渡し操作では、対象物の姿勢と接触する棒を同時に変化させる。受け渡し操作を行う前には、対象物が棒から離れる場所まで対象物を押し、対象物を受け止める場所に棒を準備しておくことが必要である。受け渡し操作を行う前に対象物に接触している棒をA、受け渡し操作後に接触している棒をBとすると、移動ロボットの動作生成法は以下の通りである（図7(c)）。

（1）棒Bが目標位置の高さまで移動（垂直方向に移動）。ただし、棒Bの目標位置は、移動ロボットの誤差を考慮して、最悪の場所でも対象物と接触せず、かつ安定領域内のある位置を選択する。

（2）棒Bが目標位置まで移動（水平方向に移動）。
表1 動作計画条件
Table 1. Simulation conditions

対象物形状	500[mm] × 1000[mm]
対象物重量	4.0[kg]
対象物重心位置	対象物の中心
構形状	円筒状（外径 50[mm]）
ロボットの最大力	2[N]
(条件1) 誤差あり	ロボットの移動誤差
対象物質量及び摩擦係数	±0.01 [m]
対象物重心位置	±10[%]
(条件2) 可動範囲（垂直方向）制限あり	0 [mm] ～ 500 [mm]

5. 動作計画結果

以上に述べた動作計画手法により求められる、操作手法及び対象物、移動ロボットの動作を示す。ここでは、対象物の動作だけではなく、その操作を実現するための移動ロボットの動作が、移動ロボットに適した単純な軌道となっていることを確認する。また、動作計画手法の有効性を検証するために、様々なパラメータを変動させ、それぞれの変更に柔軟な動作計画器が対応可能であることを確認する。パラメータの変動に関しては、表1における条件のうち、(1) 可動範囲に制限がない状態で、誤差が少ない場合と存在する場合（条件1が変動）、(2) 誤差が存在する状態で、橋の可動範囲に制限がない場合（条件2が変動）、において操作計画器が柔軟に実行することを検証する。

5-1. 誤差の影響
誤差が存在しない場合と存在する場合によって、柔軟に対応可能であることを検証した。

誤差が存在する場合には、操作グラフ（図6）において、ノード③→⑤→⑦→①→⑧の経路が得られた。ノード③→⑤→⑦→①→⑧は辺1、ノード⑤→⑦→辺3に接続して距離操作を行うことを意味し、ノード①→⑦→辺1から辺3への受け渡し操作を行うことを意味する。つまり、最初に辺1に接触しながら対象物を押し、辺1から辺3へ接触状態を変化させ、辺3に接触しながら対象物を倒す操作手順が得られた。対象物が安定条件を満たし、移動ロボットによる単純な動作の組み合わせで操作を生成した結果を図8(a)に示す。

また、生成された橋の位置の軌道（各移動ロボットの動作）を図9に示す。図9では、簡単な直線軌道の組み合わせにより、移動ロボットの動作が生成されている。ここでは、橋の大きさを考慮し、橋が床面や対象物にずり込むないようにしている（図9中A等）。

図8 操作手順
Fig. 8. Order of operation

図9 移動ロボット（橋位置）の軌道
Fig. 9. Orbit of each robot

表1の条件1において、誤差をすべて0にした場合の動作計画結果を図8(b)に示す。誤差がない場合と誤差がある場合（図8(a)）を比較すると、誤差がない場合には同時に2点で接触して持ち替え操作を行うことにより、作業を実現しているのに対して、誤差がある場合には、過大な内力が発生する危険性があるため、常に1点で接触して操作を実現している。また、誤差がない場合には対象物の頂点に接触して操作を行っていることに対して、誤差がある場合には、余裕を持って対象物の頂点から少し離れれた場所に接触しながら操作を行う行動が計画されている。

5-2. 可動範囲の影響
橋の可動範囲に制限がない場合とある場合について、同様に検証した。

表1の条件2に示す可動範囲の制限がある場合の動作計画図を図8(c)に示す。橋の可動範囲に制限がある場合（図8(a)）を比較すると、制限がある場合には、辺1の高さが高い位置に接触しながら操作することが不可能であるため、辺0に接触して対象物を持ち上げながら姿勢の変化を行っている。受け渡し操作後の辺3に接触しながらの連続操作においても、辺3の端点に接触点が近いほど操作力が最も小さくなるが、可動範囲から外れるため、辺3の中間に近い位置で接触し、徐々に辺3の端点に接触位置を変化させるなど、連続操作を実現している。

以上の結果により、本論文で提案した物体操作計画手法は、
- 様々な条件に応じて、柔軟に動作を生成することが可能
- 対象物だけではなく、移動ロボットの動作を考慮した計画を行うことが可能であることが確認された。
6. 結 論

本論文では、移動ロボットに適した物体操作手法の構築を行った。計画段階において移動ロボットに生じる移動誤差や各種パラメータ誤差を考慮することにより、移動ロボットに付随する不確実な位置誤差に対してロバストな物体操作計画（センサレスマニュエレーション）手法を提案した。本文論で提案した動作計画手法により予め生成した移動ロボットの軌道を指令としてを与えることにより、センサ情報を利用して安定した操作を行うことが可能である。

（平成11年12月27日受理、同12年10月10日再付）

文献

（1）菅野重樹：家庭用ロボットの作業移動、日本ロボット学会誌、Vol.13、No.7、pp.937–938、1995。
（2）太田稀：知能ロボットのための環境整備、精密工学会誌、Vol.65、No.10、pp.1407–1410、1999。
（3）新井健美：作業用移動型ロボットの研究動向と今後の展望、日本ロボット学会誌、Vol.13、No.7、pp.896–899、1995。
（8）沢崎宏之, 井上博充：複数の自律ロボットによる協調操作技術, 日本機械学会論文集 (C編), Vol.69, No.564, pp.2318–2325, 1993。
（10）沢崎宏之, 井上博充：多ノードにおける物体衝突防止操作, 日本ロボット学会誌, Vol.9, No.5, pp.546–571, 1991。
（12）平井真一, 渥田真之, 牧村俊雄：建物建築における物体の接触状態遷移に関する運動計画解析とそのネットワーク表現の自动生成, 計測自動制御学会論文誌, Vol.24, No.4, pp.406–413, 1988。
（13）余永: 構造状態論義, 吉川恒夫: 建物環境における建物の運動自由度の定義と線形測算計画への応用, 系統制御情報学会論文誌, Vol.8, No.2, pp.80–90, 1995。

山下淳

（非会員）1973年10月9日生まれ。1998年3月東京大学大学院工学系研究科精密機械工学専攻修士課程修了。現在、同博士課程在学中。1999年4月より理化学研究所ジュニア・リサーチ・アソシエイト。1996年日本機械学会浜山賞受賞。移動ロボットによる協調作業の動作計画及び移動機構の研究に従事。IEEE、精密工学会、日本ロボット学会の学生会員。

556

太田順

河野弘

（非会員）1976年5月8日生まれ。1999年3月東京大学工学部精密機械工学科卒業。同年ソニー（株）に入社、現在に至る。在学中は、複数移動ロボットによる物体操作計画の研究に従事。

福地正樹

（非会員）1974年6月3日生まれ。1998年名古屋大学工学部機械航空工学科卒業。2000年3月東京大学大学院工学系研究科精密機械工学専攻修士課程修了。同年ソニー（株）に入社、現在に至る。在学中は、ロボットの制御・動作計画の研究に従事。日本ロボット学会の会員。

新井民夫

（非会員）1947年8月4日生まれ。1970年東京大学工学部精密機械工学科卒業。1977年同博士課程修了、工学博士。1987年東京大学工学部精密機械工学科教授。1979年英国エディンバラ大学人工知能学科研究員、産業用ロボット技術の標準化活動を推進。自主組立、移動ロボットなどの研究に従事。IEEE、CIRP、精密工学会、日本ロボット学会などの会員。

満間一

（正会員）1959年1月18日生まれ。1984年東京大学大学院工学系研究科修士課程修了。1986年理化学研究所化学研究所研究員補、生化学システム研究室研究員を経て、現在工学基盤研究所研究室開発促進室長。1999年筑波大学大学院理学研究科客員教授、自律分散型ロボットシステム、創発ロボットシステムの研究や複数自律移動ロボットの協調技術、知的デイリーケアとその応用技術の開発等に従事。1995年日本機械学会ロボット賞、RoboCup-98 Japan Open人工知能学会賞（UTTORI United Team）等受賞。日本機械学会、日本ロボット学会などの会員。工学博士（東京大学）。