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Abstract—To operate mobile robots in an intelligent space 

such as a distributed camera sensor network, pre-calibration of 

all environmental cameras (i.e., determining the absolute poses 

of each camera) is an essential task that is extremely tedious. 

The optimization problem for camera calibration with a mobile 

robot has been intensively studied in the past. However, most 

existing solutions have limitations in that they can estimate only 

three degree of freedom (DOF) parameters (x, y, yaw) with 

restrictive assumptions. In this paper, we propose a novel 

method that achieves trajectory reconstruction of a mobile 

robot and calibration of complete 6DOF (x, y, z, roll, pitch, yaw) 

external parameters of distributed cameras by utilizing easily 

obtainable grid map information of the environment as prior 

information. In addition, a novel two-way observation model is 

proposed. The map information and two-way observation model 

help seek a global minimum solution (i.e., 6DOF camera 

parameters and robot trajectory) within the objective function 

containing many local minimums. We evaluate the proposed 

method in a simulation environment with a virtual camera 

network of up to 10 cameras and a real environment with a 

mobile robot in a wireless camera network. The results 

demonstrate that the proposed framework can estimate the 

6DOF camera parameters and the target trajectory successfully. 

I. INTRODUCTION 

In recent years, many studies about intelligent space, which 

includes distributed sensors in a human-robot coexistence 

environment, have been performed [1], [2]. A camera sensor 

network with a multi-camera system is the most general 

example that constructs an intelligent space. By constructing 

the camera sensor network in such an environment, it is able 

to recognize various events that occur in the environment so 

that mobile agents in the space can provide appropriate 

services to humans, as shown in Fig. 1. To operate mobile 

agents in a distributed camera sensor network, pre-calibration 

of all environmental cameras (i.e., determining the absolute 

poses of each camera) is an essential task that is extremely 

tedious. In this respect, a number of studies that provide 

Bayesian filter-based probabilistic estimates of sensor 

parameters and target tracks have been conducted. Foxlin 

proposed the simultaneous localization and auto-calibration 

(SLAC) concept, which is a very general architectural 
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framework for navigation and tracking systems with 

environment sensors [3]. Taylor et al. also implemented a 

simultaneous localization, calibration, and tracking (SLAT) 

system using radio and ultrasound pulse-based range sensors 

as environment sensors [4]. However, these methods can only 

be applied with range and bearing sensors and cannot make 

use of information from the camera sensor network, which is 

a popular network system for the intelligent space. 

Chen et al. employed an approach that optimizes robot 

motion to minimize camera calibration error; however, it 

needs an assumption that the robot motion has no uncertainty 

and rough parameters of the camera should be initialized by 

human observation [5]. Proposals by Rahimi et al. and Funiak 

et al. recovered the most likely camera poses and the target 

trajectory given in a sequence of observations from the 

camera network without taking into account special prior 

conditions [6], [7]. These approaches are based on maximum 

a posteriori (MAP) estimation, which is similar to ours, but 

rather than estimating complete six degree of freedom (DOF) 

poses (x, y, z, roll, pitch, yaw) for each camera, they only 

estimate 3DOF (x, y, yaw) external parameters with a 

restrictive assumption that requires aligning each camera’s 

ground-plane coordinate system with a global ground-plane 

coordinate system. The optimization problem of including 

orientation parameters for all axes (roll, pitch, yaw) may have 

a myriad number of local minimum solutions without 

additional constraints because many indistinguishable 

observations may exist even if the poses of cameras are 

different.  

Here, easily obtainable priors (e.g., the map information of 

the environment) can greatly improve solutions to the 

problem. Therefore, to realize a 6DOF parameter estimation, 

we propose a novel approach that uses the grid map 

information of the environment as an additional constraint for 

the objective function within the optimization process. The 

grid map information that contains information of the interior 

wall can be very useful for the additional constraint since the 
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Figure 1. Concept of intelligent space. 



 

 

 

cameras are generally installed on the interior wall because of 

space limitations. Such grid map information can be easily 

obtained from the blueprint of the artificial environment (e.g., 

CAD data) or a traditional simultaneous localization and 

mapping (SLAM) scheme. In our research, therefore, the 

additional constraint for the objective function is obtained by 

transforming the grid map information. Additionally, the use 

of map information allows our system to estimate the rough 

position of the mobile robot that can also be added to the prior 

information even if it has some uncertainty. 

Compared with the traditional observation model, which 

models measurement information from the distributed camera 

to the target (i.e., one-way observation), we define a novel 

two-way observation model based on an assumption that the 

camera and the target can observe each other in order to 

strengthen the constraints of the objective function. 

The contribution of this research is as follows. Previous 

studies in which only 3DOF poses could be estimated have a 

significant limitation on the camera network installation. On 

the other hand, our complete 6DOF calibration system is able 

to construct a camera network system in arbitrary poses on 

the wall plane and easily calibrate its parameters simply by 

controlling the mobile robot.  

The remainder of this paper is organized as follows: 

Section II defines the state variables to be estimated in the 

camera network system with a mobile robot. Likelihood 

functions and prior distributions to define the objective 

function are presented in Section III. Section IV describes the 

mathematical derivation of the objective function based on 

MAP estimation and the method to find a minimum solution. 

The effectiveness of the proposed method is evaluated with 

experimental results in Section V. Finally, Section VI gives 

our conclusions. 

II. STATE DEFINITION IN CAMERA SENSOR NETWORK 

A. State Variables 

In this paper, to estimate robot trajectory and the state of 

the camera network system (i.e., the external parameters for 

all distributed cameras), the state vectors X and Y are defined 

as follows:  
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where xt and yk are the 3DOF robot pose at time t and the kth 

distributed camera pose (i.e., 6DOF external parameters), 

respectively. X and Y are the complete states of the robot 

trajectory and the camera network system that should be 

estimated. n is the number of distributed cameras composing 

the camera network system for the intelligent space. In short, 

the optimization problem in this paper is estimating a high 

dimensional state vector containing the whole robot trajectory 

X and the camera poses Y. 

B. Camera Calibration Model 

The camera calibration model that defines the relationship 

between the image coordinate and world coordinate consists 

of an intrinsic parameter matrix A and extrinsic parameter 

matrix T, which are given by 

ATxm                                              (5) 
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where the internal parameters (cx, cy), f, and fskew denote 

principal point, focal length, and skew coefficient, 

respectively. If the state vector of the camera network system 

(4) is estimated, the extrinsic parameter matrix T made up of 

the rotation matrix and translation vector can be easily 

transformed by using the Eular angle (i.e., it expresses the 

6DOF pose of the camera with respect to the world 

coordinate). Therefore, if the intrinsic parameter matrix A is 

known, the calibration task can be completed and it is 

possible to convert the world coordinates x = [x y z 1]T to 

image coordinates m = [u v 1]T using (5). For example, the 

robot state xt observed by distributed camera yk is mapped to 

the pixel coordinate mt = [ut vt 1]T in the image, as shown in 

Fig. 2. 

III. LIKELIHOODS AND PRIORS FOR OBJECTIVE FUNCTION  

A. Observation Models for Likelihood 

The observation model for both the camera network system 

and the camera mounted on the mobile robot (i.e., as in the 

two-way observation model shown in Fig. 3) provides the 

likelihood function that imposes stronger constraints on the 

robot pose and the camera parameters. The observation model 

for the camera network Hc(∙) based on the predicted robot 

state vector xt and the state vector of the kth distributed camera 

y
k is defined as follows by using the camera calibration model 

(5): 
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Figure 2. Relationship between world coordinate and image coordinate 

according to camera calibration. 



 

 

 

where      is the predicted observation in the pixel coordinate 

(u, v) of the kth distributed camera at time t from the predicted 

state vector xt and yk. Ac and Tk denote the intrinsic parameter 

matrix and the extrinsic parameter matrix of the kth distributed 

camera, respectively.                                       is the position vector 

of the robot state with the exception of the orientation 

elements. Equation (8) describes a likelihood function for this 

observation model with covariance z
2
I=-1 that means 

uncertainty of the pixel observation. Since each observation 

can be considered independent of one another, the likelihood 

function that includes a collection of all observations is 

represented as (9). Let Oc be the set of pairs of indices <k, t>, 

where <k, t>∈  Oc iff the kth distributed camera observes the 

mobile robot at time t. 

The observation model Hr(∙) for the camera mounted on the 

mobile robot can also be defined in the same manner as the 

camera network’s observation model as follows: 
k
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where 
k
rẑ is the predicted observation in the pixel coordinate 

(u, v) of the camera mounted on the mobile robot at time t 

from the predicted robot state vector xt and y
k. Ar and Tr 

denote intrinsic and extrinsic parameter matrices of the 

camera mounted on the mobile robot, respectively.   

                                    is the position vector of the kth 

distributed camera excepting the orientation elements. The 

likelihood function is also represented in the same manner as 

(8) and (9). Here, the set of Or denotes a set of <t, k> pairs, 

where <t, k>∈ Or iff the mobile robot observes the kth 

distributed camera at time t.  

B. Localization for Prior Information 

Most mobile robot systems essentially operate on a 

sequence of range measurements and the control input data. 

The robot pose is also estimated based on such sequential 

measurements. In this respect, roughly estimated robot pose 

data with its uncertainty (i.e., covariance) can be used as prior 

information for the global constraints even though the 

accuracy is quite low because of several noises. The Bayesian 

filtering-based localization method, which is the most widely 

used probabilistic scheme, is represented as: 
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where ut and lt mean the control input data that are obtained 

from encoder information and range measurements, 

respectively. Here, the resulting product is generally not a 

probability (i.e., it may not integrate to 1). Hence, the result is 

normalized by virtue of the normalization constant . Over 

the past few decades, a considerable number of studies have 

been conducted on this type of localization method based on 

the Kalman filter or particle filter [8]. Because the 

localization results follow normal distribution (i.e., these 

provide not only pose data   but also its covariance data 

Pt=t-1 explicitly), we can easily apply it as the prior 

distribution.  

C. Map Information for Prior Information 

We can additionally take the prior information into 

consideration by incorporating the grid map information of 

the environment as the camera network is generally installed 

on the wall plane represented in such map information. To 

this end, we define a prior distribution using the map 

information as follows:   
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k | M) in (15) can be considered as a uniform 

distribution since the map information M cannot provide any 

constraints about the elements except (x, y) position; thus, this 

term can be ignored. is the normalization constant. Figure 4 

shows the procedure for generating the function m(∙) for the 

prior distribution from the grid map information. First, 

contour lines that represented wall information are generated 

from the original map using a thinning algorithm as shown in 

Fig. 4 (a) and (b). Then, to generate a probability-like 

distribution, Gaussian blur is applied to the contour lines as 

shown in Fig. 4 (c) and (d). These processes can be performed 

by image processing techniques. Intuitively, a high value of 

m(∙) means that the probability over the camera position is 

high. Therefore, (16) implies prior distribution that is a 

conditional probability of camera parameters Y given grid 

map M and it can be considered to generate probability 

distribution about the existence of the wall from the grid map. 

Despite the fact that only x and y elements of the camera 

poses cannot be constrained, this plays an important role 

when seeking the minimum solution of the objective function. 

Note that if we use a 3D map (e.g., voxel map [9] or OctoMap 

[10]) instead of the 2D grid map, prior distribution can be 
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Figure 3. Concept of two-way observation model. 
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expanded to include not only the wall but also the ceiling 

information of the indoor environment.  

IV. FINDING MINIMUM SOLUTION OF OBJECTIVE FUNCTION 

This section describes the optimization method to obtain 

the most likely robot trajectory and the camera poses. The 

posterior probability of trajectory X and camera parameters Y 

given the whole conditions mentioned in Section III is 

defined by 
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Here, some variables that imply independence are omitted. 

The goal of this MAP estimation is to find the configuration 

of state variables X and Y that maximizes this posterior 

distribution. Therefore, the most a posteriori probable robot 

trajectory and camera parameters are given by 
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Here, p(Zc | X, Y) and p(Zr | X, Y) are the likelihood functions 

defined by (9) and (12), respectively. p(X | U, L) and p(Y | M) 

are prior distributions on the trajectory and the calibration 

parameters, which are defined by (14) and (16), respectively. 

By applying negative log, the optimization equation of (18) 

becomes a non-linear least squares problem over the state 

variables X and Y as follows: 
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To find the optimal X* and Y* that minimize the objective 

function (19), we use the Levenberg-Marquardt method [11]. 

The Levenberg-Marquardt method finds the solution by using 

both the Gauss–Newton method and the gradient descent 

method; therefore, convergence speed is relatively fast and an 

optimal solution can be found reliably. 

V. EXPERIMENTS 

A. Simulation 

We simulated the proposed method in a large-scale 

simulation environment with a virtual camera network of up 

to 10 cameras. Figure 5 shows the grid map of the simulation 

environment with true trajectory and poses of virtual cameras. 

Here, the target trajectory was generated on an assumption 

that it has no uncertainty (i.e., we set X to the true trajectory 

with t =diag(∞, ∞, ∞) and optimized (19) for the camera 

parameters only) in the case of the simulation experiment. 

The Levenberg-Marquardt iterations began with an initial 

estimate for the all camera configurations at y
k
init = [15 m,  

12 m, 4 m, 0 deg, 90 deg, 90 deg]T (i.e., the position of the 

map center). Here, we set the internal parameters f, fskew, and 

(cx, cy) for the virtual cameras as 615, 0, and (320, 240), 

respectively. The variance factor z
2 that represents 

uncertainty of the observation is determined as 100. 

The several stages of the Levenberg-Marquardt iterations 

(10, 300, and 1,500 iterations) and convergence process for 

the 2nd camera poses are illustrated as an example in Fig. 6 

and Fig. 7, respectively. After 1,500 iterations, most camera 

poses (colored axes) are accurately converged to the real 

poses (gray axes). Here, estimated orientation parameters of 

the 2nd camera (-120 deg, 120 deg, 50 deg) are equivalent to 

the true states (60 deg, 60 deg, 230 deg) within the framework 

of the Eular angle for the 3-axis rotation. As shown in 

Fig. 6 (c), the reason the 3rd, 4th, and 8th distributed cameras 

were not precisely converged to the true poses can be 

considered to be a lack of observations; meanwhile, others 

were accurately estimated. In conclusion, the simulation 

results show that the complete 6DOF external parameters are 

estimated very accurately on the condition of sufficient 

observations and little uncertainty in the localization of the 

mobile robot. 

B. Real Data 

Figure 8 shows the experimental setup used to investigate 

the performance of the proposed method in the real 

environment. The mobile robot used in the experiment was a 

Pioneer 3-DX (MobileRobots) mobile robot equipped with an 

RGB-D sensor (ASUS Xtion Live Pro). The RGB-D sensor 

was mounted in the frontal direction; it was used to acquire 

both range data L for rough localization and the image data 

for the observations Zr. We also implemented a camera 

network system by using three wireless IP cameras (AXIS 

(a)

(c) (d)

(b)

 

Figure 4. Procedure for generating prior distribution m(∙) from grid map 

information: (a) original grid map, (b) contour lines representing wall 

information, (c) probability-like distribution after applying Gaussian blur, 

and (d) its 3D view. 



 

 

 

M1004-W). The cameras were mounted on the wall in an 

indoor environment and these roll and pitch orientation 

angles were installed 0 deg to easily identify the true angles. 

The calibration task for the internal camera parameter was 

done before the experiment. In order to simplify the 

recognition task, markers were attached on the robot and each 

IP camera for representing their positions. To compute prior 

(14), particle filter-based localization was performed and 

covariance matrix Pt was computed based on the distribution 

of the particles. In our experiment, the average speed of the 

robot was about 0.3 m/s and a laptop computer with a 

2.6 GHz quad core CPU was used to execute the proposed 

method. 

The calibration results using the real data are shown in 

Fig. 9. The range data from the RGB-D sensor used for the 

experiment have very limited range scope (the reliable range 

data is about 3 m or less); thus, the estimated robot trajectory 

for the prior information has large uncertainty (i.e., large 

covariance Pt). Despite the use of this uncertain prior, as 

shown in the results, the proposed method produced 6DOF 

external parameters and small errors like the simulation 

results. Here, a couple of causes of error in case of using the 

real data can be considered: transport delay of the image sent 

from the camera network, and the error of the map 

information itself which is the basis of the position 

information. 

After estimating all camera poses, we performed the 

recovery task for the robot trajectory. In other words, we set Y 

to the estimated camera poses and optimized (19) for the 

trajectory X only. The result is illustrated in Fig. 10. After 650 

iterations, the rectangular trajectory like the reference path 

was well recovered because the observations from the 

distributed cameras with accurately estimated parameters 

provided reliable constraints for the objective function. 

VI. CONCLUSION 

In this paper, an automatic calibration and trajectory 

reconstruction scheme was developed for the mobile robot 

and the camera network system, which is most widely used 

for the intelligent space. Our solution is based on the MAP 

estimation over the robot trajectory and the external camera 

parameters. In order to implement complete 6DOF external 

parameter estimation of the distributed cameras, grid map 

information that contains wall plane information was 
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Figure 5. Grid map of simulation environment with true trajectory and poses of virtual camera network. 
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Figure 6. Simulation result (gray axes illustrate real poses): (a) after 10 iterations, (b) after 300 iterations, and (c) convergence after 1,500 iterations. 
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incorporated into the objective function as prior information. 

Additionally, we suggested a novel two-way observation 

model to strengthen the constraints of the objective function. 

These serve to avoid the local minimum solution; therefore, a 

global minimum solution can be obtained reliably.  

The proposed approach was demonstrated in a simulation 

of a virtual environment and an experiment on a real 

environment with a wireless camera network system. We 

showed that our system is able to estimate and recover all 

6DOF distributed camera poses and the robot trajectory 

accurately.  

REFERENCES 

[1] J.-H. Lee and H. Hashimoto, “Intelligent Space–concept and contents,” 

Advanced Robotics, vol. 16, no. 3, pp. 265–280, 2002. 

[2] T. Sato, Y. Nishida, and H. Mizoguchi, “Robotic Room: Symbiosis 

with Human through Behavior Media,” Robotics and Autonomous 

Systems, vol. 18, no. 3, pp. 185–194, 1996. 

[3] E. M. Foxlin, “Generalized Architecture for Simultaneous 

Localization, Auto-Calibration, and Map-building,” Proceeding of the 

IEEE/RSJ International Conference on Intelligent Robots and Systems,  

pp. 527–533, 2002. 

[4] C. Taylor, A. Rahimi, and J. Bachrach, “Simultaneous Localization, 

Calibration, and Tracking in an Adhoc Sensor Network,” Proceedings 

of the 5th International Conference on Information Processing in 

Sensor Networks, pp. 28–33, 2006. 

[5] H. Chen, K. Matsumoto, J. Ota, and T. Arai, “Self-calibration of 

Environmental Camera for Mobile Robot Navigation,” Robotics and 

Autonomous Systems, vol. 55, no. 3, pp. 177–190, 2007. 

[6] A. Rahimi, B. Dunagan, and T. Darrell, “Simultaneous Calibration and 

Tracking with a Network of Non-Overlapping Sensors,” Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition, 

vol. 1, pp. 187–194, 2004. 

[7] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar, “Distributed 

Localization of Networked Cameras,” Proceedings of the 5th 

International Conference on Information Processing in Sensor 

Networks, pp. 34–42, 2006.  

[8] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, The MIT 

Press, 2005 

[9] S. Kim, J. Kang, and M. J. Chung, “Probabilistic Voxel Mapping Using 

an Adaptive Confidence Measure of Stereo Matching,” Intelligent 

Service Robotics, vol. 6, no. 2, pp. 89–99, 2013. 

[10] A. Horunge, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. 

Burgard, “OctoMap: An Efficient Probabilistic 3D Mapping 

Framework Based on Octrees,” Autonomous Robots, vol. 34, no. 3, 

pp. 189–206, 2013.  

[11] K. Levenberg, “A Method for the Solution of Certain Non-Linear 

Problems in Least Squares,” The Quarterly of Applied Mathematics, 

vol. 2, pp. 164–168, 1944. 

 
Figure 8. Experimental setup: (a) experimental environment, (b) Pioneer 3-DX mobile robot, and (c) wireless IP camera for distributed sensor. 
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Figure 9. Experiment result for camera parameter estimation: (a) estimated results with prior trajectory of mobile robot (black axes illustrate real camera 

poses) and (b) comparison with estimated states and true states. 
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Figure 10. Experiment result for trajectory reconstruction: (a) after 10 iterations, (b) after 60 iterations, and (c) convergence after 650 iterations. 
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