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Abstract

In this paper, we propose a reconstruction method for a 3D structure using sequential omnidirec-

tional images in an artificial environment. The proposed method is fundamentally categorized into

the Structure from Motion (SfM) technique. The conventional point-based SfM using a standard

camera is, however, likely to fail to recover a 3D structure in an artificial and textureless environ-

ment such as a corridor. To tackle this problem, the proposed technique uses an omnidirectional

camera and line-based SfM. Line features, such as a borderline of a wall and a floor or a window

frame, are easy to discern in an artificial environment comparing point features, even in a textureless

scene. In addition, an omnidirectional camera can track features for a long period because of its

wide field-of-view. Extracted line features in an artificial environment are often mutually parallel.

Parallel lines provide valuable constraints for camera movement estimation. Directions and locations

of lines are estimated simultaneously with 3D camera movements. A 3D model of the environment

is constructed from measurement results of lines and edge points. Experimental results show the

effectiveness of our proposed method.

keywords: Structure from Motion, Parallel lines, Textureless scene, Omnidirectional camera.

1 INTRODUCTION

In this paper, we propose a reconstruction method of a 3D structure using sequential images acquired

with a monocular omnidirectional camera in an artificial environment.

The accurate and efficient estimation of the camera movement is very important for scene recon-

struction using the monocular stereo method. As a method of monocular stereo, approaches based on

Structure from Motion (SfM) [1,2] or vSLAM [3,4] have been proposed. Camera movement estimation

from an image sequence acquired using a single camera is difficult because a camera movement matrix

(such as the essential matrix) has at least 6 degrees of freedom (DOFs) (3 DOFs for rotation and 3 DOFs

for translation). Moreover, the estimation is a nonlinear problem. When locations and orientations of

many viewpoints are estimated simultaneously using previous methods, the processing cost is high and

the probability of falling into a local minimum is great.
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(a) Omnidirectional camera. (b) Acquired image.

Figure 1: An omnidirectional camera equipped with a hyper-

boloid mirror and the acquired image.

Figure 2: Example of a textureless

scene (corridor).

An omnidirectional camera is used for a self-localization and a scene reconstruction in our pro-

posed method. Self-localization methods using monocular stereo often necessitate feature tracking (KLT

tracker [5], SIFT [6], etc.) to obtain correspondence between different viewpoints. However, features

will be lost easily because of a camera swing, if a typical camera which has a narrow field of view is

used. Therefore, an omnidirectional camera with a wide field of view is effective for a self-localization [7].

An omnidirectional camera in this paper has a hyperboloid mirror (Fig. 1). The omnidirectional cam-

era can be regarded as a pinhole camera. Self-localization and scene reconstruction methods using an

omnidirectional camera have been proposed [8–10].

Among previous monocular stereo methods, some approaches have used correspondences of feature

points [2,3,8–12], straight lines [13–15], or both features [1]. Point-based methods have the benefit of a

fast calculation by a linear solution (8-point algorithm [16], 5-point algorithm [2], etc.). However, the

number of feature points is insufficient in textureless scenes (such as an indoor environment shown in

Fig. 2). On the other hand, line-based methods are available for textureless scenes. Textureless scenes

contain anthropogenic objects. Many anthropogenic objects consist of a linear shape. Therefore, line

correspondences are obtainable in textureless scenes.

Our proposed method for the textureless scene reconstruction is based on SfM using line correspon-

dences. Lines which consist of anthropogenic objects are often mutually parallel. Parallel lines can

be extracted from an omnidirectional image easily and constantly because of its wide field of view.

Parallel lines provide valuable constraints for camera movement estimation. Therefore, the proposed

method uses constraints obtained from parallel lines. As previous methods, SLAM using parallel lines

and their vanishing point [17], SfM in urban environment (building scene) [18], rotation estimation

by video compass [19] and so on have been proposed. However, the computation complexity of these

methods increases as the number of viewpoints or lines increases [17, 18]. In addition, some previous

methods have been based on the assumption that the camera movement is only a horizontal move-

ment [18,19]. Our proposed method estimates 3D camera movements using correspondences of parallel

lines and non-parallel lines among no fewer than three images.
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Figure 3: Procedures used for our proposed method.

Although there are linear computation algorithms for a line-based SfM using a trifocal tensor [20,21],

it is only for image triplets. A bundle adjustment [22] is used in many previous methods to estimate the

camera movement among more than three images. A bundle adjustment is a framework of the camera

movement estimation based on reprojection error minimization. The Levenberg–Marquardt algorithm

provides a solution of the error function minimization in a bundle adjustment. However, the algorithm

often falls into a local minimum [13, 14]. Line-based EKF SLAM [15] is proposed. Nevertheless, it is

known there is a problem of the error accumulation of the camera movement estimation in EKF SLAM.

The proposed line-based SfM can estimate 3D camera movements of more than three viewpoints

simultaneously. The constraints obtained from parallel lines are useful for reduction in the degree of

freedom of the camera movement estimation. Using the constraints, estimation of the rotation matrices

and the translation vectors is divided into two procedures. Each procedure is solved as a 1 DOF problem

without regard to the number of viewpoints and features. Consequently, the calculation cost is extremely

low, and it can avoid falling into a local minimum. The proposed method can obtain the global minimum

easily. The effectiveness of our proposed method is demonstrated in experimentally obtained results.

2 FRAMEWORK OF PARALLEL LINE-BASED SFM

The prerequisite in our proposed method is that at least 6 line correspondences (3 parallel lines and

3 non-parallel lines) exist between omnidirectional images. The image sequence must include at least

three images. Parallel lines are extracted easily from a man-made structure in an indoor environment

because an omnidirectional camera has a wide field of view. Therefore, the assumption is proper for

general indoor environments.

The procedure of our proposed method is described below (Fig. 3). Lines and feature points are

extracted and tracked along an omnidirectional video. At each viewpoint, parallel lines and the vanishing

point (VP) are detected from these lines. A vector in the direction of the VP is calculated. The vector

is called a “VP axis” in this paper. Pseudo-lines, which are created from a couple of feature points, are

regarded as non-parallel lines.

The estimation of a rotation and a translation is separated in the proposed method. These separated
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estimations are divided into two procedures.

In the first procedure of the rotation estimation, a rotation that makes the direction of the VP

axes at all viewpoints the same in the world coordinate system is calculated. In the second procedure,

a rotation about the VP axis is estimated. When a rotation between two viewpoints is determined,

rotations at the other viewpoints are calculated by minimizing a quartic function about the rotation

angle. The minimum value of a quartic function is calculated uniquely. Therefore, a 3D camera rotation

movement can be estimated by solving a problem with 1 DOF about a rotation angle between two

arbitrary viewpoints without regard to the number of viewpoints and features.

In the first procedure of the translation estimation, translations on the plane perpendicular to the

3D direction of the VP axis are estimated. When the translation direction between two viewpoints

is determined, translations at the other viewpoints are calculated uniquely by solving a simultaneous

equation. Therefore, the estimation is a problem with 1 DOF about the translation direction on the

plane between arbitrary two viewpoints. In the second procedure, translations along the VP axis are

estimated. In this procedure, when a translation along VP axis between two viewpoints is determined,

translations at the other viewpoints are calculated as a translation minimizing a quartic function about

the translation. Therefore, the estimation is also a problem with 1 DOF about the translation along

VP axis between arbitrary two viewpoints.

The proposed method estimates 3D camera movements by solving three problems with 1 DOF. The

calculation cost is extremely low and it is easy to avoid falling into local minimum. Moreover, the

proposed method can obtain the global minimum solution easily.

Locations and directions of 3D lines are estimated simultaneously with camera movement. For a

dense 3D reconstruction, edge points are measured using the estimated camera movement. A mesh

model is constructed from the measurement results of lines and edge points. Textures obtained from

omnidirectional images are added for mesh surfaces.

3 OMNIDIRECTIONAL CAMERA COORDINATE SYSTEM

The coordinate system of an omnidirectional camera is shown in Fig. 4. A hyperboloid mirror reflects

a ray from the camera lens to image coordinates (u, v). In this paper, the reflected ray is called a “ray

vector”. The extension lines of all ray vectors intersect at the focus of the hyperboloid mirror. The ray

vector r is calculated using the following equations.

r =
r̂

∥r̂∥
, (1)

r̂ =


λ(u− cx)px

λ(v − cy)py

λf − 2γ

 , (2)

λ =
α2

(
f
√
α2 + β2 + β

√
u2 + v2 + f2

)
α2f2 − β2 (u2 + v2)

, (3)
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Figure 4: Coordinate system of the omnidirectional camera.

where cx and cy are the center coordinates of the omnidirectional image, px and py are pixel size, f is

the focal length of a camera lens, and α, β, and γ are hyperboloid parameters. In the proposed method,

these parameters are calibrated in advance.

4 FEATURE DETECTION AND TRACKING

4.1 FEATURE POINT TRACKING

The proposed method needs at least three non-parallel lines in addition to three parallel lines. In

textureless scenes, many parallel lines are perpendicular to the floor. However, there are often insufficient

non-parallel lines for camera movement estimation, although an omnidirectional camera has a wide field

of view (Fig. 5(a)). Therefore, the proposed method uses feature points.

Feature points are tracked along an omnidirectional video by KLT tracker [5]. Pseudo-lines are

created from a couple of feature points. Pseudo-lines are regarded as non-parallel lines. Examples of

feature points and pseudo-lines are shown in Figs. 5(b) and 5(c). Pseudo-lines in Fig. 5(c) are curved

because a straight line is projected as a curved line in an omnidirectional image.

4.2 LINE TRACKING

Straight lines are extracted from distorted omnidirectional images. The proposed method obtains edge

points using a Canny edge detector [23]. Examples of edge point detection are shown in Figs. 6(a) and

6(b).

To separate each line, corner points are removed as shown in Fig. 6(c). Corner points are detected
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Non-parallel lines

(a) Non-parallel lines.

Feature point

(b) Feature points.
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(c) Pseudo-lines.

Figure 5: Creation of pseudo-lines.

(a) Input image. (b) Canny edge points. (c) Corner point removal. (d) Extracted lines.

Figure 6: Line extraction procedure. Panels (b), (c), and (d) portray enlarged views of the red rectangle

in panel (a).

using two eigenvalues of the Hessian H of the image. The Hessian matrix is defined as

H =

 Ixx Ixy

Ixy Iyy

 , (4)

where the derivatives Ixx, Ixy, and Iyy are calculated by taking differences of neighboring edge points.

If the ratio of eigenvalues is sufficiently high, then the edge point is regarded as line-like. The ratio is

set to 10 using the trial-and-error method.

A least squares plane is calculated from ray vectors of segmented edge points. If the edge segment

consists of a straight line, then these ray vectors are located on the same plane (Fig. 7). Therefore, an

edge segment which has a small least-squares error is regarded as a straight line. The proposed method

can extract straight lines, even if an edge segment resembles a curve in an omnidirectional image. If over

half the edge points of the edge segment i satisfy the following equation, then the segment is determined

as a straight line (Fig. 6(d)). (
ri,j

Tni

)2
< lth. (5)

Therein, lth is a threshold. ri,j is a ray vector to the edge point j from the mirror focus included in the
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Figure 7: Relation between a straight line and ray vectors.

line i. ni is the normal vector of the least-squares plane calculated from the line i. ni is a unit vector.

The vector is called “NV” in this paper. In the detection, edge points which do not constitute the line

are rejected as noises by RANSAC [24]. The threshold lth is determined from the image resolution.

Lines are tracked along the omnidirectional image sequence. The proposed method obtains sampling

points located on a straight line. Sampling points are extracted at constant intervals (Fig. 8(b)). Edge

segments are extracted in the next frame (Fig. 8(c)). The points extracted in Fig. 8(b) are tracked to

the next frame by KLT tracker (Fig. 8(d)). The edge point closest to the tracked point is selected as a

corresponding edge point (Fig. 8(e)). The edge segment with the maximum number of corresponding

edge points is regarded as a corresponding edge segment (Fig. 8(f)). If an edge segment corresponds to

several lines, then a line having a larger number of corresponding edge points is selected.

An aperture problem [25] exists in matching the point search on the line. However, it is not difficult

for the proposed method to obtain the corresponding edge segment because it does not require point-

to-point matching. By continuing the processes explained above, straight lines are tracked along the

omnidirectional image sequence.

4.3 DETECTION OF PARALLEL LINES AND A VANISHING POINT

Parallel lines and their associated vanishing point are detected from tracked lines. A VP axis vcj and

NVs n
cj
i for parallel lines i at the viewpoint cj satisfy the following equation.

vcjTn
cj
i = 0. (6)

Here, the superscript of the vector signifies its reference coordinate system. The reference coordinate

system of the vector without a superscript is the world coordinate system. Three lines are necessary

for the parallel line detection from an image. The proposed method selects three lines randomly from

tracked lines. A vector v
cj
rand that minimizes Ev in Eq. (7) is calculated using the least squares method.

Ev =

nl∑
i

(
v
cj
rand

T
n
cj
i

)2

. (7)
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Figure 8: Searching for a corresponding edge segment in the subsequent frame.

In that equation, nl is the number of lines. If selected lines satisfy the following equation in the entirety

of an input image sequence, then these are regarded as parallel lines.

Ev < pth, (8)

where pth is a threshold. Lines that are regarded as mutually parallel are integrated. A line group that

has the maximum number of lines is used for the following process as parallel lines. The VP axis vcj is

calculated from integrated parallel lines as a vector v
cj
rand that minimizes Ev in Eq. (7).

5 PARALLEL LINE BASED SFM

5.1 ESTIMATION OF CAMERA ROTATION AND LINE DIRECTION

The camera rotation estimation process is divided into two procedures. In the first procedure, the

method calculates a camera rotation matrix that makes the direction of VP axes among all viewpoints

the same. In the second procedure, a rotation about the VP axis is estimated using at least three lines.

These lines must have a different 3D direction from parallel lines.

5.1.1 VP DIRECTION MATCHING

This procedure requires VP axes, which should have the same 3D direction in the world coordinate

because a vanishing point lies at an infinite distance from the viewpoint, theoretically. Therefore, the

proposed method calculates a rotation matrix R
cj
m satisfying the following equation.

vc0 = Rcj
m

Tvcj . (9)
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Figure 9: Relation among the rotation axis mcj and VP axes vc0 and vcj .

In that equation, R
cj
m is a rotation matrix that makes the direction of the VP axis vcj the same as that

of the VP axis vc0 at the initial camera coordinate system. Here, the initial camera coordinate system

is equal to the world coordinate system in this paper. R
cj
m is calculated as a rotation about an axis

mcj using the Rodrigues rotation formula. The rotation axis mcj and angle θcj are calculated by the

following equations. A relation between mcj and θcj is shown in Fig. 9.

mcj = vc0 × vcj , (10)

θcj = arccos(vc0Tvcj ). (11)

The 3D directions of parallel lines and the VP axis vc0 are the same. Therefore, the vector vc0 also

represents a 3D direction of parallel lines in the following explanation.

5.1.2 ESTIMATION OF ROTATION ABOUT THE VP AXIS

In the second procedure, a rotation matrix about the VP axis vc0 is estimated. This procedure requires

at least three lines. The 3D direction of these lines must not be equal to the VP axis vc0 .

In the proposed method, the only remaining unknown parameter of 3D rotation is rotation R
cj
v

about the VP axis vc0 because the other two parameters are obtainable from the constraints of the

vanishing point. Therefore, this procedure estimates a rotation matrix R
cj
v , namely, the rotation angle

ϕcj (Fig. 10).

The camera rotation matrix Rcj between the initial viewpoint c0 and a j-th viewpoint cj is defined

using two rotation matrices as the following equation.

Rcj = Rcj
mRcj

v . (12)

The camera rotation matrix Rcj and 3D line direction di satisfy the following equation.(
RcjTn

cj
i

)T

di = 0. (13)

In that equation, n
cj
i is the NV of the line i at the viewpoint cj . di is a unit vector. NVs in the world

coordinate system RcjTn
cj
i is perpendicular to the 3D line i. When a rotation angle ϕcj is given, the
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3D direction di of the line i is calculated by cross product of NVs at viewpoint c0 and cj (Fig. 11).

di = nc0
i ×

(
RcjTn

cj
i

)
. (14)

Using the 3D line direction, a rotation matrix Rck between the initial viewpoint c0 and the other

viewpoint ck is calculated by solving the following equation.

erot(ϕ
ck) =

nl∑
i

∣∣∣∣(RckTnck
i

)T

di

∣∣∣∣2 → min, (15)

where nl is the number of non-parallel lines. Although the function is nonlinear, it is solvable easily

because erot(ϕ
ck) is just a quartic function about ϕck . Consequently, if a rotation angle ϕcj at a

viewpoint cj is given, then rotation angles ϕck at the other viewpoints ck are determined. The proposed

optimization of rotations is represented as the following equation.

Erot(ϕ
cj ) =

nc∑
k

erot(ϕ
ck) → min, (16)

where nc represents the number of viewpoints. In the proposed method, the rotation estimation is a

search problem with 1 DOF about the rotation angle ϕcj without regard to the number of viewpoints

and features.

In the following explanation, v expresses the VP axis vc0 or 3D direction of parallel lines.

5.2 ESTIMATION OF CAMERA TRANSLATION AND LINE LOCATION

Camera translations are estimated using two procedures. In the first, translations on the plane per-

pendicular to parallel lines are estimated. In the second, translations directed along parallel lines are

estimated. As is true also for rotation estimation, these two procedures of the translation estimation

are solvable as problems with 1 DOF.

5.2.1 TRANSLATION ON A PERPENDICULAR PLANE

In the first procedure, translations on a plane perpendicular to parallel lines are estimated. This pro-

cedure requires at least three parallel lines. Translations on the plane and 3D locations of parallel lines

are optimized simultaneously.
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a vector gi,cj
and the translation on the plane.

Here, the method introduces basis vectors a and b (a ⊥ b, a ⊥ v, and b ⊥ v). A unit vector gi,cj

from the viewpoint cj to the parallel line i is calculated using Eq. (17). The vector gi,cj
is perpendicular

to parallel lines as

gi,cj = v × (RcjTn
cj
i ). (17)

Using these vectors, a and b elements of the true translations can be estimated. A translation vector

tp,cj between the initial viewpoint c0 and a viewpoint cj , the location li of parallel lines i and a vector

gi,cj
satisfy the following equation. The relation among these vectors is shown in Fig. 12.

δ
cj
i gi,cj + tp,cj − li = 0. (18)

In that expression, δ
cj
i is a fixed number representing the depth of the line at the viewpoint. δ

cj
i is

calculated as

δ
cj
i =

(
tp,cj − li

)T

gi,cj

gi,cj
Tgi,cj

. (19)

Here, the translation tp,cj is expressed as Eq. (20),

tp,cj = a cosψcj + b sinψcj , (20)

where ψcj denotes the translation direction from the initial viewpoint c0 to the viewpoint cj . The

absolute scale is unknown in the SfM approach. Consequently, the distance between these two viewpoints

is set to 1 in the proposed method. When the direction ψcj is given, the locations of parallel lines are

calculated using the following equation.

li =
ζc0i gi,c0

+ ζ
cj
i gi,cj

+ tp,cj
2

, (21)

where ζc0i and ζ
cj
i are fixed factors representing the depth of the line from each viewpoint. Fixed factors

ζc0i and ζ
cj
i are calculated as factors satisfying the following expression.∥∥∥ζc0i gi,c0 − ζ

cj
i gi,cj − tp,cj

∥∥∥2 → min . (22)

11



Using 3D locations of parallel lines, translations at the other viewpoint ck are calculated by mini-

mizing the following equations.

et1 (λ
ck
a , λ

ck
b ) =

nl∑
i

∥∥δcki gi,ck
+ tp,ck − li

∥∥2 , (23)

tp,ck = λcka a+ λckb b. (24)

When the line location li, namely, the translation direction ψcj is given, Et1 (λ
ck
a , λ

ck
b ) is solvable

as a simultaneous equation about λcka and λckb . Therefore, translations on the plane vertical to parallel

lines are optimized by minimizing the following function about ψcj .

Et1 (ψ
cj ) =

nc∑
k=1

et1 (λ
ck
a , λ

ck
b ) . (25)

Consequently, Eq. (25) is solvable as a search problem with 1 DOF about the translation direction

ψcj on the plane perpendicular to parallel lines.

5.2.2 TRANSLATION ALONG THE VP AXIS

In the second procedure of the translation estimation, translations along the parallel line direction are

estimated. This procedure requires at least three non-parallel lines. The camera translation vector tcj

is represented as

tcj = tp,cj + ωcjv, (26)

where ωcj represents the distance of translation along parallel line direction. Translations and non-

parallel line locations are optimized by minimizing the sum of reprojection errors in Eqs. (27)–(29).

et2 =

nl∑
i

(
1− qi,cj

Tg′
i,cj

)2

, (27)

qi,cj =
l′i − tcj + τ

cj
i di

∥l′i − tcj + τ
cj
i di∥

, (28)

τ
cj
i =

(
tcj − l′i

)T

di

di
Tdi

. (29)

In those expressions, qi,cj
is a unit vector crossed at a right angle to the non-parallel line i from the

viewpoint cj . g′
i,cj

is a unit vector from the viewpoint cj to the non-parallel line i. g′
i,cj

is calculated

using the same procedures as those described in Eq. (17). The relation between these vectors is shown in

Fig. 13. If no errors exist, then these two vectors qi,cj
and g′

i,cj
will be the same. However, in fact, these

have different direction because of various errors. The angle error is almost identical to a reprojection

error.

When ωcj , namely, translation from the initial viewpoint c0 to the viewpoint cj is determined, 3D

line locations l′i are calculated in the same way as Eq. (18). Using the locations, Eq. (27) at the other

viewpoint ck is solvable as a quartic function about ωck . Therefore, the translation estimation is a search

problem with 1 DOF about ωck . The optimum translations are estimated by minimizing the following
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equation.

Et2(ω
cj ) =

nc∑
k=1

et2(ω
ck). (30)

The proposed method can measure straight lines using the processes described above. Moreover,

edge points are reconstructed to measure environments densely. The edge point reconstruction is based

on [26].

6 EXPERIMENTS

We demonstrate the proposed camera movement estimation using simulation data. All experiments

are done with off-line processing. The CPU is an Intel Core i7 975 (3.33 GHz). In this experiment,

the values of NVs ni,cj and VP axes vcj are given. It is known which lines are parallel. The camera

movement includes a 3D rotation and translation.

We first verified that the proposed method can estimate the camera movements from 6 lines (3

parallel lines and 3 non-parallel lines). The number of viewpoints is 10. The true values of NVs are

given in this experiment. The position relation between the viewpoints and lines is shown in Fig. 14.

The red, yellow, and orange axes show the camera coordinate system at each viewpoint. Parallel lines

are shown as green. Other lines are represented as blue. The estimation errors of camera movement

and line measurement were within the rounding error.

A local minimum naturally exists in the proposed method. However, around the ground truth,

Fig. 15 shows that the evaluation values of Eqs. (16), (25), and (30) are sufficiently low compared to

other values. Figure 15 shows an example of the evaluation value in the rotation estimation. For that

reason, local minimum avoidance is easy for the proposed method. An example of a computation time

on the rotation and translation estimation by the proposed method is shown in Fig. 16. The figure

shows that the computation time is proportional to the number of viewpoints.

We verified the robustness of the proposed method with noisy data. In this experiment, noisy NVs

are given. The noise implies an angle error between a given vector and the true one. The noise follows a

normal Gaussian distribution. We evaluated estimation errors of the camera rotations and translations
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Figure 14: 3D camera movement and line position in simulation.
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using noisy data including 0.01 to 1.28 deg angle errors on average. Input data are 40 lines including

20 parallel lines acquired at 20 viewpoints. 100 trial runs were conducted at each noise level.

The estimation results are presented in Fig. 17. The rotation error in Fig. 17(a) represents angle

errors between the axis of estimated camera coordinate system and the true one. The translation error

in Fig. 17(b) represents the percentage of the distance error between the estimated camera location and

the ground truth to translation distance. These values are the average of 100 times trial runs.

Rotation estimation error was within the given noise. The translation estimation error was within

1% against translation distance when the given noise is within 0.16 deg. According to our camera

calibration, the proposed method can extract lines from an omnidirectional image (the image size is

800 × 600 pixels) within 0.05 deg errors. Therefore, these results show that the proposed method

performs well in noisy data.

We compared the accuracy of the camera movement estimation using the proposed method with

that of a common SfM using a bundle adjustment method. A bundle adjustment method is well known

as an optimization of the camera movement. In this experiment, a common SfM optimizes the camera

movement using feature points and lines that are the same as those of the proposed method. This
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Figure 17: Estimation errors with noisy data.

(a) Virtual environment. (b) Simulated image.

Figure 18: Virtual environment for evaluation of camera movement estimation.

experiment is demonstrated in a virtual environment as shown in Fig. 18(a) to obtain ground truth

of the camera movement. Simulated omnidirectional images depending on the camera movement are

created from the structure and color information of the environment (Fig. 18(b)). The image size is

800 × 600 pixels. The created 51 images are used as the input image sequence. In this experiment,

the given information is these images only. Feature points and lines are detected automatically from

the images. NVs and VP axis are calculated from the detected lines. Not only feature points but also

NVs are used for the optimization by a bundle adjustment. The initial value for a bundle adjustment

is obtained using a framework with eight-point algorithm and RANSAC [24].

The results of camera movement estimation are shown in Fig. 19 and Table 1. We compare the recov-

ered camera movements with the ground truth by aligning their movement distances and initial poses.

In this experiment, the ground truth of the initial camera orientation and location are known because

the experiment was done in a virtual environment. The estimated camera movement by the proposed

method (green marks in Fig. 19) is close to the ground truth (blue marks in Fig. 19). The reprojection

error of the proposed method is within 0.5 pixels. Therefore, the result shows that the proposed method

can obtain the global minimum. Although the same features are used for the experiments, camera
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With previous works

With proposed method

Ground truth

(a) Bird’s-eye view.

(b) Top view.

(c) Side view.

Figure 19: Camera movement estimation results obtained using simulated images.

Table 1: Comparison of camera movement estimation results.

(a) Rotation errors.

Proposed SfM Common SfM

Average
0.119 0.177

[deg]

Maximum
0.298 0.350

[deg]

(b) Translation errors.

Proposed SfM Common SfM

Average
0.357 1.74

[%]

Maximum
0.425 3.23

[%]

movement estimation error of a common SfM is larger than the proposed method (Table 1). A bundle

adjustment can obtain the optimal solution on the ideal situations. However, nonlinear optimizations

such as a bundle adjustment, often fall into a local minimum in the course of experimentally obtained

results.

Figure 20(a) shows our verification of the proposed method using real images in a textureless scene.

800 images were acquired using a mobile robot equipped with an omnidirectional camera. The movement

distance is about 12 m. The image size is 800 × 600. An input image and a parallel detection result are,

respectively, shown in Figs. 20(b) and 20(c). The computing time of the line tracking was about 100

ms per frame, KLT tracker was 10 ms per frame, and the parallel lines detection was 35 ms per frame.

The result of the camera movement estimation and line measurement is shown in Fig. 21. The

computation time is about 5 min. An average of the reprojection errors of lines is within 0.5 pixels.

These results show that the proposed method can estimate the camera movement and measure lines

precisely. The modeling result of the textureless scene is shown in Fig. 22. The modeling method is

based on [27]. The corridor shape can be reconstructed using the proposed method. However, although

parallel lines are detected, it is difficult to construct correct shapes of border of the wall and the floor.

Correct patches are removed or false patches remain attributable to dead angle of an omnidirectional
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(a) Environment. (b) Input image.

Parallel line

Non-parallel line

(c) Detected lines.

Figure 20: Detection result of parallel lines from omnidirectional images of a textureless scene.

high

low

Camera trajectory

(a) Bird’s-eye view.

(b) Top view.

(c) Side view.

Figure 21: Results of camera movement estimation and line measurement in a textureless scene.

camera, and the difference during tracked frames of lines. Improvement of the problem is an important

task for our future work. These experimentally obtained results show that the proposed method is

effective for the reconstruction of a textureless scene.

7 CONCLUSION

In this paper, we proposed a parallel line-based SfM for textureless scenes. Camera rotations and

translations are estimated as a reasonable problem with 1 DOF using the constraints from parallel lines.

Therefore, the global optimal solution is obtainable easily. Experiments underscore the effectiveness of

the proposed method.

As future works, the robustness of the line detection should be improved. Illumination change makes

the line detection unstable. Moreover, we should generate a framework of a parallel line-based SfM for

a long image sequence. The proposed method requires lines corresponding along all images in an input

image sequence.
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(a) Bird’s-eye view.

(b) Left side view.

(c) Right side view.

Figure 22: Modeling result of textureless scene.
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