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Elevation Angle Estimation in 2D Acoustic Images
Using Pseudo Front View

Yusheng Wang1, Yonghoon Ji2, Dingyu Liu1, Hiroshi Tsuchiya3, Atsushi Yamashita1, and Hajime Asama1

Abstract—A novel method to estimate the missing dimension
in 2D acoustic images for 3D reconstruction is proposed in this
paper. Acoustic cameras can acquire high resolution 2D images
in underwater environment insusceptible to water turbidity and
light condition. However, the formulation of acoustic images
leads to the missing dimension problem. Estimating the unknown
elevation angle dimension is a difficult task which has recently
drawn the attention of researchers. The non-bijective character-
istic between 3D points and 2D pixels increases the complexity
of the problem. In this paper, a novel elevation angle estimation
method is proposed. The method transfers the acoustic view to
pseudo front view using a deep neural network. The proposed
network can estimate the missing dimension and resolve the
non-bijection problem of the 2D-3D correspondence. Because
of the difficulty of acquiring depth information in underwater
environments, the network is trained using simulated images.
To mitigate the sim-real gap, a neural style transfer method is
implemented to generate a realistic image dataset for training.
Simulation experiments were carried out for evaluation and real
data proved the feasibility of the proposed method.

Index Terms—Marine Robotics, Deep Learning for Visual
Perception, Deep Learning Methods

I. INTRODUCTION

DEPTH estimation based on monocular cameras has
recently become one of the research topics that has

received the most focus in computer vision. In an under-
water environment, the performance of an optical camera
is restricted by the visibility. The acoustic camera, a next-
generation 2D forward-looking imaging sonar, has outstanding
capabilities in underwater environments [1]. Acoustic images
have millimeter-level resolution in the depth direction and
the cameras are small in size, which makes them suitable
for mounting on underwater robots such as remotely operated
vehicles (ROVs) or autonomous underwater vehicles (AUVs).
Acoustic cameras have already been applied in various under-
water tasks, such as robot navigation, mosaicing, and mapping
[2]–[4]. Despite the high performance of acoustic cameras,
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Fig. 1. Non-bijective 2D-3D correspondence: Point A and point B with
different elevation angles will be projected to the same position in the acoustic
image. The integration of points may lead to a higher intensity in the acoustic
image. The acoustic image is a θ − r matrix in polar coordinate system.

the formulation of acoustic images also leads to the missing
dimension problem. Unlike optical cameras, in acoustic cam-
eras, the elevation angle direction information is missing. This
prevents the acquisition of the full 3D information.

Retrieving 3D information from acoustic images is one of
the most fundamental but challenging problems in acoustic
cameras. Acoustic images are described by unique imaging
theories and have low signal-to-noise ratio (SNR) and complex
sonar artifacts which increase the difficulty of the problem.
Early research has mainly focused on sparse 3D reconstruction
of acoustic images [5], [6]. The reconstructed 3D models are
made up of sparse points or line frames, which are not intuitive
for 3D representation. The performance of the methods is
highly dependent on the performance of the feature extrac-
tion and data association processes. Most of the handcrafted
features perform poorly on acoustic images [7]. Recently, re-
searchers have focused more on dense 3D reconstruction using
acoustic images. A variety of methods have been applied to
this problem. They can be roughly classified into photometric
stereo and multiple-view stereo methods. Photometric stereo
methods utilize shadow information or model the ultrasound
propagation for 3D reconstruction [8]–[10]. Such methods
work in ideal conditions, but are neither robust nor general.
Multiple-view stereo methods are another group of methods
which achieve 3D reconstruction using multiple acoustic im-
ages [11]–[13]. They require a large number of view points for
3D reconstruction, which makes it necessary to hover around
the target or employ the help of a rotator. With the rapid
development of deep learning, it is now possible to achieve 3D
reconstruction with a single image. Recently, a neural network-
based method has been proposed to retrieve the elevation angle
from a single acoustic image, with a self-supervised method
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based on known small camera motion to train the network
[14]. However, the main problem is that the method neglects
the non-bijective 2D-3D correspondence characteristic of the
acoustic image, which will lead to estimation failure in many
cases. As shown in Fig. 1, the red point A and the green
point B will be projected to the same position in the acoustic
image. This is a common occurrence in sonar imaging [8],
[15]. Estimating the elevation angle of each pixel alone is
insufficient for retrieving all the 3D information in the image.

A deep learning-based elevation angle estimation method is
proposed in this work. A convolution neural network (CNN)
is designed to transfer the acoustic view to another viewpoint
called the pseudo front view, which is similar to the perspective
in an optical camera. The CNN can solve the non-bijective
2D-3D correspondence problem caused by the unique imaging
theory. Instead of using small motion for supervision in real
applications, the labels are generated based on a simulator,
and neural style transfer is used to generate a realistic dataset
from the synthetic images. The contributions of this work are
listed as follows:
• We form the missing dimension estimation problem into

a pseudo front view depth estimation problem.
• A deep neural network is designed to estimate the front

view depth from an acoustic image.
• An acoustic camera simulator is used to help realize front

view depth regression.
• To mitigate the sim-real gap, neural style transfer be-

tween unpaired data is implemented to generate realistic
datasets.

• The proposed methods are evaluated by simulation and
real experiments. The implementation of the network,
simulator and the simulation datasets are available in our
GitHub1.

The remainder of this paper is organized as follows. In
Section II, related works are introduced and compared with
the proposed method. Section III discusses the problem for-
mulation. Section IV explains the proposed method for trans-
ferring the acoustic view to the front view and the method to
generate a realistic dataset. The simulations and evaluations
are presented in Section V, followed by the real experiments
in Section VI. Finally, the conclusions and future works are
presented in Section VII.

II. RELATED WORKS

As previously mentioned, sparse 3D reconstruction was
first applied to acoustic images. Owing to the difficulty of
autonomous feature detection and data association, manually
selected features, such as corner points, were used [5], [6].
It has been later proven that AKAZE features have relatively
stable performance in acoustic images. Li et al. used AKAZE
features for simultaneous localization and mapping (SLAM)
in a ship hull environment [2]. Westman et al. achieved
SLAM with under-constrained landmarks of AKAZE features
[16]. Such methods focus more on robot navigation than
on 3D reconstruction. Further, Wang et al. tracked AKAZE

1https://github.com/sollynoay/A2FNet

features based on optical flow and modelled the terrain as a
Gaussian process random field on a tree structure [4]. The
method potentially assumes that the terrain is smooth. The
computation cost increases tremendously when the feature
number increases.

Dense 3D reconstruction is more intuitive for human per-
ception. As previously mentioned, the methods can be roughly
categorized into multiple-view stereo and photometric stereo
methods. In multiple-view stereo methods, the use of shape-
from-space-carving scheme has proved effective, owing to the
fixed sensing scope. Aykin et al. applied space carving for
small objects. Space that is considered empty is cut, and the
remaining area is considered to constitute the object [11].
Guerneve et al. linearized the sonar projection model to an
orthogonal projection and applied min-filtering to achieve a
carving scheme [12]. Wang et al. used occupancy mapping,
which probabilistically carves the space, and proposed an in-
verse sensor model to apply the method to more general scenes
[13]. Although these methods provide convincing results, a
large number of view points are necessary.

Photometric stereo methods are another group of methods
for dense 3D reconstruction. The acoustic camera can be
considered as a light source with a camera at the same position;
methods like shape-from-shading have been proven to be valid
for the problem. Aykin et al. modeled ultrasound propagation
and sonar imaging based on a diffuse reflection assumption
[8]. They proved that the physical model can be applied
to 3D reconstruction with object contours. Later, Westman
et al. utilized a similar scheme to the 3D reconstruction of
continuous surface [10]. The method assumes that the range
returns in the scene in view monotonically increase or decrease
with the elevation angle. Such methods directly estimate the
elevation angle of each pixel and ignore the non-bijective 2D-
3D correspondence problem.

Recently, modern computer vision techniques have also
been applied to this problem. DeBortoli et al. realized pixel-
wise elevation angle estimation from a single acoustic image
[14] using a CNN. The network is first trained by a simulator.
A self-supervised scheme with small motion is then applied to
train the network using transfer learning. Although impressive
results have been obtained, the pixel-wise elevation angle
estimation potentially assumes that one pixel corresponds to
only one 3D point. Techniques based on self-supervision by
small motion with warping assume photometric consistency
in the acoustic image, which is not always true. Westman et
al. applied non-light-of-sight (NLOS) techniques to acoustic
images [17], [18]. Especially, the method on Fermat path is
based on the discontinuities of the image intensity, which can
be considered an effective solution to the non-bijective 2D-
3D correspondence problem. However, owing to the low SNR,
Fermat path detection on acoustic images is error-prone.

In this paper, we also use a CNN-based method for dense
3D reconstruction. The transfer of the acoustic view to the
pseudo front view can effectively solve the non-bijective 2D-
3D correspondence problem. Instead of using self-supervision
by small motion, we apply a fully-supervised method to
train the network. Compared to [14], our method directly do
regression on front view depth instead of elevation angle map.
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Fig. 2. Acoustic camera model. (a) As a multi-beam forward looking sonar,
the sound wave can be separated into beams in azimuth angle direction. (b)
A 3D point (r, θ, φ) in polar coordinates will be projected to (r, θ) in the
imaging plane.

To build the dataset, a simulator is used to generate image
labels. The sim-to-real gap is mitigated using the neural style
transfer method [19].

III. PROBLEM FORMULATION

A. Acoustic Camera Model

As shown in Fig. 2(a), the acoustic camera is a multi-beam
forward looking sonar, which contains multiple transducers
in the azimuth angle direction. For each transducer, it emits
2D fan-shaped sound waves and records the backscattered
intensity and time of flight information. A 3D point in the
camera coordinate system can be represented as (r, θ, φ) using
polar coordinates, as shown in Fig. 2(b). The corresponding
2D point in the image coordinate can be represented as (r, θ).
This can be considered as a projection to the zero-elevation
plane. For each 2D point (r, θ), it may correspond to multiple
3D points with different φ as shown in Fig. 1. The compression
of φ can be considered as an integration of the intensities of
all the points with the same (r, θ) coordinates [8], [12]. The
intensity of a pixel on the acoustic image Ia can be represented
as

Ia(r, θ) =

∫ φmax

φmin

β(φ)Vs(r, θ, φ)Ds(r, θ, φ)dφ, (1)

where β(φ) models the beam pattern from each transducer,
Vs(r, θ, φ) is a measure related to the object reflectively, and
Ds(r, θ, φ) refers to the cosine of the angle between the beam
direction and the surface normal of the object. For each (r, θ),
discretizing φ as {φ1, φ2, . . . , φn} and the i-th corresponding
backscattered intensities as I(r, θ, φi) gives

Ia(r, θ) =

n∑
i=1

I(r, θ, φi). (2)

B. Acoustic Image Formulation

It is possible to generate synthetic acoustic images based
on acoustic camera model. In [20], acoustic images were
simulated using a GPU-based method. An echo intensity map
and a pulse distance map were rendered to generate the
acoustic images. By modeling Ds and Vs based on Lamber-
tian reflectance, assuming the beam pattern β is uniformed
distributed along φ, and setting the ray strength attenuation
according to r, it is possible to acquire the echo intensity
map using common ray tracing techniques in simulation
environment. In this paper, we assume that the depth map
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Fig. 3. Acoustic view and pseudo front view. The acoustic image can be
generated from an intensity image and a depth image in the pseudo front
view. We solve the inverse problem by estimating the depth image in the
front view from the acoustic image.

and the intensity map also existed and can be estimated for
real images, as shown in Fig. 3. The images are similar to the
images generated from an RGB-D camera. In this paper, we
refer to the view of the virtual RGB-D camera as the pseudo
front view (i.e., front view) and the original view from the
acoustic camera as the acoustic view. Denoting the intensity
image as If , the depth image as Df , and the acoustic image
as Ia, this paper follows Eq. (1) and Eq. (2) based on [8],
[12], using the sum of the intensity values along φ direction
instead of using the average as in [20] to generate Ia from Df

and If for synthetic images. Denoting the size of Df and If
as m× n and the size of Ia as m× l, which are determined
by the image resolution and sensor scope, the minimum range
as rmin and the range resolution as rres, the acoustic image
formulation process can be described in Algorithm 1.

Algorithm 1: Acoustic Image Formation Function
Input: If , Df

Output: Ia
1 Initialize Ia using zero matrix Om×l
2 for p = 0 to m− 1 do
3 for q = 0 to n− 1 do
4 r ←− Df (p, q), i←− If (p, q)
5 d = b(r − rmin)/rresc
6 if 0 ≤ d < l then
7 Ia(p, d) = Ia(p, d) + i

8 return Ia

C. Inverse Problem

In this work, our aim is to solve the inverse problem of
acoustic image formation, specifically, to estimate Df from Ia.
The inverse problem is highly ill-posed, and hard to be solved
by model-based methods. It would be possible to solve it with
additional priors or cues, such as shadow information, illu-
minated area position [21], physical properties of ultrasound,
and the inconsistency of the intensity in the acoustic image.
Instead of using a model-based method, this work directly uses
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Fig. 4. The 3D model of sensible region when sensing a sphere with its
acoustic view and the front view. Color refers to φ angle. Front view carries
all the information without ambiguity.

a learning-based method towards the problem. By inputting Ia,
we propose a CNN to learn the front view depth Df in an end-
to-end manner. The following section explains how we realize
solving the problem with a CNN-based method.

IV. CNN-BASED FRONT VIEW DEPTH REGRESSION

In this study, we formulate the inverse problem as a front
view depth regression problem. The ground truth of the front
depth image is generated from the simulator. To mitigate the
gap between the real and synthetic images, neural style transfer
can be used to generate realistic images from synthetic images
for training.

A. Acoustic View to Front View

1) Front view depth regression: When sensing a sphere,
the sensible 3D model in polar coordinate is shown in Fig. 4.
Due to the sonar imaging principle, we acquire an image
in acoustic view. Directly estimating elevation angles from
acoustic view would cause information loss and ambiguity
problem. However, front view image contains full information
without ambiguity. Estimating front view depth instead of
elevation map would improve the 3D reconstruction result.
An acoustic view to front view network (A2FNet) is proposed
for front view depth regression.

2) Sensor Characteristics: The information quantity is usu-
ally biased in the three dimensions (r, θ, φ). The acoustic
camera has high resolution in the depth direction r. For
instance, in the 3.0 MHz mode of the ARIS EXPLORER
3000, the depth and azimuth angle resolutions are 0.003 m and
0.25◦, respectively. The aperture angle of the azimuth angle
is 32◦. At effective sensing ranges between 2 m and 3.536 m,
the image has the dimensions of 128 × 512 along the θ and
r directions respectively. Although there is no clearly given
value for the elevation angle resolution, we set the resolution
to be the same as or lower than the azimuth angle direction
resolution. If we set the resolution of the elevation angle to
0.4375◦, the size of the output front view image will be 128
× 32 in the θ and φ dimensions. It is important to arrange the
size of the input tensors.

3) Network Architecture: The overall network architecture
of the A2FNet is shown in Fig. 5. The first inverse pixel
shuffle (IPS) block is designed to resize the image without
discarding information considering sensor characteristic. This
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Fig. 5. A2FNet. the input is an acoustic image and the output is the pseudo
front view depth map. The IPS module is used to arrange the size of the input
tensor without discarding information.

can be considered the inverse process to pixel shuffle [22].
As illustrated in Fig. 5, the IPS block rearranges the input
tensor from C ×H ×W to sC ×H/s×W , where s denotes
the scaling factor. The IPS calculation aims to downsample
the depth direction of the input image while maintaining the
same size with the output image. As an example, the image
in Fig. 5 is deshuffled into three channels ( red, yellow, and
green). An encoder–decoder structure is applied to generate the
front-view depth image. For CNN-based 3D reconstruction, it
is common to use a 2D CNN encoder to extract the features
of the 2D image and a 3D CNN decoder to generate the
3D shape. The encoder and decoder are usually connected by
fully-connected (FC) layers. The extracted features are highly
related to the position information in the input image. Because
we are generating different views, adding fully connected
layers will also improve the performance of the network. We
use a 2D CNN decoder to generate the depth map. Skip
connections are added to avoid the vanishing and exploding
gradient problems, similar to U-Net [23]. We use ReLU as the
activation function. Batch normalization is added between the
activation functions and convolution layers.

4) Loss Function: In the actual application, the regression
is implemented on the inverse depth instead of the depth in
consideration of the infinity problem. Standard loss functions
such as the L1 loss and the reverse Huber (BerHu) loss [24]
can be applied for inverse depth regression with good results.

B. Synthetic Dataset Generation

An acoustic camera simulator is used to generate synthetic
dataset. We also model Ds and Vs based on Lambertian
reflectance and consider each transducer possessing the same
beam pattern. We set the attenuation of the ray strength
based on the inverse square law. If and Df are generated
by ray tracing. The acoustic image Ia is generated following
Algorithm 1. For synthetic dataset, Ia and Df are directly
fed to the network for training. For real applications, further
domain adaption process is necessary.

C. Domain Adaption for Real Applications

Although the depth label can be acquired in highly con-
strained experimental settings, such as in a small water tank
[25], it is difficult to acquire accurate depth labels in most
cases in marine environments. In this study, we train the
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Fig. 6. Training the network with the help of the simulator and neural
style transfer in the real application. The synthetic image and depth label
are generated by the simulator. The generator GX−→Y in CycleGAN is used
to transfer the synthetic image to the realistic image.

network by using the labels generated from the simulation
environment, as shown in Fig. 6. To make the synthetic images
closer to real images, conditional GAN (cGAN) can be used
for domain adaption. In this study, CycleGAN is applied to
generate a realistic dataset [19]. The advantage of CycleGAN
is that it does not require strict image pairs. We first prepare
two groups of images, namely, the synthetic images X and
the real images Y . CycleGAN trained two generators, GX−→Y

and GY−→X , and two discriminators, DX and DY together.
Adversarial loss and cycle consistency loss are used together
to train the network. GX−→Y is then used to generate a realistic
image from the synthetic image.

V. SIMULATION EXPERIMENT

To evaluate the network, a simulation experiment was
carried out. The exact ground truth can be acquired from the
simulator. We compared our work with the existing state-of-
the-art method.

A. Simulation Dataset

The simulator environment was built using the open-source
software Blender. A torch light and a camera with the same
pose are used to model the acoustic camera, which serve as the
transmitter and receiver, respectively. Noting that the objects
symmetric to the zero elevation plane will lead to the same
image, in this study, when building datasets, we avoid the
ambiguity cases caused by symmetry.

1) Water Tank Dataset: The amount of visual cues present
is different in different scenes. For instance, for objects lying
on the floor, there are more visual cues, such as the illuminated
area or shadows, for solving the problem. We first discuss the
case in which there are adequate visual cues. The dataset is
comprised of two types of targets: a cylinder lying on the
ground and multiple cuboid bricks with random poses on the
ground. The cylinder has a radius of 0.1 m and a height of
0.25 m. The size of the cuboid is 0.1 m × 0.2 m × 0.08 m.
In total, 10,000 images were generated with different poses.
The images were separated into training, validation, and test
datasets in the respective proportions of 80%, 10%, and 10%.

2) Floating Object Dataset: The simulation experiments
with fewer visual cues focused more on simple objects. Similar
to the problem setting in ElevateNet [14], the objects float or
suspend in water. This may lead to the absence of visual cues
such as illuminated areas and shadows. We used a cuboid,
cylinder, and a sphere for evaluation. The size of the cuboid
is 0.1 m × 0.1 m × 0.2 m. The radius and height of the
cylinder are 0.1 m and 0.25 m, respectively. The radius of the
sphere is 0.3 m. For each object, 5,000 images were generated
for a total of 15,000 images. The images were also separated
into training, validation, and test datasets in the proportion of
80%, 10%, and 10%.

B. Metrics

The mean average error (MAE) of the depth estimated per
pixel and the chamfer distance (CD) between the ground truth
and estimated point clouds were used for evaluation. We did
not compare the MAE of the depth per pixel from the proposed
method with the baseline method because the depth image
generated by the latter is incomplete. The CD was used instead
to compare the proposed method with the baseline method.
The CD can evaluate both the accuracy and the completeness
of the estimated results. Because the CD is influenced by
the number of points, the results from the baseline method
were first transferred to the front depth image with the same
resolution as the proposed method. We did not evaluate the
pixel-wise elevation angle in this study because one pixel
in the acoustic image may correspond to multiple elevation
angles. The MAE and CD metrics are given by

MAE =
1

HW
×

H∑
i=1

W∑
j=1

|D̂(i, j)−D(i, j)|, (3)

CD =
λ

S1

∑
x∈S1

min
y∈S2

||x− y||22 +
λ

S2

∑
y∈S2

min
x∈S1

||x− y||22, (4)

where λ was set to 500.

C. Training
We used the Pytorch framework to implement the proposed

approach. An NVIDIA Geforce 1080Ti graphic card was used
for training and evaluation. Training was performed on each
dataset for 200 epochs. The initial learning rate of 0.001 was
decreased by half with a patience of 20 epochs when a plateau
was reached. We chose the final model based on the best MAE
validation results. The batch size was set to 8 for training and 1
for validation. Adam was used as the optimizer [26]. Training
with the floating object dataset took 7.5 hours.

D. Results

To evaluate our method, we compared our results with the
state-of-the-art ElevateNet [14]. To implement ElevateNet, we
trained the U-Net [23] in a supervised manner. Instead of
formulating the problem as a classification problem, we di-
rectly performed pixel-wise elevation angle regression. Table I
lists the estimation results. The last three columns show the
ratios (%) of CD larger than n. Lower values indicate better
performance for all the results in the table.
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1) Loss Functions: Generally, the L1 loss largely outper-
forms the other losses. L2 loss may sometimes lead to large
errors. The Berhu loss falls in between the L1 and L2 losses.

2) Network Architecture: Ablation tests on the network ar-
chitecture were also performed. We directly downsampled the
images to adjust the size of the acoustic images. The channels
of the network were modified to match the adjustment. We
found that the IPS blocks are extremely important to our
method; the removal of these blocks may lead to poor results.
The removal of the FC layers may lead to disastrous errors in
the floating objects dataset.

3) Comparison with baseline: The proposed method out-
performed the baseline method on both datasets. To visualize
the results, we show some examples of the front depth esti-
mation and 3D mesh model results in Fig. 7 and 8. The mesh
models were generated using MeshLab. We first estimated the

TABLE I
SIMULATION RESULTS

Water Tank Dataset
Loss MAE (m) CD (m) >0.25 >0.5 >0.75
L1 0.0224 0.2468 10.8 7.5 6.3
L2 0.0258 0.4135 82.1 15.8 4.4

Berhu 0.0243 0.3905 20.0 8.0 6.2
L1+no FC 0.0212 0.3573 15.0 8.3 6.5
L1+no IPS 0.0532 0.4120 61.7 16.6 6.1

ElevateNet [14] – 0.4089 56.6 23.6 12.1
Floating Object Dataset

Loss MAE (m) CD (m) >1.5 >3 >4.5
L1 0.0331 1.4709 30.6 9.9 3.9
L2 0.0357 1.6346 35.7 13.3 5.7

Berhu 0.0354 1.4940 24.2 8.8 5.5
L1+no FC 0.0338 3.2626 25.5 10.4 5.4
L1+no IPS 0.0384 2.4017 64.3 24.7 9.4

ElevateNet [14] – 1.9457 66.0 10.5 0.3
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Fig. 10. Results on different targets in the datasets.

normals of the point cloud and then used the ball pivoting
method to generate meshes. The proposed method performs
better because it generates more complete results. The CD
metric considers both the accuracy and the intersection over
union (IoU). The non-bijective projection problem is a com-
mon occurrence in acoustic cameras and heavily affects the
baseline method. As shown in Fig. 8, our method can generate
a more complete 3D model from a single image. In Fig 10,
we show the estimation results for each type of target in the
datasets. It is proved that the proposed method outperforms
the baseline method in 3D reconstruction. In other words,
front view depth regression works better than acoustic view
elevation angle regression here.

4) Computation Cost: It took approximately 4 ms to es-
timate one image with the image size of 128 × 512 on a
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Fig. 11. Real experiment environment: (a) the water tank at Wakachiku
Construction Co., Ltd. (b) ARIS Explorer 3000 and the bricks on the ground.

NVIDIA GeForce 1080Ti GPU. Because the frame rate of the
acoustic camera is approximately 10 Hz, the proposed method
can work in real time.

E. Discussion

For datasets that include the ground, the error is smaller,
which is partially because the CD is influenced by the number
of points. For floating objects, the point numbers are smaller,
which may lead to larger errors. The larger errors are also
due to the presence of fewer visual cues, which degrades the
estimation accuracy. As shown in Fig. 9, although the shape
of the sphere is complete, the sphere appears at a different
position along the elevation direction, which may lead to a
large error based on our metrics. Such problems rarely occur
if there are sufficient visual cues.

VI. REAL EXPERIMENT

The real experiment was carried out in a water tank at
Wakachiku Construction Co., Ltd., as shown in Fig. 11(a).
The ARIS Explorer 3000 was operated in 3.0 MHz mode with
a resolution of 0.003 m in the range direction. The receiver
gain of the sensor was set to 8 dB. The acoustic camera was
mounted on a rotator to adjust the pose for data collection as
shown in Fig. 11(b). Bricks with random poses were placed
on the ground. The size of each brick is approximately 0.1 m
× 0.2 m × 0.04 m. The minimum and maximum ranges of
the acoustic images were set to 2.8 m to 4.312 m. The image
size is 128 × 512.

A. Dataset Generation

Depth labels can be collected in a constrained underwater
environment [25]. However, in a larger-scale environment, the
collection of depth labels is much more difficult. It is possible
to model a similar scene and train the network based on the
synthesized images. However, the intensity images If from the
simulator are not sufficiently realistic. In this study, CycleGAN
was used to transfer the domain to generate realistic images for
training. We first collected data in the water tank and modeled
a similar scene in the simulator. We chose 293 real images
and 239 synthetic images with the same sizes and scales
to train the network. The vanilla CycleGAN was applied in
this study [19]. We trained the networks for 150 epochs. The
learning rate was set to 0.0002 and reduced every 50 epochs.
The batch size was set to 1. The synthetic images X were
generated by placing brick models with random poses and

rmaxrmin

q

(a)

rmaxrmin

q

(b)

Fig. 12. Examples of domain adaption results: (a) input simulation images
and (b) output images after domain adaption.
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Fig. 13. Real experiment results: (a) and (b) are the input acoustic images,
(c) and (d) are the mesh models generated by the proposed method.

changing the camera pose. We generated 3,500 images with
depth labels and transferred the synthetic images X to realistic
images using GX−→Y . Examples of the images GX−→Y (X)
after domain adaption are shown in Fig. 12. It can be seen
that the generated images are very close to the real images. We
roughly estimate the SNR as ȳ/σ, where ȳ and σ refer to the
mean value and standard deviation of the images, respectively.
The average SNRs of the 293 real images, the 3,500 synthetic
images before domain adaption, and the synthetic images after
domain adaption are 1.83, 1.11, and 1.90, respectively. These
results indicate that the noise levels after domain adaptation
are similar to those in the real images. In the future, more
systematic studies will be performed on the image quality of
the images after domain adaption. After generating the dataset,
we used the same parameters in the simulation experiment to
train the A2FNet.

B. Real Experiment Results
After training the network, we input real images from

the water tank into the network to evaluate its performance.
Figs. 13(a) and 13(b) show examples of the input images, and
Figs. 13(c) and 13(d) their corresponding generated meshes.
The letters in the images indicate the corresponding bricks.
The results prove that the network trained by the dataset
works on real images. Most of the complete bricks were
successfully reconstructed. On the other hand, some of the
bricks on the upper boundaries, such as F and G in Fig. 13(b),
were not reconstructed. This is an acceptable result because
the bricks on the upper boundaries are incomplete and blurred.
To evaluate the estimation results, we compared the heights of
the bricks with the ground truth. We manually chose the height
at one point on each complete brick, as shown in Fig. 14. The
average error of the heights is 0.007 ± 0.004 m.

VII. CONCLUSIONS
In this work, we proposed a novel solution for the miss-

ing dimension problem in acoustic cameras by estimating
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Fig. 14. Real experiment results. The color indicates the height information.
We manually labeled the heights of the complete bricks.

the depth in the pseudo front view. The proposed method
can extract all the information from the acoustic images by
considering the non-bijective 2D-3D correspondence. A novel
network was proposed for depth regression in the front view.
Considering the difficulty of collecting depth labels in an
underwater environment, neural style transfer was employed
to generate a realistic dataset for training. Both simulation
and real experiments were performed to evaluate the proposed
method. Our simulator and synthetic dataset are made open
source for comparison.

Future works may include more systematic evaluations of
complex scenes in real experiments and mounting the camera
to an underwater vehicle. The method can be integrated into
SLAM and other autonomous systems. We used CNN-based
regression to solve the problem in this study, it would be also
interesting to test model-based method in the future. Other
problems such as ambiguity caused by imaging symmetry
would also be considered. In this study, we used neural style
transfer to build the dataset. This required both the collection
of real images and the generation of synthetic images from
a simulator, which may not be sufficiently efficient for field
applications, especially for unstructured environments such as
seabed. Currently, there is no open-source dataset available.
It would take much effort to collect real acoustic images,
model similar scene in the simulator, generating synthetic
images, and train the domain adaption network. Training the
depth estimation network in a self-supervised manner would
be desirable for robotics applications. Future work may also
include training the proposed method in a self-supervised
manner. Test on generalization performance of the network
will also be carried out in the future.
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