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ABSTRACT 
 
Measurement of a surrounding environment structure is 
important for mobile robots to make autonomous 
locomotion. In this paper, we propose a method for 
three-dimensional measurement of the environment using 
an omni-directional camera installed on a mobile robot. 
The method is based on structure from motion under the 
assumption that the environment is static. Along with the 
image sequence, it tracks feature points to get 
corresponding points for stereo matching. Using stereo pair 
images taken at selected observation points, the method 
estimates the relative relations of camera positions and 
orientations. With these relations and image coordinates of 
the feature points, three-dimensional coordinates of object 
points are calculated by triangulation. Integration of the 
individual measurement data realized by scale matching 
produces a whole map of the environment. Experimental 
results show the validity of the method. 
 
 

1. INTRODUCTION 
 

Map information is important for path planning and 
self-localization when mobile robots accomplish 
autonomous tasks. In an unknown environment, however, 
mobile robots should generate map information by 
themselves. 

Three-dimensional measurement using image data makes 
it possible to generate map information, and image data is 
acquired ordinarily by using a conventional camera [1] [2] 
whose field of view is limited. To realize the measurement 
more efficiently, we have another way to use an 
omni-directional camera [3] which have a wide field of 
view. A stereo vision method using two omni-directional 
cameras equipped on a mobile robot is proposed [4]. The 
measurement accuracy by stereo vision depends on the 
baseline length, i.e., the longer the baseline length, the 
better the accuracy. Therefore, the measurement accuracy 
of the above method is limited because its baseline length 
cannot be longer than the robot size. 

Structure from motion, using a stereo pair images each 
of which is taken with a single camera during robot 
locomotion, is equivalent to binocular stereo vision, but its 
baseline length can be longer without restriction of the 
robot size. Therefore, a method based on structure from 
motion can measure distant objects with higher accuracy 
than a method based on binocular stereo vision. A 

requirement to this method is to know a relative distance 
and orientation difference of the camera between two 
observation points. 

The camera positions and orientations can be measured 
by using a dead reckoning function of the robot which is 
realize by counting the number of wheel rotation. However, 
dead reckoning gives erroneous data when wheels slip or 
run over uneven terrain, and then errors are accumulated 
during locomotion. Another method of estimating positions 
and orientations of the camera is to use image information. 
It makes it possible to measure the surrounding 
environment without any sensor except for one camera [2] 
[5]. 

As mentioned above, it is desirable for a mobile robot to 
employ an omni-directional camera with a wide view angle 
and a structure from motion strategy [6] which gives better 
three-dimensional measurement accuracy than binocular 
stereo vision does. Consequently, in this paper we propose 
a method of measuring the surrounding environment by a 
mobile robot equipped with an omni-directional camera. 
The method estimates relative differences of positions and 
orientations of the camera between two observation points 
by analyzing acquired image data. Integrating the all 
measurement data obtained for individual observation 
point pairs, the method generates a whole map of the 
environment by using the geometrical relation of the 
camera positions and orientations. 
 

2. OUTLINE 
 

Structure from motion is realized by stereo matching of 
images taken at different observation points during the 
robot locomotion. We use an omni-directional camera to 
get an image sequence along with robot locomotion. We 
employ a theory of weakly calibrated stereo vision, which 
enables us to perform stereo measurement without any 
other information than stereo images themselves. In this 
paper, we assume that the robot moves in a static 
environment. 

In the proposed method, the first procedure is to find 
corresponding points among images in the image frame 
sequence. In the first frame image, we extract feature 
points which are so distinguishable to track in the sequence. 
Then we track these feature points by image processing 
technique, and then the tracked points in the other image of 
a stereo pair and the points in the first image are identified 
as corresponding points. By using these corresponding 
points, we estimate the relative relation in positions and 



orientations of the camera at the two observation points. 
The geometrical relation and the image coordinates of the 
feature points give enable us to calculate three-dimensional 
coordinates with an ambiguity concerning to their scale. 
To generate a whole map, we integrate the measurement 
data by matching their three-dimensional coordinates 
obtained for adjacent observation point pair. Figure 1 
shows how to combine adjacent data. First, we estimate 
rotation matrix R1 and translation vector t1 by using two 
images taken at observation points 1 and 2. Using these 
values, we obtain three-dimensional coordinates p1,i of the 
point from which the corresponding feature points in the 
images are originated, where i is the number of 
corresponding point. Then, we estimate rotation matrix R2 
and translation vector t2, and measure p2,i by using two 
images taken at observation points 2 and 3. Therefore, the 
relation of positions and orientations among observation 
points 1,2,3 is represented by rotation matrices and 
translation vectors R1,R2,t1,t2. However, because the 
measurement only uses the information of corresponding 
points, the distance between observation points is 
indeterminate. In other words, the measurement results are 
in relative scale of |ti|. Therefore, when the distance 
between observation points 1 and 2 is different from that 
between observation points 2 and 3, |t1| and |t2| need to be 
matched in relative scale of these distances. Scale matching 
is realized by making three-dimensional coordinates p1,i 
and p2,i that belong to the same point in three-dimensional 
space be closest. By this processing, we can combine 
three-dimensional data obtained at adjacent observation 
point pairs.  To perform this procedure, we get a whole 
map data integrated from the image sequence. 
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Fig. 1  Measurement Data Combination. 
 
 
 

3. ALGORITHM 
 
3.1 Corresponding Point Acquisition 
 

For getting correspondent points between two images in 
the image frame sequence, we extract feature points in the 
first image and then track them along the sequence. In our 
method, we use KLT (Kanade-Lucas-Tomasi) tracker [7]. 

First, we extract g features in the first frame. Second, we 

track these feature points successively. Feature points that 
cannot be tracked because of less correspondence disappear, 
and remaining feature points that are tracked successfully 
to the image of the next observation point are regarded as 
corresponding points. The image of the next observation 
point is set to be the first image of the next measurement, 
and new feature points are extracted so that the number of 
the remaining feature points in the first image and the 
newly added feature points make the total number be 
constant g. 
 
3.2 Ray Vector Calculation 
 

We define a unit vector originating from the center of 
projection to an object point in three-dimensional space as 
a ray vector r=[x,y,z]T, where T stands for transposition of 
vector or matrix. An omni-directional camera we use has a 
hyperboloid mirror in front of a lens of a conventional 
camera [8]. Therefore, as shown in Fig. 2, ray vector r is 
directed from the focus of the hyperboloid mirror to the 
refection point of the ray on the mirror surface. 
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Fig. 2  Ray Vector. 

 
Ray vector r is calculated from image coordinates [u,v]T 

of the feature using Eq.(1), (2). In the equations, a, b and c 
are the hyperboloid parameters and f is the image distance 
(the distance between the center of projection, or the center 
of the lens, and the image plane) of camera. 
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3.3 Essential Matrix Calculation 
 

Matrix E which satisfies Eq.(3) is called an essential 
matrix,  

0=′ i
T

i Err                 (3) 
where ray vectors ri=[xi,yi,zi]T, ri’=[x’i,y’i,z’i]T are those of 
the corresponding point in two images, respectively. 



Essential matrix contains information about relative 
position and orientation differences between two 
observation points. 
  Equation(3) is transformed into Eq.(4), 

                                  (4) 0=euT
i

where 

ui=[xix’i, yix’i, zix’i, xiy’i, yiy’i, ziy’i, xiz’i, yiz’i, ziz’i]T 

e=[e11, e12, e13, e21, e22, e23, e31, e32, e33]T 

(eab is the row a and column b element of matrix E). 
Essential matrix E is obtained by solving simultaneous 
equations for more than 8 pair of corresponding ray vectors. 
This means that we solve Eq.(5), where n is the number of 
corresponding feature points. 
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Equation (5) is transformed into Eq.(6). 
2min Ue

E
                        (6) 

where U=[u1, u2, ･･･ un]T. 
e is given as the eigenvector of the smallest eigenvalue 

of UTU and then essential matix E is obtained. 
 
3.4 Outlier Rejection  
 

All feature points tracked along the image sequence do 
not behave satisfactorily as corresponding points because 
of image noise etc. Feature points of mistracking should be 
rejected as outliers. To solve this problem, we employ a 
method of RANSAC [9]. 

In the procedure, we select randomly 8 feature points, 
which are of the minimum number of points for 
determining essential matrix E, Let Erand be the essential 
matrix determined by using these feature points, and k be 
the number of feature points satisfying Eq.(7), where q is a  
given threshold.. 

qi
T

i <′ rEr rand                        (7) 

We repeat this process of determining essential matrix 
Erand and number k for predetermined times. Then we 
choose the case with the maximum number of k, and we 
remove feature points that do not satisfy Eq.(7) as outliers. 
Finally, we calculate essential matrix E by Eq.(6) using the 
remaining feature points. 
 
3.5 Estimating Position and Orientation 
 

Essential matrix E is represented by rotation matrix R 
and translation vector t=[tx,ty,tz]T. 

RTE =                               (8) 
Here, T is a matrix given as follows. 
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The method cannot determine the distance |t| between 
two observation points because the measurement only uses 
images for input and does not get any scale information. 

In the procedure, the distance made by camera motion is 

set to be a unit, which is realized by changing the norm ||E|| 
so as to be |t|=1. If |t|=1, the Frobenius norm of T become 

2=T . Since multiplication of T by R does not change 
the norm in Eq.(8), we make the norm ||E|| as 2=′E  
as shown in Eq.(9). 

E
E

E 2
=′                           (9)

 

In order to decompose matrix E’ into rotation matrix R 
and matrix T, we perform singular value decomposition as 
shown in Eq.(10). 

TVUE Σ=′                          (10) 
where 

 ( )0,,diag sr=Σ . 

Values r and s are the singular values of matrix E’, each 
of which are close to 1. We change the values to be r=s=1 
in order to make matrix R be a rotation matrix. By 
transforming Eq.(10) into Eq.(11), rotation matrix R and 
matrix T are obtained in the form of Eq.(12). 
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Translation vector t is obtained from elements of matrix 
T. There are multiple solutions for rotation matrix R and 
translation vector t, and we choose those which make the 
direction of the feature point be the same as that of the ray 
vector. 
 
3.6 Object Point Measurement 
 

Three-dimensional coordinates of an object point which 
is projected as a feature point in the image are given based 
on triangulation with two cameras set in the geometrical 
relation given by rotation matrix Rm and translation vector 
tm, where m is the number of measurement. 

Theoretically, the measurement result indicates that the 
coordinates of the object point are given at the cross-point 
of the corresponding two ray vectors, but in practice these 
ray vectors do not meet at one point because of image 
noise etc. Therefore, we choose the coordinates of the 
middle point on the line that connects the two ray vectors 
with the shortest distance. The resultant three-dimensional 
coordinates pm,i of i–th feature point are obtained by Eq. 
(13). 
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3.7 Result Qualification 
 

The accuracy of measurement is poorer as an object 
point lies closer to the baseline direction or it lies far from 



4. EXPERIMENT the camera. Therefore, the measurement data is a mixture 
of high and low accuracy. Here, by taking the 
differentiation of measurement result pm,i by the image 
coordinates of the two feature points [um,i,vm,i]T and 
[u’m,i,v’m,i]T as the estimate of the measurement accuracy, 
we select measurement results satisfying Eq.(14), where  
h is a threshold. 

 
4.1 Omni-directional Camera 
 

The omni-directional camera we used in the experiment 
is a combination of an HDV camera (HDR-HC1) and a 
hyperboloid mirror (SOIOS70-scope) shown in Fig. 4.  A 
motion image sequence was acquired with the image size 
of 1920×1080pixels, and the image capture rate was 
30frame/s. 
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3.8 Result Combination 

 

 
By the above procedure, we get individual measurement 

results and the geometrical relations of observation points 
by using pairs of stereo images that are selected in the 
image sequence. 

In order to unite these measurement results, we should 
solve the problem of scale ambiguity among individual 
measurements. In the above, we assumed that the distance 
between any set of two observation points to be 1. 
Therefore, measurement results are mismatched when 
actual distances are different to one another. 

Mirror       Camera 
 

Fig. 4  Omni-directional Camera. 
 
 
4.2 Experimental Result 

Figure 3 shows this scale mismatching problem, where 
the broken lines indicate the current result and the solid 
lines indicate the previous result. The scale of current result 
should be matched with the scale of previous result.  Here, 
let observation point c be the common point for the 
previous and current measurements and have the previous 
measurement result Pm,i=[xm,i,ym,i,zm,i]T and the current 
measurement result Pm+1,i=[xm+1,i,ym+1,i,zm+1,i]T for a 
common object point projected in the image as i-th feature 
point. Scale matching is realized by making the 
three-dimensional coordinates of the common object point 
be as close as possible. 

 
In the experiment we measured a passageway including 

an L-shape corner. Figure 5 shows the input image in 
which extracted feature points are superimposed. The 
arrow indicates the direction of camera motion. Points with 
mark of ◇ are those rejected by RANSAC. Points with 
mark of △ are those judged as having poor accuracy. 
Points with mark of ○ are those used in combination of 
results as reliable points. The number of feature points 
extracted in the first frame was set to be g=200. The 
threshold for RANSAC was q=0.01. The threshold for 
judging whether the measurement has good accuracy was 
h=0.05. In the next course of measurement beginning with 
the image shown in Fig.5, the feature points with mark of  
○ remained, the rest were discarded, and new feature 
points were extracted and added to make g be constant as 
200. 
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Fig. 3  Scale Mismatching. 

 
 

Minimization of deviation of the two resultant 
coordinates of the common object point is more sensitive 
when the object point lies farther from the observation 
point. Therefore, it is appropriate to minimize the 
logarithmic distances between common object points rather 
than minimize the linear distances. Scale s’ of the current 
measurement is obtained by Eq.(15). 
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Fig. 5  Feature Points in Input Image. 
  
  



 Figures 6 and 7 show the top view of combined 
measurement result for the motion image sequence.  
Figure 6 shows the result without procedures of outlier 
rejection in Sec.3.4 nor result qualification in Sec. 3.7. 
Figure 7 shows the result with outlier rejection and result 
qualification procedures. The coordinate system is that of 
the last image in the sequence, and the scale is set so as to 
make the motion distance of the last measurement be a unit. 
Black points in the figures indicate the measurement 
results of the feature points. Gray points indicate the 
estimated camera position in each measurement. The arrow 
is the direction of camera motion. Figure 8 shows the same 
result of Fig. 7 in bird’s-eye view. 

 

In Fig.6, the measured positions of feature points spread 
over. Its scale matching failed, and the widths of 
passageway at the starting point and the endpoint differ 
much to each other. On the other hand, the measured 
feature points in Fig.7 are located in correct positions of 
the passageway. The two sides of the passageway are 
measured as parallel lines. This result shows that the 
proposed method is not affected by error accumulation 
which is unavoidable in dead reckoning. 

 
Fig. 6  Result without Outlier Rejection nor Result 

Qualification. 
 

 
Observation point 5. CONCLUSION 

 
We proposed a method for three-dimensional 

measurement of environment based on structure from 
motion with images taken by an omni-directional camera. 
In order to make a whole map, the method integrates the 
measurement results obtained at multiple observation 
points along the image sequence.  Advantages of the 
method are that the system configuration is simplified by 
using only image information taken by one camera, and 
that it can produce reliable data when a robot equipped 
with a camera moves unstably on rough surfaces where 
dead reckoning fails. Experimental results show the 
validity of the proposed method. 
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