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Abstract— In order for robots to safely move in human-robot
coexisting environment, they must be able to predict their sur-
rounding people’s behavior. In this study, a pedestrian behavior
model that produces humanlike behavior was developed. The
model takes into account the pedestrian’s intention. Based on
the intention, the model pedestrian sets its subgoal and moves
toward the subgoal according to virtual forces affected by other
pedestrian and environment. The proposed model was verified
through pedestrian observation experiments.

I. INTRODUCTION

In human-robot coexisting environment, safety is one of
the most important issues. In order for robots to safely coex-
ist with humans, collision avoidance is of great importance.
As an example from industry, pre-crash safety systems that
can predict the collision by sensing the surrounding environ-
ment and prevent it before occurring are being introduced
into many vehicles. In robotics studies, many researchers
have been working on the collision avoidance [1], [2].

For intrinsic safety, of course, a function of emergency
avoidance must be installed in robots. Not only that, obviat-
ing the risk of collision is very important for overall safety.
In fact, when a person is in the environment including other
people and human-controlled vehicles, its behavior must be
affected by the existence of others and their behaviors. In
order for robots to safely coexist in such an environment,
therefore, they should not regard humans as just moving
obstacles. The robots need to accurately predict surrounding
human behaviors.

To predict human behaviors, a model that provides human-
like behaviors in accordance with surrounding environment
is required. There have been several studies about pedestrian
model since early times [3] and most of them have been done
for crowd simulation of evacuation. Models that consider
crowd as a fluid [3], [4] can handle pedestrian crowd,
however they are not appropriate to predict individual pedes-
trian behavior. On the other hand, microscopic pedestrian
models that handle individual pedestrian behavior have been
proposed later. The microscopic models can be divided into
two distinct groups. One is using a cellular automaton in a
discrete space [5], [6], and another treats continuos motion
in continuous space [7]–[10]. Models in the first group
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cannot produce humanlike behaviors because the simulated
pedestrian can move only to the adjacent cells. In other
words, although the models are microscopically described,
the microscopic behaviors produced by the models are less
humanlike. Models in the second group have capacity to
produce humanlike behaviors because the motion of the
simulated pedestrian is not unnaturally restricted. To predict
pedestrian behaviors, therefore, the latter approach is prefer-
able.

Social force model [7], [8] is one of the most popular and
useful models. The model assumes that virtual forces act on
a pedestrian from other pedestrians and environments and the
pedestrian moves according to the resultant force of them.
The social force model is one of the most popular models
and it is to some extent useful for predicting pedestrian
behaviors by a mobile robot [11]. Also there have been
several improved versions of it. For example, Zanlungo et
al. extended the model explicitly considering the prediction
of collision [9]. Nevertheless, the existing models could not
produce humanlike behaviors in some cases.

The reason seems that the intention of pedestrian was not
considered in the models. In reality, pedestrians behave based
not only on the information perceived from surrounding
environment but also on their internal state (e.g. frustration)
and intention. The objective of this study is to develop
a pedestrian model that produces humanlike behaviors by
considering the pedestrian’s intention.

In section II, the proposed pedestrian model is described
in detail. Section III presents experiments for identification
of model parameters. In section IV, comparison between
observed pedestrian behaviors and simulated behaviors pro-
duced by the proposed model is shown. Finally, we conclude
this paper and refer the future plans in section V.

II. MODELING OF PEDESTRIAN’S BEHAVIOR

A. Basic concept of the model
Our pedestrian model is based on the social force

model [7] for calculating low-level motion. The social force
model considers four types of virtual forces acting on a
pedestrian α as follows (Fig. 1):

• Acceleration force towards a goal: f0
α

• Repulsive force from other pedestrian β: fαβ

• Repulsive force from obstacle B: fαB

• Attractive force from other pedestrian or place i: fαi

In this study, the fourth one is omitted for simplicity and
the pedestrian moves according to the resultant force of them.

fα = f0
α + fαβ + fαB (1)



Fig. 1. Social force model

Fig. 2. Concept of intentions

As mentioned before, the social force model produces un-
natural behaviors compared with real pedestrian. A possible
cause of this is that the social force model does not change
the pedestrian’s goal according to the situation, whereas real
pedestrians sometimes set a temporal goal as the situation
demands.

In order to resolve this problem, in this study, we introduce
a mechanism to create an appropriate subgoal according to
the pedestrian’s attempted behavior at the moment. Here, the
term “behavior” means “avoiding a person coming towards
me” or “following a person walking in front of me,” etc.
Pedestrian’s behavior is not necessarily correspond to its
intention. For example, though it wants to overtake a person
in front of it while walking through a narrow aisle, it may
think it cannot overtake him and decides to follow him
for a while. While there are several behaviors/intentions
pedestrians select, we deal with three types of typical and
basic behaviors/intentions, such as free walk, avoid, and
follow (Fig. 2).

When the pedestrian has a goal to reach, and on the way
to its goal there is no other pedestrian and obstacle that may

Fig. 3. Overview of the proposed pedestrian model

affect its traveling, its intention is defined to be free walk. If
there are some other people interfering with the pedestrian’s
way to goal, it will switch its intention to either avoid or
follow.

In the proposed model, a pedestrian decides its intention
based on its internal state and environmental situation. Based
on the intention, it selects its behavior and sets a subgoal.
After that, the model calculates the social forces acting on
it according to the environmental situation and its subgoal.
Finally, the model produces its motion and the motion affects
its internal state. The overview of the proposed pedestrian
model is shown in Fig. 3.

B. Intention transition and behavior selection

Since pedestrian’s intention primarily controls its behavior,
in the proposed model, there are limited variety of behavior
available for each intention. If the pedestrian’s intention is
free walk, it only does free walk. Also, if its intention is
follow, it only selects follow behavior. Our point here is if
its intention is avoid, it has two behavior options, avoid and
follow and selects appropriate one according to the prediction
of the future situation. The relationship between intention
transition and behavior selection is shown in Fig. 4.

1) Free walk: A concept of “warning area” is introduced
here (Fig. 5). The concept comes from the idea that a
pedestrian only concerns about other people who probably
interfere with its traveling. The warning area of pedestrian
α is determined based on its desired direction eα and its
field of view. Desired direction means the direction toward
its goal and the warning area is provided ranges of d around
the direction. Here, field of view is determined by the range
R and view angle. For simplicity, the view angle is set to
180◦. The warning area is defined as the intersection of field



Fig. 4. Intention transition and behavior selection

Fig. 5. Definition of warning area

of view and desired direction with ranges.
If there is no other pedestrian in the warning area of α,

its intention will be set to free walk and its motion will be
calculated by Eq. (1).

If other pedestrian β penetrate the pedestrian α’s warning
area, intention of α will switch to either avoid or follow.

• If the traveling directions of α and β are roughly
opposite (Eq. (2)), α’s intention will switch to avoid.

vα · vβ ≤ 0 (2)

• If they move in basically the same direction (Eq. (3)),
α’s intention will be determined depending on the
relative speed of α and β.

vα · vβ > 0 (3)

– If their speed difference is relatively low or α
moves slower than β (Eq. (4)), α’s intention will
switch to follow.

∥vα∥ − ∥vβ∥ < v1 (4)

Fig. 6. Creation of a subgoal for following behavior

– On the other hand, if α moves much faster than
β (Eq. (5)), α changes its intention to avoid for
overtaking β.

∥vα∥ − ∥vβ∥ ≥ v1 (5)

Here, vα and vβ are the velocity of pedestrian α and β, and
v1 is the non-negative threshold value.

2) Follow: When pedestrian α’s intention is follow, it tries
to keep a suitable distance with its target pedestrian β. In
the proposed model, we introduce a subgoal γ, which is set
behind the pedestrian β (Fig. 6). rγ , the position of γ, is
calculated by the following equation:

rγ = rβ − dβγeα, (6)

where rβ is the position of β and dβγ is the suitable distance
between β and γ.

In this case, the social force equation is modified. The
acceleration force f0

α is replaced with fγ
α , the acceleration

force towards the subgoal γ. Also the repulsive force from
pedestrian β decreases from fαβ to fαβ−. As a result, the
resultant force is described as follows:

f follow
α = fγ

α + fαβ− + fαB (7)

Following somebody intensifies the pedestrian’s frustration
which means the follower is getting frustrated of following
and becomes eager to overtake the person it is following.
Because of this reason, we introduce the frustration value
into the pedestrian model. The difference between pedestrian
α’s desired speed and the speed of pedestrian β accumulates
with time (Eq. (8)), and if the accumulated value exceeds
εfr, the threshold about frustration, α’s intention will switch
to avoid.

Fαβ(t) =

∫ t

0

|vdesiredα − ∥vβ(t)∥|dτ (8)

Here, Fαβ(t) is α’s frustration value affected from β at t
and vdesiredα is the desired speed of α.

If other pedestrians go out of the warning area of α, α’s
intention will switch to free walk.

3) Avoid: When pedestrian α’s intention is avoid, two
subgoal candidates are created at the both side of other
pedestrian β (Fig. 7).
rδL and rδR , the positions of the subgoal candidates δL

and δR, are calculated as follows:

rδL = rβ + dδ1eα + dδ2e
⊥
α ,

rδR = rβ + dδ1eα − dδ2e
⊥
α ,

(9)



Fig. 7. Creation of subgoal candidates for avoiding behavior

where dδ1 and dδ2 are longitudinal and lateral distance
between pedestrian β and a candidate, respectively. e⊥α is
a unit vector normal to the desired direction eα.

After that, the proposed model evaluates the candidates
based on prediction process. In the prediction process, the
pedestrian model calculates the future situation until pedes-
trian α reaches the subgoal candidates. At each time step, the
model determines if other pedestrian penetrates α’s warning
area at the moment, and if it predicts that someone penetrates
the area, it will judge the subgoal candidate destined for as
bad. In this prediction process, the motion of pedestrian α
is based on the modified social force (Eq. (10)) and that of
β is linear uniform motion.

If a subgoal candidate is not judged as bad, it will be
regarded as a good subgoal candidate. Pedestrian α decides
the good candidate as the subgoal for avoiding behavior. If
both candidates are good, pedestrian α will choose nearer
candidate from the current position as the subgoal. The social
force is modified. In this case, the acceleration force is f δ

α,
which is from the selected subgoal δ. The repulsive force
from pedestrian β is fαβ−, which is the same as that of
follow behavior.

favoid
α = f δ

α + fαβ− + fαB (10)

On the other hand, if both candidates are bad, α will be
forced to select follow behavior. In this case, the social force
is described as the following equation:

favoid−follow
α = fθ

α + fαβ− + fαB , (11)

where fθ
α is acceleration force from subgoal θ for following

β. This is similar to Eq. (7). rθ, the position of θ, is
calculated by the following equation:

rθ = rβ − dβθeα, (12)

where dβθ is the distance between pedestrian β and subgoal
θ.

As with following behavior, if other pedestrians go out of
the warning area of α, α’s intention will switch to free walk.

III. PARAMETER IDENTIFICATION

As described in Section II, there are 9 parameters to be
determined for the proposed model, such as d, R, v1, dβγ ,
vdesiredα , εfr, dδ1, dδ2, and dβθ. Moreover, we assumed that
pedestrian’s desired speed vdesiredα is different in normal

Fig. 8. Experimental setting for parameter identification

and hurry condition. Therefore, we consider vnormal
α and

vhurryα separately. As a consequence, 10 parameters have
to be determined. In this study, v1 and εfr were set to
0.5 m/s and 10 m, respectively, by try and error, because
these values could not be estimated by observation. Besides
these two parameters, 8 parameters were determined based
on observation experiments.

A. Experimental setting and procedure

In the observation experiment, 6 healthy volunteers (aged
23–29 years; 5 men and 1 woman) were participated. The
experiments were done in a square area measuring 4 × 13
meters (Fig. 8). To measure participants’ trajectories, we used
two laser range finders (UTM-30LX, Hokuyo Automatic
Co., Ltd.) and applied a simple tracking algorithm, which
is adopted in [11]. The laser range finders were placed at
the corners of the experimental area and the height of the
sensors were 0.87 m. The measurement time interval was
100 ms.

Three experiments were carried out for parameter identi-
fication.

The first experiment was for estimating the desired speed
vnormal
α and vhurryα . The participants walked straight from

Start to Goal (Fig. 8-(a)) 6 times for each conditions.
The second experiment was to determine the parameters

related to the warning area (R and d) and subgoal for
avoidance (dδ1 and dδ2). In the experiment, the participants
avoided an obstacle (stationary robot, which is 0.45 meters
long, 0.45 meters wide, and 0.75 meters tall) while walking
from Start to Goal (Fig. 8-(b)). In this case, the position of
the obstacle were set at either 7.0 m, 8.0 m, or 9.0 m from
the participants’ start position. For each obstacle position,
the participants walked 6 times.



TABLE I
IDENTIFIED PARAMETERS FOR EACH PARTICIPANT

Participant A B C D E F
vnormal
α [m/s] 1.38 1.34 1.17 1.45 1.49 1.21
vhurryα [m/s] 2.24 1.87 1.98 2.01 2.29 1.74

R [m] 8.88 8.77 8.88 9.02 9.00 9.14
d [m] 1.04 1.26 0.73 0.86 0.58 0.84

dδ1 [m] 0.26 -0.98 0.37 -0.08 1.60 -0.34
dδ2 [m] 2.08 2.52 1.45 1.72 1.16 1.68
dβγ [m] 2.08 2.29 2.00 2.39 1.52 2.06
dβθ [m] 1.04 1.15 1.00 1.19 0.76 1.03

The third experiment was to determine the parameters
related to the subgoal for follow (dβγ and dβθ). In the
experiment, the participants followed the robot (ZEN, Ritecs
Inc.), which was also used as the obstacle in the second
experiment, from Start to Goal (Fig. 8-(c)). The robot was
initially placed either 3.0 m, 4.0 m, or 5.0 m from the
participants’ start position, and moved straight with speed of
either 0.3 m/s, 0.5 m/s, or 0.8 m/s. The participants started
following the robot at the moment the robot started to move.
In the experiment, the participants walked 3 times for each
combination of the robot’s initial position and speed.

B. Experimental results

In the first experiment, we eliminated the data of the first
and last 2 seconds, in which the participants accelerated or
decelerated their walking speed, and calculated the average
speed to estimate the desired speed of each participant.

From the second experiment, the parameters R and d of
the warning area is calculated by measuring the maximum
longitudinal avoiding distance, which is estimated from the
moment of changing direction, and the maximum lateral
avoiding distance, respectively. dδ1 was calculated from the
longitudinal distance when the lateral difference of the par-
ticipant and the obstacle was the largest. dδ2 was estimated
by doubling the parameter d.

In the third experiment, as with the case of the first experi-
ment, the data of the first and last 2 seconds were eliminated
and the distance between the robot and the participant was
calculated to determine dβγ . dβθ was assumed to be a half
of the distance dβγ .

Based on the three experiments, we obtained the eight
parameters for each participant as shown in Table I.

IV. COMPARISON BETWEEN SIMULATED AND OBSERVED
PEDESTRIAN BEHAVIORS

A. Pedestrian observation experiment

To evaluate the proposed model, the behaviors produced
by the model was compared with the observed pedestrian
behaviors. In the observation experiments, the participants
and the measurement system were the same as Section III.
The experiments were done in three situations.

Common in the three experimental scenarios, a participant
(denoted α in Fig. 9) were told to start walking from Start
to Goal (denoted G in Fig. 9). We have another pedestrian
in these experiments who is a cooperator (denoted β in Fig.
9). The cooperator was required to walk to either goal L,

Fig. 9. Experimental setting for evaluation

C, or R. In each trial, the goal was instructed to β by
the experimenter, and the order of the goals were quasi-
randomized. Here, the participant α could not know the goal
of β beforehand. The cooperator β was asked to walk to each
goal three times, which means there are 9 trials performed
for each participant α in each situation.

The first scenario was that participant α walked to the goal
while passing cooperator β who walked straight in opposite
direction (Fig. 9-(a)).

The second scenario was that participant α walked in a
hurried pace to the goal, and cooperator β walked with
normal speed to the instructed goal (Fig. 9-(b)). Different
from the first scenario, the walking directions of α and β
were the roughly same.

The instruction to participant α and cooperator β in the
third scenario was the same as that in the second scenario.
The third scenario was different from the second one in its
environmental setting. There were obstacles as shown in Fig.
9-(c) and, because of this, there was a bottleneck in the
experimental environment. Therefore, participant α could not
overtake β in the bottleneck area.

B. Pedestrian behavior simulation

The proposed pedestrian model was implemented and
simulated with C++ and OpenGL on Mac OS 10.6.8. In
the simulation, the environmental information and observed
cooperator β’s trajectory were input, and a simulated agent
moved according to the proposed model.

In order to evaluate the proposed pedestrian model, we not
only calculated the difference between the observed partici-
pants’ trajectories and the simulated agents’ trajectories, but
also compared with the social force model [7].



Fig. 10. An example of the results in the first scenario

Fig. 11. Comparison of the proposed model and social force model

C. Experimental results

Figure 10 shows an example of the experimental results
in the first scenario. The green dashed line is an observed
trajectory of the cooperator, and the blue dashed line is
an observed trajectory of the participant. In this case, the
cooperator’s goal was R (Fig. 9-(a)), and the participant
swerved to the right to avoid the cooperator. Simulated
trajectories of the proposed model and social force model
are the red solid line and the yellow dotted line, respectively.
As can be seen in the figure, the simulated agent based on
the social force model abruptly and unnaturally changed its
direction in the middle of its trajectory. On the other hand,
the proposed model could calculate a natural and smooth
trajectory similar to the observed participant’s trajectory.

Figure 11 shows the average difference between the ob-
served participants’ trajectory and the trajectories of the
pedestrian models to compare the proposed model with the
social force model.

Applying the proposed pedestrian model, the mean trajec-
tory errors of the scenario 1, 2, and 3 were 0.43 m, 0.58
m, and 0.53 m, respectively. On the other hand, the mean
errors using the social force model were 1.10 m, 1.08 m,

and 0.67 m. The mean trajectory errors were tested using
paired t-test. There were significant differences between the
proposed model and the social force model for the three
scenarios (p < 0.01). Based on the results, it can be said that
the proposed pedestrian model can produce more humanlike
behaviors than the social force model.

V. CONCLUSION

In this study, we have developed a pedestrian behav-
ior model considering pedestrian’s intention. The proposed
model can successfully simulate pedestrians’ behaviors with
results more humanlike than the social force model.

For future works, the proposed pedestrian behavior model
will be applied to a large number of pedestrians. In this
study, we omitted the attractive force from other persons
or places and limited the number of pedestrian’s intentions
to three for simplicity. In the real world, however, people
are sometimes attracted by other people, objects, places,
etc. and they have much more intentions. Therefore the
attractive force and other intentions should be considered
in the next step. Furthermore, we will apply our proposed
pedestrian model to various vehicles, such as cars and robots
for prediction of their surrounding pedestrians’ behaviors.
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