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Abstract— In this paper, novel reinforcement learning method
with intrinsic motivation for reproducibility of the past suc-
cessful experience is presented. The experience is extracted
as skill, which is composed of action sequence and abstract
knowledge about observed sensor input. Utilizing the collected
skills, reproduction of the successful experience is attempted in
novel and unknown environment. Consistent exploration and
active reduction of search space are realized by learning with in-
trinsic motivation for reproducibility of experience. Simulation
experiments in grid world demonstrate that proposed method
significantly accelerate speed of learning.

I. INTRODUCTION

Development of autonomous robot that learns incremen-
tally without sufficient prior knowledge is a challenging open
problem in robotics research. Reinforcement learning [1] has
been actively studied to tackle with the problem, because it
does not require precise description about task, environment,
and dynamics of robot. In recent years, introduction of intrin-
sic motivation to hierarchical reinforcement learning [2], [3]
is receiving much attention in the context of developmental
robotics.

Traditional reinforcement learning methods are typically
designed for single, isolated task. Therefore they must start
learning from scratch for every newly given task, and it
is difficult to achieve sufficient learning speed as control
architecture for autonomous and adaptive robot. In contrast,
animals, including human, can demonstrate adaptability to
novel tasks and environments instantaneously. One of potent
factors of such a difference seems to be mechanism of
intrinsic motivation. Psychologists have separated intrinsic
motivation from extrinsic motivation [4]. Extrinsic motiva-
tion drives organisms to take purposive behavior. On the
other hand, purpose of behavior driven by intrinsic moti-
vation is behavior itself, e.g. behavior driven by curiosity
or interest. Intrinsically motivated activities are explorative.
The motivational system is not designed to deal with specific
single task; it is designed to acquire increasing competence.

A number of studies have been presented that show
effectiveness of intrinsic motivation implemented on rein-
forcement learning. Recently intrinsic motivation is utilized
for autonomous acquisition of useful skills in hierarchical
reinforcement learning framework. Skill (also called option,
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temporally extended action, etc.) is a multi-step partial
policy that enables learner to streamline decision making
process. If the agent can acquire skills that are applicable
to various situations, it should be possible to accelerate
learning of current task. In [5], intrinsic reward for salient
event to acquire useful skills are applied to hierarchical
reinforcement learning framework. The agent learns skills
incrementally based on saliency in the environment, and
utilize skills to improve learning performance. Consequently,
the agent acquires hierarchical structure of skill in response
to experienced sensory-motor flow.

These studies do not necessarily optimize given a whole
problem, however, skill is extracted from optimal policy for
a sub-task (cf. recursively optimal policy [6]). That is, skill
is a map from subspace of state space to action space. If
skill is formulated as such a closed partial policy, collection
of exhaustive experience is required. Although the skill is
defined in smaller space than state space in general, the
formulation could lead to deceleration of learning. Matu-
ration of learner would increase complexity of skills, and
accordingly enlargement of skill learning process would
occur apparent stagnation of learning. Der pointed out that
such a problem is a kind of curse of dimensionality [7].

Pursuit of optimality for sub-task is fundamental for
autonomous robot to acquire broad competence, but at the
same time, autonomous robot must have an ability to adapt
novel situation instantaneously. In this perspective, it is
rational to find a few tentative solutions at first, and after
that, learn all-inclusive optimal solution. On the basis of
above methodology, reinforcement learning framework with
intrinsic motivation for reproduction of the past successful
experience is presented in this paper. A key idea is self-
motivated reduction of search space using skill, which rep-
resents the past successful experience. Contrast to previous
studies that determine exploration strategy based on maxi-
mization of learning progress [8], [9], selective exploration is
implemented via exploitation using skills. Proposed method
does not guarantee global optimality in general, however,
learning speed is significantly accelerated when the agent
finds sub-optimal solutions.

A. Overview

Fig. 1 depicts framework of proposed method. Proposed
framework has hierarchical structure that is composed of
one-step primitive action (hereinafter simply called “action”)
and skill that assigns multi-step action series. Different
update laws are applied to learn action value and skill value
unlike option framework [10]. Q-learning [11] is applied to



Fig. 1. Framework of proposed method

learn action value. Skill value is learned in Semi-Markov
Decision Processes (SMDPs) using three elements: intrinsic
reward signal for reproducibility of the past successful expe-
rience, extrinsic reward signal derived from given task, and
action value. Hence state-skill pairs that result in

• observation of experience with high reproducibility,
• action selections toward task completion,
• transition to a good state (high state value),

take high skill value.
Each state-skill pair would have almost uniform value in

early phase of learning if prior information is not given. Then
update of skill value strongly commits intrinsic reward signal
at first. If the executed skill generates high reproducibility
of the past successful experience, positive intrinsic reward
is given to the skill, and consequently the skill would take
relatively high value. This is one of a key point of proposed
method, because skill value has a role to characterize explo-
ration strategy. In each action selection step, action value is
instantaneously biased by value of currently activating skill.
If the value of activating skill is positive, then probability
to select an action assigned by the skill is increased. Thus
search space is reduced by skills that have high value due to
intrinsic reward signal, especially in early phase of learning.
Action value (skill value) is not learned for every state-action
(state-skill) pair; the agent explores and learns selectively
using skills. Acceleration of learning speed can be realized
due to the active reduction of search space.

In Section II, affine transformation invariant feature is
introduced to represent experiences accompanied by skill
execution. It enables the agent to evaluate experience of
skill execution in a novel environment abstractly. Update
law of skill value and instantaneous bias to action selection
process are described in Section III. Simulation experiments
supposing navigation problem of mobile robot is conducted
in Section IV. Proposed method and one of a representa-
tive hierarchical reinforcement method [10] are simulated.
Additionally, fundamental property of proposed framework
is discussed. Finally, conclusions are summarized in Sec-
tion V. Short abstract of proposed framework is presented
in [12]. In this paper, practical algorithms, thorough results,
and design concepts are detailed. Comparison with option
framework [10] is also presented.

Note that proposed method differs from knowledge trans-
fer [13] such as initialization of value function. Skills are
used to learn sub-optimal path rather than optimal map in
this paper. Additionally, incremental skill acquisition during
learning is not considered explicitly. It would helpful to

Fig. 2. Identifiable experiences accompanied by skill execution

improve performance of learning, however, validation for
active reduction of search space is a focus of this paper.
Therefore temporal development of the learner is excluded,
and the learner is supposed to have determinate skills.
Integration with autonomous skill acquisition processes is
discussed in a future work.

II. ABSTRACTION OF EXPERIENCES

Abstract representation for a sequence of sensor inputs,
which is associated with skill execution, is introduced to
generate intrinsic reward signal. There could be various
measures for reproducibility of the past successful experi-
ence. Cyclopedic collection and evaluation for every possible
experience are not realistic. Distance between two sequences
might be applicable, however, occasionally it would be
irrational. As a simple illustration, let us consider wall
following behavior of a mobile robot equipping range sensor.
For a robot moving along wall, it would not be worth
distinguishing “wall existing side” to a moving direction.
Distance from the wall should be sufficient information as
long as the robot just continues to follow the wall. In other
words, it is reasonable to identify symmetric information
about axis of translational movement in the case as is shown
in Fig. 2. Similar discussion would be also valid for more
general cases, such as right turn at T-junction, and passing
through with pedestrians. Therefore abstraction of limited
experience is an important issue to reduce search space.

To abstract a sequence of sensor inputs accompanied by
skill execution, affine transformation invariant feature [14]
M ∈ R is introduced in proposed method. Affine transfor-
mation invariant feature is developed in speech recognition
research domain. Let ξt ∈ Rd be feature vector of sensor
input, and let Ξt−k1:t+k2 = [ξt−k1 , ..., ξt, ..., ξt+k2 ] be a
sequence of ξ. Let ξ̄t = Aξt + c be affine transforma-
tion for ξt, then affine transformation invariant feature M
for Ξt−k1:t+k2 satisfies M(Ξt−k1:t+k2) = M(Ξ̄t−k1:t+k2),
where Ξ̄t−k1:t+k2 = [ξ̄t−k1 , ..., ξ̄t, ..., ξ̄t+k2 ]. An actual
functional form of the invariant feature is as below

M(Ξt−k1:t+k2) =
√
(µa − µb)T (Σa +Σb)−1(µa − µb).

(1)
µa and Σa are mean and covariance matrix of Ξa :=
Ξt−k1:t−1 respectively, which is an arbitrary subsequence
of Ξt−k1:t+k2 .

µa =
1

k1

t−1∑
τ=t−k1

ξτ , (2)
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Σa =
1

k1

t−1∑
τ=t−k1

(ξτ − µa)(ξτ − µa)
T . (3)

µb and Σb are also defined for subsequence Ξb := Ξt:t+k2 .
It is well known that the difference of vocal tract length
and recording equipment can be approximately modeled
by affine transformation for cepstral vectors. Thus affine
transformation invariant feature offers a measure of inherent
structure in particular speech language without normalization
of massive data.

Similar consideration could be valid for arbitrary se-
quences of sensor inputs observed through skill execution.
As a consequence of interaction between an agent and an
environment over time, a series of sensor inputs is observed.
Each skill execution segments the series. The segmented
sensor inputs forms geometric structure in feature space.
For the structure, transformation invariance removes unnec-
essary information modeled by certain transformation. Thus
it can be utilized to measure the unique structure in feature
space (e.g. sequence of phoneme in speech recognition)
that corresponds to certain action sequence (utterance of
a word). There are studies utilizing invariant property for
bootstrapping [15], [16], but they are different from our
idea that we focus on temporally extended data sequence.
In this paper, utility of such an idea is verified through
sensor settings supposing mobile robot, which directly reflect
geometric structure of an external environment.

Fig. 3 and Fig. 4 illustrate examples of observed affine
transformation invariant feature in two dimensional grid
world. Obstacles (depicted as green box in the figures) are set
in the environments. An agent can select four actions: move
one cell to the up, right, down, left directions. The agent is
associated to equip odometer and range sensor. Odometer
measures distance from current state to initial state, and
range sensor measures distance from current state to state of
obstacles with respect to four directions: up, right, down, and
left. Feature vector ξ = [ξ1; ξ2] is chosen as 2 dimensional
vector: ξ1 is distance from initial state, and ξ2 is sum of range
sensor readings. With these settings, transformation invariant
feature was calculated for determined sequence of actions.

In Fig. 3, sequences of ξ1 is the same between the
two paths (red and blue lines), but sequences of ξ2 are
different. However, the same affine invariant feature values
M1 = M2 = −70.47 are observed for each path. This
result means that sequence of ξ in one path can be identified

with ξ in another path by a certain affine transformation. In
Fig. 4, two paths are not symmetric, but have similar “walk
around ” movement in the middle of traveling. Observed
invariant features are M3 = −31.25 for longer path (blue
dashed line) and M4 = −39.85 for shorter path (red
dashed line), respectively. Therefore the two experiences
are discriminated. Considering invariant feature in Fig. 3,
|M1−M3| > |M1−M4|. Thus, in the sense of affine invariant
feature, shorter path in Fig. 4 is more similar with no walk
around path than the longer path in Fig. 4. On the other hand,
|M1 −M4| < |M3 −M4|. Thus existence of walk around
movement makes greater distinction than the difference of
length of walk around movement. These results exemplify
the function of affine invariant feature as the measure of
sequence of feature vector derived from certain action series,
or skill. That is to say, the agent can measure the degree of
similarity in two experiences from M value 1.

III. SELECTIVE EXPLORATION AND LEARNING

In this section proposed learning method is detailed. Here
S and A denote state space and action space, and s ∈
S and a ∈ A denote a state and an action respective-
ly. Skill is formally defined as Λ = (AΛ,MΛ). AΛ =
{aΛ(1), aΛ(2), · · · , aΛ(TΛ)} is a finite ordered action set
and MΛ ∈ R is an affine invariant feature observed by
execution of AΛ. AΛ and MΛ are supposed to be acquired in
successfully solved sub-task in the past. Action value Q(s, a)
is learned by Q-learning [11] in proposed method. In parallel
with Q-learning, skill value QΛ(s,Λ) is learned with intrinsic
reward signal in SMDPs framework (see Fig. 1). Skill value
is a function that represents a value to select skill Λ in state s.
Action value is instantaneously biased by value of currently
activating skill in every action selection process. Therefore
explorative behavior of the agent is characterized by skills
and their value.

A. Update Law of Action and Skill Value

Action value is updated by ordinal Q-learning:

Q(s, a)← (1− α)Q(s, a) + α
(
rextt+1 + γmax

a′
Q(s′, a′)

)
.

(4)
α ∈ [0, 1] is learning rate and γ ∈ [0, 1] is discount rate.
rextt+1 ∈ R denotes immediate extrinsic reward and s′ ∈ S is
state at next time step after execution of action a. Update
process of action value is not affected explicitly by skill
value. Therefore arbitrary action selection method for Q-
learning is applicable such as ε-greedy and soft-max action
selection [1].

1For more complex sensor settings, appropriate preprocessing of sensor
information would be required [14]. Additionally, we need to consider
carefully what kind of property, i.e. transformation should be ignored.
However, these topics relate characteristics of specific sensor settings and
they are out of scope of this paper. Therefore we associate simple sensor
settings and show intuitively interpretable results.



Update law of skill value QΛ(s,Λ) is similar with update
law of Q-learning applied to SMDPs [2]:

QΛ(sΛ,Λ)← (1− α)QΛ(sΛ,Λ)

+α
(
rint +RΛ + γTΛ max

a′′
Q(s′′, a′′)

)
. (5)

It is updated only when action sequence of the skill is
completed or the next state is the destination state. sΛ ∈ S
denotes state where skill has started and s′′ denotes state after
execution of Λ. RΛ ∈ R is a discounted cumulative extrinsic
reward gained during skill execution. RΛ is calculated as

RΛ =

TΛ∑
tΛ=1

γtΛ−1rextt+tΛ . (6)

As natural formulation for temporal extension of action, im-
mediate extrinsic reward during skill execution is discounted
and accumulated, and finally utilized to update skill value.

Intrinsic reward rint : R×R→ R is calculated by below
equation using affine transformation invariant feature as a
measure of reproducibility of experience:

rint(M,MΛ) = rintp exp

(
−|M −MΛ|

ρ

)
. (7)

M is observed affine invariant feature through execution of Λ
in present environment. MΛ denotes affine invariant feature
of Λ. rintp ∈ R+ and ρ ∈ R+ denote positive parameters.
Thus skill that demonstrates high reproducibility in the sense
of transformation invariant feature tends to be reinforced
positively. Note that the intrinsic reward is independent of
given task. Therefore intrinsic reward itself does not assure
improvement of performance.

B. Bias for Action Selection Process by Skill Value

Action value is utilized for update law of skill value in (5).
On the other hand, skill value is utilized for action selection.
Action value is biased by skill value at each time step, and
skill is embedded to action value implicitly. In the course of
skill execution through time, a value of action aΛ(tΛ), which
is assigned by executing skill, is modified in accordance with
the skill value. The instantaneous bias for relevant action
value is calculated as

Q(s, aΛ)
bias←−− Q(s, aΛ) + βγ−(tΛ−1)QΛ(sΛ,Λ). (8)

tΛ denotes elapsed time from start of execution of Λ. aΛ ∈
A is action assigned by skill at time tΛ, and sΛ ∈ S is
a starting state of skill execution. β ∈ R is a parameter
determining intensity of bias. β is supposed to be positive
in this paper. Note that (8) is not an update law; the bias is
one-time adding. Therefore the value of Q(s, aΛ) is turned
back once the action is selected.

Fig. 5 depicts conceptual scheme of relationship between
Q(s, a) and QΛ(s,Λ). Relevant action to activating skill
is biased by the value of skill. If the value of activating
skill is positive (negative), then probability to select relevant
action is increased (decreased). In other word, exploration
strategy of agent is characterized by skills. Entire procedure
of proposed method is summarized in Algorithm 1.

Fig. 5. Relationship between action value Q(s, a) and skill value QΛ(s,Λ)

Algorithm 1 Summary of algorithm
initialize Q(s, a), QΛ(s,Λ)
repeat

initialize s
select skill Λ using QΛ(s,Λ)
repeat

bias Q(s, aΛ) by (8)
select a using biased Q(s, a)
get sensor data and calculate ξ
observe rextt+1 and next state s′

update Q(s, a) and R by (4), (6)
if tΛ = TΛ then

calculate M and rint by (1) and (7)
update QΛ(sΛ,Λ) by (5)
select next skill Λ′ using QΛ(s

′,Λ)
end if
t← t+ 1, tΛ ← tΛ + 1, s← s′

until termination condition of episode is satisfied
update QΛ(sΛ,Λ) by (5)

until termination condition of learning is satisfied

IV. SIMULATION EXPERIMENT

To verify validity of proposed method, simulation exper-
iments for navigation tasks in two dimensional grid world
is demonstrated. Fig. 6 depicts an example of tested envi-
ronment. A circle in the figure represents initial state, and a
star represents destination state. Fig. 7 depicts an example
of skill acquisition environment and acquired skill. Skill is
supposed to be acquired from execution of optimal policy
for sub-task in this paper. Executed sequence of actions and
resulted affine transformation invariant feature is stored as
skill. Results of proposed method, option framework [10],
and Q-learning are shown.

A. Simulation Settings

The agent is available four actions: moving one cell to the
up, right, down, and left directions. Tested environments are
square walled rooms (Fig. 6). There are multiple obstacles
that occupy one cell, but obstacles do not exist at cells bound-
ing the wall. Positions of obstacles are randomly determined
at the beginning of learning. Initial state of the agent is (1, 1)
and destination state is sd = (15, 15). Extrinsic reward is
+5 at destination state, −1 for collision with obstacles, and
−0.1 for each action execution. Initially Q(s, a) = 0 for all
state-action pairs. QΛ(s,Λ) = 1 for all state-skill pairs to
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Fig. 8. Settings of option

bias action value. ρ = 10, rintp = 2, α = 0.2, γ = 0.95,
β = 0.5, and termination conditions of episode are reaching
sd or elapse of 300 steps. Action and skill selection policy is
soft-max action selection [1]. Temperature parameter τ ∈ R
is set as τ = 0.2 exp(−e/200), here e is current number
of episode. The agent equips range sensors that detect over
two cells for four directions and an odometer. Feature vector
ξ = [ξ1; ξ2] is chosen as 2 dimensional vector; ξ1 is distance
from initial state and ξ2 is sum of range sensor readings.
Sequence of ξ is segmented in the half point of the skill to
calculate affine invariant feature.

Skill is supposed to be acquired preliminary in an envi-
ronment where sd = (5, 5) and randomly positioned five
obstacles are set (Fig. 7). Q-learning is implemented for
the sub navigation task. Executing learned greedy policy, a
sequence of actions and M are memorized as a skill. The
environment is initialized and above procedure is repeated
five times (i.e. five skills are acquired).

In option framework, interruption and intra-option learn-
ing are applied [10]. Q-learning is implemented and five
optimal policies are learned in the same way as the skill
setting processes. Then test environments are segmented into
nine areas, and the five optimal policies are assigned to
every area as is shown in Fig. 8. Option policy is deter-
ministic (greedy). Randomly selected actions are assigned
to states corresponding to obstacles in option acquisition
environments.

B. Results

With above settings, 30 trials were implemented. Obstacle,
skill, and option settings are initialized for every trial. For
one trial, mean of 10 experiments was used for results. The
agent learned 300 episodes in one experiment.

Fig. 9 depicts transition of elapsed time step for each
episode. Vertical axis represents elapsed time step in one
episode, and horizontal axis represents episode. In Fig. 10,
average time step of 30 trials with respect to 300 episodes
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is shown. Paired t-test is performed, and the significant dif-
ference was found between every two methods (p < 0.001).
It can be seen that proposed method converged significantly
faster than Q-learning, although update law of two methods
are the same. State-action space is explored isotropically
centering around initial state in Q-learning. Therefore Q-
learning can assure optimality of learned policy under certain
conditions, though it requires exhaustive exploration. On the
other hand, proposed method does not explore entire state-
action space. The agent explores in accordance with skills,
which have certain consistency as successful experiences
in the past. Utilization of skills might not help to find
positive extrinsic reward in early phase of learning, but the
agent makes intrinsic reward for reproducibility of the past
successful experience. As a result, some paths are composed
that fill a role of center for exploration. If one of the
paths reaches positive extrinsic reward, then search space
is reduced furthermore. Once rough path to the destination
state is discovered, update of action value makes smaller
refinement.

Fig. 11 shows transition of intrinsic reward. Vertical axis
represents received intrinsic reward per one skill execution,



and horizontal axis represents episode. Intrinsic reward, or
reproducibility of experience increased in accordance with
progress of learning. This result shows that explorative
behavior was controlled by intrinsic reward so as to increase
the reproducibility. Stagnation from around 200 episode is
due to the refinement of path by action value mentioned
above. Finally converged solution means that influence of
action and skill value balanced. It is remarkable that skills
demonstrating high reproducibility do not necessarily have a
priority to be executed. Available skills may not be perfectly
appropriate for the task. Although sometimes execution of
skill would significantly degenerate performance, it can be
helpful to accelerate learning. Because ill-fitting skills would
provide negative biases to the agent, they contribute to reduce
search space.

Proposed method also converged faster than option frame-
work (Fig. 9, Fig. 10). Options have the same consistency as
skills, because option policies are optimal policy for sub-
problems. Option framework biases exploration in action
space, but it does not bias exploration in state-action space.
This is significant difference between proposed method and
hierarchical reinforcement learning methods that take their
stand on concept of optimality. The results indicate effec-
tiveness of selective exploration using abstract knowledge
about the past successful experiences.

C. Discussion

Fundamental idea of proposed framework is active reduc-
tion of search space using skills, i.e. knowledge. The idea is
inspired by top-down process in information process system
of humans [17]. Top-down process generates “expectation”
for existence of an event that is relevant to certain knowl-
edge, and it biases information process system to recognize
expected results. Thus the bias works to measure current
experience using knowledge, which is acquired in the past.
Such a function of subjective conceptualization should be
required for autonomous robot that needs to adapt unforeseen
situations instantaneously.

In this paper, acceleration of learning speed is shown for
navigation task of abstracted mobile robot, however, there
are important open problems. Proposed method supposes
discrete state-action space, but it is well known such a
formalization has curse of dimensionality problem. Therefore
proposed framework should be extended to continuous state-
action space domain using function approximation tech-
niques. Additionally, dynamics of robot is ignored in this
paper. When dynamics of robot is taken into account, context
of skill execution should be considered. Integration with
methods that autonomously construct hierarchical structure
of skills, which are actively studied [5], [9], would be
promising on this point.

V. CONCLUSIONS

In this paper, novel intrinsically motivated reinforcement
learning method is presented. Selective exploration using
skill, which is sequence of primitive actions and abstract
knowledge observed in the past successful experience, is a

key of the method. The abstract knowledge is geometric
transformation invariant feature calculated from sequence
of sensor readings. Reproducibility of the past successful
experience is measured in a novel environment using the
invariant feature. With that, highly reproducible skill is
intrinsically motivated. Action value and skill value are
learned in parallel, and action value is instantaneously biased
by skill value in action selection process. As a result,
consistently extended actions, or skill is embedded to action
value adaptively. It is verified through simulation experi-
ments that proposed method realize selective exploration, and
significantly accelerate learning progress.

Integration with incremental skill acquisition process is
future work. Authors are considering to apply proposed
framework to model-based reinforcement learning method
in parallel with the above integration.
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