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Abstract— Automated diagnosis systems are necessary for
the maintenance of superannuated social infrastructure. This
paper presents a methodology for detecting material defects
using acoustic signals in a hammering test. The approach
comprises a feature extraction step using Short-Time Fourier
Transform (STFT) and a classifier training step based on
AdaBoost, an ensemble learning algorithm. Especially, we use
weak learners based on a simple template matching method
that can consider both the variable scale of amplitude and the
variable frequency band. The experiments discriminate between
defective and clean materials using different hammering test
methods: rubbing and tapping.

I. INTRODUCTION

In recent years, superannuation of social infrastructure has
become a major problem involving installations such as tun-
nels and bridges built during Japan’s rapid economic growth
era. Early detection of problems by continuous inspection
of that infrastructure is indispensable. However, a huge
amount of infrastructure needs inspection [1]. Moreover, the
locations to be inspected, such as high and narrow places, are
dangerous for workers in many cases. It is extremely difficult
to inspect all of them manually. Therefore, development of
an automated inspection system, such as one using robots,
is strongly desired.

At equipment inspection sites, visual diagnosis and percus-
sion diagnosis (Fig. 1) have been widely used. Particularly
percussion diagnosis is mainly adopted because of its high
accuracy and ease of execution. However, manual diagnosis
relies on personal skill. Much experience is necessary for
accurate diagnosis. Furthermore, skilled inspectors are de-
creasing in number because of their retirement age. Devel-
opment of automated diagnosis methods that can be executed
quickly, accurately and easily is urgently in demand.

Although many studies of diagnostic systems of infras-
tructure inspection have been made, such systems are not
efficient enough because most of these are manual system
depending on visual inspection by remote operators. How-
ever, automated hammering test robots have been developed,
such as one which detects cavities from inner walls of
concrete tunnels [2] and one which detects tile exfoliations
from outer walls of high-rise buildings [3]. However, these
robots are difficult to install and use because they are large-
scale systems and their diagnostic methods have not become
automated enough. BETOSCAN [4], a sensor equipped in
compact robotic systems, can detect corrosion in reinforced
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Fig. 1. Hammering test (rubbing and tapping).

concrete decks. Nevertheless, automation of diagnostic pro-
cesses is limited to specific problems when the diagnosis is
based on detailed analysis of a material or a structure. This
limitation is common among numerous inspection systems.

A considerable number of proposed automated diagnostic
techniques for infrastructure are based on image process-
ing [5], [6] or machine learning methodologies such as
Support Vector Machine [7] and Neural Networks [8]. As
one example of acoustic diagnosis, a diagnostic decision-
support system of concrete pipelines was developed by Iyer
et al. [8]. The study used ultrasonic signals and presented a
methodology based on Multi-Layer Neural Network to detect
multi-modal defects such as holes and cracks of various sizes.
Although these methodologies can support human work
such as walk-around checks, they are insufficient from the
perspective of automation of huge-scale inspections. These
facts underscore the necessity of a methodology that can
diagnose defects quickly, precisely, and automatically.

As described in this paper, a proposed methodology can
construct a classifier adaptively to detect defects for a diag-
nosis. We specifically examine a hammering test, which pro-
vides an accurate diagnosis with ease of execution. A method
of extracting feature vectors from acoustic signals obtained
in the test and a method of construction of classifiers based
on a boosting algorithm are presented. Using crack detection
experiments, we verify the proposed method.

II. AUTOMATED DIAGNOSTIC METHOD

A. Hammering Test

Hammering tests using a special stick or a hammer, called
a percussion stick, are widely used for inspection work. The
diagnostic tests include several methods such as rubbing by
the sound of stroking on the material surface or tapping
by the sound of hitting, as shown in Fig. 1. Both of these
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diagnostic methods use acoustic features to detect mate-
rial defects. Although skilled techniques are necessary for
acoustic diagnosis, a hammering test is commonly applied
because of its accuracy. At current inspection sites, selecting
diagnostic methods according to the situation is necessary.
Therefore, in this study, we propose a defect detection
method using acoustic signals obtained from both rubbing
and tapping.

B. Approach to Defect Detection

The overall scheme of defect detection in the approach
of this study is presented in Fig. 2. The procedure of
constructing a classifier, shown as Learning flow in Fig. 2,
consists of three steps. First, input acoustic signals in time
series are transformed to the frequency domain by Short-
Time Fourier Transform (STFT). A frequency spectrum is
treated as a feature vector. Second, each feature vector is
verified and eliminated if detected as an outlier. Finally, a
classifier is constructed based on the AdaBoost algorithm,
which is a kind of supervised learning under ensemble
learning methods.

1) Extraction of Feature Vector using STFT: Fourier
transform (FT) has been commonly applied to signal process-
ing to convert a time series into a frequency domain. STFT

is a method of time-frequency transformation. The method
has been used for machine faults detection or nondestructive
inspection of infractructures [9], [10], [11]. Signals are
multiplied by a window function sliding along the time axis
and transformed by FT so that the resulting signal can be
analyzed in a time-frequency dimensional representation. For
this study, recorded acoustic signals are converted by STFT
using a Hanning window function. The resulting signals are
taken as a set of feature vectors that represent conditions of
an inspection target.

For example, differences of feature vectors between woody
materials and metal ones are shown respectively in Fig. 3(a)
and Fig. 3(b). In both figures, the horizontal axis shows
frequency; the vertical axis shows signal amplitude in the
frequency domain. In this case, the sampling frequency is
44.1kHz and the number of data samples for FFT is 2,048.
Although both two materials are in the similar platy shape,
a comparison between Fig. 3(a) and Fig. 3(b) shows that
these feature vectors differ. In particular, the amplitude of
high frequency components in metal materials is larger than
that in woody materials. The classifiers in this study use such
frequency domain features to detect defects in materials.

2) Outlier Elimination in Training Samples: Although
ensuring consistency of the sample set is important to
construct a precise classifier in supervised learning, training
samples can include contradictory data because of noise in
the measuring environment. Consequently, a preprocessing
procedure that eliminates outliers in the measured data as
contradictory data is conducted.

All feature vectors are standardized to avoid scale effects
of sound pressure. Outliers are detected and removed based
on the dispersion of data in a standardized feature space. The
procedure is the following. An average of feature vectors
(known as center of gravity) from each signal source is
calculated. Assuming that the distribution of the distance
between each feature vector and the center of gravity obeys a
normal distribution, then the data which exist outside 3σ can
be eliminated as outliers, where σ is the standard deviation
of the distance.

3) Classifier Construction by AdaBoost: This subsection
briefly describes the basis for classifier construction based
on AdaBoost. Our approach of detecting defects in various
materials is also presented.

AdaBoost, an ensemble learning algorithm [12], is known
as a representative boosting algorithm, which is a machine
learning meta-algorithm to create a strong learner by inte-
grating a set of weak learners. In a boosting algorithm, as
shown in Fig. 4, the whole learner (strong learner) consists of
plural learners (weak learners). The strong learner combines
outputs of the weak learners using a weighted majority vote.
Each weak learner is created in order with updating of
the weights of training samples. The training samples that
a previous weak learner misclassified are weighted in the
next learning step, so that the weak learner in later steps
can emphasize the process of distinguishing data that are
difficult to classify. Based on the characteristics, it seems
reasonable to infer that this framework of learning is suitable
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Fig. 4. Schematic view of a general boosting algorithm.

for application to material diagnostic problems that include
defects that are difficult to detect. In this study, we refer to
the algorithm of Viola et al. [13].

In the AdaBoost algorithm, the strong learner H(x) for a
feature vector x is a binary classifier as

H(x) = sign

 N∑
t=1

αtht(x)

 ∈ {−1, 1} , (1)

where ht(x) is a weak learner in learning step t. N is the
number of weak learners that organize a strong learner. αt is
confidence of each weak learner computed by the error ratio
ϵt of classification of training samples as

αt = log
(

1 − ϵt
ϵt

)
, (2)

such that ϵt ≤ 0.5 and αt ≥ 0 are always satisfied in binary
classification. The error ratio ϵt of the weak learner ht(x) is
obtained by testing all training samples

{
x(i)

}
with ht(x). The

subscript i is the index of training samples, for the i-th set
of training samples x(i), the weights w(i)

t of x(i) are updated
at the end of learning step t as

w(i)
t+1 = w(i)

t

(
ϵt

1 − ϵt

)1−e(i)

, (3)

where e(i) is the variable which indicates the result of
classification. Setting e(i) = 0 if example x(i) is classified
correctly, e(i) = 1 otherwise. At the beginning of each
learning step, w(i)

t is normalized as∑
i

w(i)
t = 1 . (4)

As a result, the weights of misclassified training samples
would be increased in the next learning step.

The amplitude scale of feature vectors can vary according
to the impact strength when hit in the hammering test. The
available frequency band for diagnosis differs by material
to be inspected. The weak learner we propose can classify
signals robustly without being affected by these effects, using
a template matching function based on Normalized Cross-
Correlation S t(Tt, x):

S t(Tt, x) =
∑

k∈K (Tt(k) − T̄t)(x(k) − x̄)√∑
k∈K (Tt(k) − T̄t)2

√∑
k∈K (x(k) − x̄)2

, (5)

where Tt is the template vector calculated with feature
vectors of training samples in learning step t. T̄t and x̄
respectively denote the average value of Tt and x. The set
K , the details of which are described later, represents the
frequency band used in classification of x. The index k
denotes each frequency component of K .

The S t(Tt, x) evaluates similarity between the template
vector Tt and input vector x. Using S t(Tt, x), the classifi-
cation of x by each weak learner ht(x) is

ht(x) =
{

1 if S t(Dt, x) − S t(Ct, x) > θ
−1 otherwise , (6)

where θ is the threshold for classification to be designed
for each learner, which is also described later. Dt is the
template vector created by the training samples obtained
from defect materials, Ct is one from clean materials. Both of
the template vectors are calculated considering the weights
w(i)

t for training samples x(i) as

Dt(k) =
∑
i∈ND

w(i)
t x(i)(k) , (7)

Ct(k) =
∑
i∈NC

w(i)
t x(i)(k) , (8)

where ND is the defect class, which is the set of indices of
training samples obtained from defect materials, and NC is
the clean class. That is to say, x(i) belongs to the defect class
if i ∈ ND, and x(i) belongs to the clean class if i ∈ NC .

In (5) and (6), K and θ are the parameters which ought to
be designed for each weak learner. K is the frequency band
in which x is compared with the template vector. It represents
the feature vector space. K is optimized simultaneously
while learning each weak classifier because the features
of acoustic signals vary according to the health condition
or kind of material. Optimization of K can construct the
adaptive classifier to each diagnostic problem. Variable θ is
the threshold which determines the result of classification by
the balance between Normalized Cross-Correlation function
values. K and θ for the weak learner of each learning step
are selected so that the error ratio ϵt is minimized. ϵt is
evaluated repeatedly in trials where the plural candidates of
a weak learner, which are given the parameters randomly,
respectively classify all training samples.

In this way, a new evaluation sample x is classified using
a majority vote by the plural weak learners ht(x), which are
weighted by their own confidence αt, as shown in (1). That
is to say, the defect samples are classified in Class D where
H(x) = 1, and the clean samples are classified in Class C
where H(x) = −1.

III. METHOD EVALUATION

The applicability of the proposed method to various meth-
ods in the hammering test was tested by experimentation. In
this section, experiments with rubbing inspection (Section
III-A) and tapping inspection (Section III-B) are presented.
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Fig. 5. Experimental environment of crack detection with rubbing.

A. Laboratory Experiment of Crack Detection with Rubbing

1) Experimental Setting: Experimental equipment is
shown in Fig. 5. We used a plywood board and stainless
plate as the inspection materials. The device for recording
was an electric condenser microphone with resolution and
sampling rate, respectively, of 16bit and 44.1kHz.

In the experiment, the number of samples for FFT were
2,048. A Hanning window function was applied. The number
of weak classifiers was set as 100. The parameters K and θ
were designed as described below. For the frequency band
K , the lower bound was fixed to 50Hz. The upper bound
was variable in the range of 5,000Hz to 10,000Hz, in which
the material condition appears clearly. The dimensions of
feature vectors alter depending on the scale of frequency
band. Letting the threshold θ be variable in the range 0 <
θ < 1.0, both parameters were optimized in each range as
described above.

2) Experimental Results and Discussion: For verifying
the precision of the proposed method, a basic experiment
of crack detection in woody materials was conducted by
a rubbing inspection. The experimental setting is shown in
Fig. 6, where a pseudo-crack was set by fixing two plywood
boards 3mm apart on the floor. The training samples in
this experiment are shown in Table I. Class D consisted of
feature vectors obtained from rubbed sounds at the moment
of passing on the crack. A sample x in the dataset ought to be
detected: H(x) = 1. However, Class C consisted of feature
vectors obtained from the environmental sound of various
sources such as a clean rubbed, a metal rubbed, footsteps,
and an air conditioner. A sample x in the dataset ought not
to be detected: H(x) = −1.

The performance of the classifier was evaluated using K-
fold cross-validation. Letting the subsample size K be 10,
the classifier accuracy was 98.1% for Class D and 98.6%
for Class C. The average of training time was 356s on a
desktop computer (Intel CoreTM i7-4770 CPU (3.40GHz)).

The detection result is shown in Fig. 7. The evaluation
sample was measured distinctly from training samples. In
Fig. 7(a), the result in the time domain is shown: the
horizontal axis shows time [ms]; the vertical axis shows the
microphone input amplitude. Fig. 7(b) is the spectrogram in

Pseudo crack (3mm wide)

Trajectory 

of motion

Fig. 6. Pseudo-crack in woody boards

Table I
Training samples of rubbing tests.

Class Learning sample Number of samples

Class D
rubbed sound at the moment of

1,405
passing on the crack

Class C
rubbed sound of plywood and

1,476
stainless, and environmental sound

the time–frequency domain: the horizontal axis shows time
[ms]; the vertical axis shows frequency [Hz] between 50Hz
and 10,000Hz. The shades of colors represent amplitudes
of the frequency spectrum. A deeper color denotes the
larger amplitude. In this experiment, the materials were
rubbed, making five round trips between two boards during
10,000ms. The trajectory of the motion is shown in Fig. 6.
From sharp peaks of microphone input in Fig. 7(a), the
moments of impacts passing on the crack is confirmed, for
example the woody board was tapped at the moment roughly
between 2,500ms and 2,750ms.

In both Fig. 7(a) and Fig. 7(b), the areas emphasized by
a half-tone background indicated the time zones that were
detected as the rubbed sounds of the crack were 2,600ms–
2,750ms, 4,300ms–4,600ms, 5,900ms–6,200ms, 7,700ms–
7,900ms and 9,000ms–9,200ms. These time zones coincided
well with the moment of passing on the crack of the board.

Although the moments of rubbing clean parts and doing
nothing were classified correctly, a few moments of rub-
bing defective parts were classified incorrectly as those of
clean parts. It is possible that the misclassification in this
case resulted from the difference of the motion velocity
between training samples and evaluation samples. Rapid
rubbing motions produce an increase of the amplitude of
high-frequency components in the measured sound, so that
the similarity to the template vector will decrease. The
proposed evaluation function shown in (5) can accommodate
the variable scale of amplitude, but it cannot cope with the
shift of spectrum caused by a difference of motion velocity.
Although a problem of this kind is not so important because
sudden deceleration or acceleration is improbable in an
inspection done by robots, we presume that taking advantage
of additional information such as velocity or vision is useful
to improve the classifier accuracy.
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Fig. 7. Cracks detection results in woody materials.

3) Results of Learning: The relation between the number
of the weak learners and the classifier accuracy are shown
in Fig. 8. The horizontal axis shows the learning step count,
which equals the number of weak learners. The vertical
axis shows the average error ratio as evaluated by ten-fold
cross-validation, which is expressed as a percentage. The
result confirmed that the increase of the number of the weak
learners produced the decrease of the error ratio, so that the
effectiveness of integrating plural learners for the diagnostic
problem was stated. In each learning step of AdaBoost, the
weight w(i)

t for the training sample x(i), which is difficult
to classify, is weighted more in the next step according to
(3). The weights of training samples in the last learning step
(t = 100) are shown in Fig. 9. The horizontal axis shows the
identifiers of training samples. The vertical axis shows the
weight sample w(i)

100 of each. Some samples weighted in the
last phase of the learning step were difficult to classify. For
example, if the environmental sound of measurement spot
included the specific frequency components in a wide range,
then both classes were mutually similar in the feature space.
These results indicate that the proposed methodology can
produce a robust classifier adaptively for difficult diagnostic
problems.

B. Crack Detection on Gypsum Wall with Tapping

An experiment of crack detection on the wall of gypsum
board using tapping inspection was conducted. Gypsum
board is widely used as an office building material. Wall
deterioration is pointed out as the cause of secondary disaster
in earthquakes because it is used for furniture fixing in
spite of its fragility. Based on this fact, automated crack
detection on a gypsum wall is useful to forecast the progress
of deterioration.

1) Environmental Settings: Locations of cracks in the
gypsum wall were detected using the tapping method. The

Fig. 8. Error of training results in cross validation.

Fig. 9. Final weights of training samples in the crack detection test.

experimental environment is shown in Fig. 10(a). The devices
were a microphone for recording tapping sounds and a
camera for detecting the locations of hit positions. The
microphone and the camera were fixed at a position 500mm
distant in front of the wall, the camera direction was perpen-
dicular to the wall surface. A region of interest for inspection
is shown in Fig. 10(b). Letting the horizontal axis and vertical
axis be X-axis and Y-axis, respectively, the inspection area
was as follows: 500mm in the X-axis direction, 340mm in
the Y-axis direction. As shown in Fig. 10(c), the area was
segmented into 8 × 8 small areas. The camera resolution
was 640 × 480 pixels, so that each small area was roughly
55mm and 40mm in the X-axis and the Y-axis direction.
By tapping, the small areas were inspected one-by-one to
discriminate the existence of cracks in the area. A hit position
was identified by detecting the head of the percussion stick,
which is marked in red, using an image-processing technique.

In buildings, hammering test sounds vary by location
because of existence of various materials in the other side
of the wall, such as diagonal beams and pipes spaces.
Therefore, it is likely that sound spectrum of clean wall
can alter by the location. For this reason, training samples
were measured at plural locations, which differed from the
evaluation samples tested in Section III-B.2. The training
samples are shown in Table II. Class D included feature
vectors obtained from tapping sounds of defective walls. On
the other hand, Class C–1, C–2 and C–3 included other
feature vectors that ought not to be detected. They were
obtained from the three kind of clean walls. Class C–1 was
the set of samples of the walls which were shared with the
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Table II
Learning samples for crack detection on walls.

Class Learning sample ♯ of samples

Class D tapping sound of cracked wall 544

Class C–1
tapping sound of the clean wall

675
which is shared with the next room

Class C–2
tapping sound of the clean wall

260
fixed with metal plates from behind

Class C–3
tapping sound of the clean wall

259
in front of pipes space

next room. Class C–2 was that of the walls fixed by metal
plates from behind. Class C–3 was that of the walls in front
of pipes space.

Four classifiers were created respectively for classifying
one class from the others. Each class was detected by the
results of these four classifiers based on the One-versus-Rest
method, which is widely used to apply binary classifier to
multi classification. The parameters of each classifier were
set as the same with those of the experiment described in
Section III-A

2) Experimental Result: Tapping each small area thirty
times, a ratio of areas detected as defects (Class D) was cal-
culated. The result is shown in Fig. 11. The XY coordinates
correspond to the location shown in Fig. 10(b). The shades
of colors show the defect ratio calculated as a percentage.
A deeper color signifies that the area was more confidently
classified as defective. The figure confirmed a larger defect
ratio along the Y-axis at the middle of the X-axis direction
(X=220mm–320mm). The result coincided with the location
of cracks in the wall shown in Fig. 10(b). The effectiveness
of the proposed methodology for wall crack detection was
demonstrated.

The results of the other classes (Class C–1, C–2, C–
3) are shown in Fig. 12(a), (b), (c), respectively. The XY
coordinates and the meaning of color depth are the same as
Fig. 11. For example, the result of Fig. 12(b) indicates that
metal plates exist at top and bottom region (about Y=0mm–
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Fig. 11. Class D: Result of defect detection on a gypsum wall.

100mm, 250mm–340mm) of right-half side. The ground
truth which was confirmed by visual inspection from behind
the wall is shown in Fig. 12(d). The results of detection
by classifiers well coincided with the real locations of the
structures. The results confirmed that structures behind the
wall can be detected using proposed methodology.

IV. CONCLUSION

In this paper, we proposed an automated diagnostic
methodology for inspection work based on STFT and Ad-
aBoost using acoustic signals in the hammering test. In
experiments of crack detection, the classifier was able to
detect defects precisely. The results also confirmed that the
methodology is applicable to different methods of hammer-
ing tests: rubbing and tapping. The hammering test is a
highly convenient method that can be executed easily and
rapidly. Moreover, our proposed system has benefits such
as the high-speed diagnostic process, which can be finished
in 6 ms on average, in addition to a compact apparatus
and low cost of components. In automating a human walk-
around check by robots, these advantages are effective from
aspects of diagnostic accuracy, ease of installation, and cost
suppression.

Several points must be considered in future research: im-
proving feature vectors by considering physical phenomena
of hammering test, integration of multi-modal sensors for
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(a) Class C-1: shared wall with the next room
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(b) Class C-2: metal plates to fix gypsum walls

 

 

Y
 [

m
m

]

0

50

100

150

200

250

300

D
ef

ec
t 

ra
ti

o
 [

%
]

0

10

20

30

40

50

60

70

80

90

100

X [mm]

0 50 100 150 200 250 300 350 400 450 500

(c) Class C-3: pipes space (blank)

Shared wall with

the next room

Metal plate

Metal plate

Pipes space

(blank)

(d) Ground truth of wall segment (red: shared wall, green: metal
plates, blue: pipes space)

Fig. 12. Experimental result of structure detection behind the gypsum wall and the ground truth.

various inspections, collection of inspection data in a real
field, and implementing this diagnosis system on robots.
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