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Abstract—Augmented Reality (AR) is one of the important
technologies in the field of computer graphics and is utilized for
many applications. When marker-based AR systems are utilized
for applications in maintenance of plants, markers need to be
allowed to be placed at any points on the target objects because
of a lot of occlusions by the complicated piping network in plants.
Therefore, we propose a method to overlay the virtual graphic
models exactly onto the corresponded physical objects in an RGB
image, by the extension of the marker-based AR. In our proposed
method, the camera pose is tracked by the detection of the marker
on the target object from the RGB image. It is also possible to
recognize the object by using the information included in the
marker. On the other hand, the 3D pose of the objects is estimated
based on the alignment of 3D point clouds instead of marker-
based AR method. We present the validity of the proposed method
by conducting experiments with an RGB-D sensor and physical
objects on which a marker is installed.

I. INTRODUCTION

Augmented Reality (AR) is one of the important technolo-
gies in the field of computer graphics and is utilized for many
applications. Among those applications, the demand to use AR
for applications in maintenance of plants has been growing in
these years. Even though inspectors must have expert skill to
satisfactorily perform the maintenance in power plants, it is
difficult to keep this level of expertise in the staff because of
the difficulty of passing on these skills to non-expert and the
reduction of veterans due to their aging in recent years. In
order to solve this problem, it is required to develop support
systems for non-expert inspectors using AR technologies.

When an AR system is utilized in the maintenance of
nuclear power plants, the precise registration of virtual imagery
is essential, because there are millions of equipments in
nuclear power plants. Therefore, it is difficult for non-expert
inspectors to find the correspondences. Many AR applications
in maintenance that address this issue have been presented in
recent years. Sczwald and de Lavel developed an AR system to
assist maintenance using an optical see-through Head Mounted
Display (HMD) [1]. Leutert and Schilling proposed an AR
system to support telemaintenance in which inspectors use
robot manipulators to maintain the plant remotely [2]. These
systems can improve the safety and efficiency of maintenance
based on AR, but these systems use special 3D positioning
sensors, such as an electromagnetic tracker and the robot’s
odometory. As a result, they are difficult and impractical to

apply in maintenance by human inspectors in large environ-
ments, such as the nuclear power plants.

Therefore, we develop an AR system using cameras, which
are able to obtain large amounts of information and easy to use
by inspectors during the patrol. To overlay virtual imagery on
the real world using AR, one of the most important thing to be
considered is the precise registration of virtual objects to the
real world to keep the geometric consistency between them.
Therefore, we propose a method for vision-based registration
in AR, for its application in nuclear power plant’s patrol.

II. RELATED WORK

In recent years, a significant number of approaches have
been developed in vision-based AR to address the issue of
the camera tracking and virtual object registration. Present
methods of AR can be classified into two categories: marker-
based AR and marker-less AR.

In the marker-based AR, some markers are installed in
the real world, and the estimation of camera pose and the
registration of virtual imagery are performed based on these
markers. ARToolKit [3] and Chilitags [4] utilize 2D images
as markers. This approach allows the stable camera pose
tracking, and object recognition by adding information of
object to the marker. Olson [5] develops AprilTag, which is
a marker-based AR system with the greater robustness to
occlusion, warping, and lens distortion. However, these studies
have difficulties to perform precise registration of the virtual
imagery in plants because a lot of occlusions do not always
allow some equipments to be seen in a desired appearance
due to the plant’s complicated piping network. As a result, the
points where the markers should be placed based on a priori
information cannot sometimes be seen from inspectors. Hence
markers need to be allowed to be placed at any points on the
target objects.

On the other hand, no markers are utilized in the marker-
less AR. One of the major methods of marker-less AR is
feature-based AR [6],[7]. This is based on feature detection
and tracking algorithms from RGB images or 3D point clouds.
Localized features are divided into three categories: feature
points (e.g. FAST corner, SIFT), feature descriptors (e.g.
SIFT), and edges. Camera pose can be estimated by applying
some alignment algorithm, for instance Iterative Closest Point
(ICP) [8], to the set of these features. This kind of methods
does not require a priori information such as markers or 3D
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Fig. 1. Overview of our proposed method. Camera pose is tracked based on markers placed on objects in the Tracking part, and a global map is built by the
integration of point clouds in the Mapping part. Finally, in Estimation part, the object’s pose is estimated by the alignment of the global map and the object’s
shape model that has been preregistered in a database.

shape models, therefore, no preparation is required and it is
possible to align virtual objects to the real world in accordance
with their actual shape. However, this method obtains localized
feature information so that it cannot recognize objects without
any supplementary algorithm.

Marker-based AR, as described before, have a good poten-
tial to construct AR systems assisting maintenance in the plant
without any special devices other than a camera. However,
these methods have difficulties to perform precise registration
and the object recognition simultaneously in nuclear power
plants because a lot of occlusions do not allow inspectors to
always see some equipments in a desired appearance because
of the plant’s complicated piping network. As a result, the
points where the markers should be placed based on a priori
information cannot sometimes be seen from inspectors in
conventional marker-based AR. Therefore, in this paper, we
propose a flexible marker-based AR to overlay the virtual
object onto the real scene with the RGB-D camera even if the
markers are not placed at the points that are set in advance.

III. PROPOSED METHOD

A. Overview

In this paper, we propose a method to overlay the vir-
tual graphic model exactly onto the corresponding physical
object in an RGB image by a combination of marker-based
and marker-less AR. To estimate the object pose, first we
capture RGB images and calculate 3D point clouds from an
RGB-D sensor. A marker is placed on the target object for
camera tracking and object recognition. As shown in Fig. 1,
the proposed method is divided into three parts, Tracking,
Mapping, and Estimation. In the Tracking part, the camera
pose is tracked by the detection of the marker on the target
object from the RGB image. It is also possible to recognize the
object by using the information included in the marker. In the
Mapping part, a global map is built by integrating local maps
built by filtering the voxel grid from the 3D point cloud. The
integration is performed with the camera pose that is calculated
in the Tracking part. In the Estimation part, the object pose
is estimated by the alignment of the object point cloud that
is extracted from the global map and the pre-registered 3D
shape model of the target object. These processes automatically
adjust the 3D shape model to the real pose.

B. Camera tracking based on marker pose

This research considers a large static environment such
as a nuclear power plant in which there are few dynamic
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Fig. 2. Camera pose tracking. In this paper, camera and marker pose are
defined as the transformation matrix that expresses the transformation between
the two coordinates. Camera pose is estimated based on the assumption that
markers on objects never move.

objects, and hence it can be assumed that markers placed on
the target objects never move. According to this assumption,
camera pose in the world coordinates can be calculated based
on the marker pose in camera coordinates. First, marker pose
in camera coordinates at frame t, denoted as Pm

t , is calculated
using an AR library. Camera motion in the world coordinates
can then be obtained from the marker poses at two consecutive
frames, frame t and (t+ 1), as follows:

Pm
t = Mc

t+1P
m
t+1, (1)

where Mc
t+1 denotes the matrix corresponding to the camera

motion in the world coordinates between frame t and (t+ 1).
By considering the initial camera pose as the world coordi-
nates, the camera pose in the world coordinates can be calcu-
lated at each frame. As the marker pose, the transformation
matrix Tt from camera coordinates to the world coordinates
is considered as the camera pose at frame t as follows:

Tt =
t∏

τ=1

Mτ , (2)

Hence, camera pose is obtained in each frame from the marker
pose in camera coordinates at each frame. As a result, camera
tracking in real time can be performed by the proposed method.

C. Map integration with 3D point cloud from RGB-D sensor

In the Mapping part, using the RGB-D sensor, the lo-
cal 3D point cloud in the camera coordinates is generated



from the depth image which includes the depth information
for each pixel. According to this information, the 3D point
p = [x, y, z]

T corresponding to a pixel (u, v) on the image
can be reconstructed as follows:

x =
u− cx
fd

, (3)

y =
cy − v

fd
, (4)

z = d, (5)

where d denotes the depth of the pixel (u, v), f denotes the
focal length of the camera and (cx, cy) is the position of
the principal point of the image. The generated point cloud
includes too many points to perform any calculation in real
time, therefore, the size of the cloud must be reduced for the
subsequent processing.

To reduce the number of points, a voxel grid filter is applied
to the generated point cloud in our proposed method. A voxel
grid filter is a down-sampling of the RGB-D point cloud. At
each frame, the space is divided into a set of voxels (volumetric
pixels) and all points inside each voxel are approximated with
the coordinates of their centroid. After voxel grid filtering, the
filtered cloud is transformed into the world coordinates with
the camera pose. Each point pvoxel

t in the filtered cloud is
integrated with the global map using the transformation matrix
Tt that indicates the camera pose as follows:

Gpvoxel
t = Ttp

voxel
t , (6)

where Gpvoxel
t denotes the point in the world coordinates.

By integrating these transformed clouds, a global map of
the sensing area is built and utilized to estimate the object
pose, as described in the next section.

D. Estimation of object pose based on point cloud alignment

In the Estimation part, the object pose is estimated using
the alignment of the global map that represents the real scene
and the 3D shape model corresponding to the object. These 3D
shape models are preregistered in the database and associated
with the marker on the target objects. In this research, ICP is
utilized to align the global map and the point cloud, which is
down-sampled on the surface of the 3D shape model of the
object. However, this algorithm has a high computational cost
and takes too long to finish its calculations, hence it cannot
be used in real time. Moreover, if the initial position of the
alignment is remote to the ground truth, the performance of
ICP is so poor that the solution can converge to a local-minima.

Therefore, in this paper, the area of alignment is limited
to the neighborhood of the marker. This restriction is valid
because the target object is always close to the marker, as
the marker is placed on the object. The point cloud for ICP,
called the object cloud, is extracted by the selection of points,
as shown in Fig. 3. Here, p = [x, y, z]

T denotes a point in
the global map, and pm = [xm, ym, zm]

T is the marker’s 3D
position obtained from the Tracking part. The object cloud
Ω consists of the points that comply with the relationship as
follow:

Ω ≡ {p | ∥p− pm∥ ≤ r} (7)

where, r denotes the maximum distance for extracting points
as the object cloud. An example of ICP alignment for an object
cloud and 3D shape model is shown in Fig. 4. This represents
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Fig. 3. Extraction of the object cloud from the global map. The points in
the neighborhood of the markers are selected as the object cloud.

Fig. 4. Point cloud alignment using ICP. Before the alignment, the points
extracted from the object’s shape model (green points) do not match the object
cloud (left image). By applying ICP to these points, the aligned points (red
points) are adjusted to the points corresponding to the physical object (right
image).

an alignment of a cube object. The left image shows the point
cloud before the alignment, and the right image is its result.
While the points extracted from the object’s shape model,
represented as green points, do not match the object cloud
before the alignment, the aligned points, represented as red
points, are adjusted to the points corresponding to the physical
object by ICP. By extracting the object cloud, the number
of points is reduced to less than 10000 and the alignment
converges in less than a second.

IV. EXPERIMENT

We performed an experiment to show the validity of our
method. In this experiment, the virtual object, a 3D shape
model, is overlaid onto the physical object’s RGB image
obtained from an RGB-D sensor.

A. Experimental setup

In this experiment, we utilized a Xtion PRO LIVE from
ASUS as the RGB-D sensor and OpenNI, an open source
library, to implement our proposed method. The Chilitags,
which is an AR library, was utilized to track the camera pose
and recognize the markers. This library allows stable tracking
and recognize markers robustly.

In this experiment, a cube object upon which a Chilitags
marker has been placed was utilized as the target object. This
cube is 10 cm on each side and the 3D shape model of this
object was preregistered in a database. The user holds the
RGB-D sensor and portable display and views the target object
through the display during the experiment, as shown in Fig. 5.
By applying our proposed method to the image obtained from
the RGB-D sensor, the pose of the cube object can be estimated
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Fig. 5. Experimental setup. An RGB-D sensor for obtaining RGB images and
3D point clouds. An Object on which a marker has been placed is displayed
on a portable display with overlaid virtual objects.

and the 3D shape model is overlaid exactly on the object in the
RGB image. The pose of the marker in object local coordinates
is varied in each case. In case 1, the marker was placed to
ensure that the each side of the marker is parallel to the sides
of the cube. In case 2, it was installed to enable rotation around
the normal line of the cube surface.

B. Results

Figure 6 shows the result of case 1. Figure 6(a) is the RGB
image of a frame during the experiment and the image with
an exact overlay of the 3D shape model is shown in Fig. 6(b).
The result of case 2, is shown in Fig. 7. Figure 7(a) is the RGB
image of a frame during the experiment and the image with
an exact overlay of the 3D shape model is shown in Fig. 7(b).

In both cases, it is shown that the 3D shape models are
overlaid exactly on the physical objects in the real environ-
ment, even if the marker pose is changed in each case. Using
not only the marker pose on the object, but also the point cloud
of the object, it is possible to estimate the actual pose of the
physical object and overlay the virtual object exactly on the
real object, despite any variation of the marker pose.

V. CONCLUSION

In this paper, we proposed a method to exactly overlay
the virtual objects on the real world with a combination of
object recognition using markers and the alignment of 3D
point clouds. In the proposed method, the RGB image and
the 3D point cloud were obtained from an RGB-D sensor.
The camera pose was tracked based on the marker’s pose in
the RGB image, and the object was recognized based on the
pattern of the marker. We also demonstrated that it is possible
to overlay the virtual object on the real object in the RGB
image with the point cloud alignment, even if the pose of the
marker has some freedom in the object local coordinates. As a
future work, we plan to extract the difference from the previous
image to the application to the real environment of a power
plant.
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