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Abstract— Three-dimensional (3D) measurement is an im-
portant means for robots to acquire information about their
environment. Structure from Motion is one of these 3D mea-
surement methods. The 3D reconstruction of objects in the
environment can be obtained from pictures captured with
single camera in Structure from Motion. Furthermore, the
camera motion can be obtained simultaneously. Because of its
simplicity, Structure from Motion has been implemented in
various ways. However there is an essential problem in that the
scale of the measured objects cannot be computed by Structure
from Motion. In order to compute the absolute scale, other
information is required. However this is difficult for robots in
an unknown situation. In this paper, we propose a method that
can reconstruct the absolute scale of objects using refraction.
Refraction changes the light ray path between the objects and
the camera. This method is implemented using only a refractive
plate and single camera. The results of simulations show the
effectiveness of the proposed method in both air and other
media (e.g., water).

I. INTRODUCTION

A remote control robot is an important technology that is
needed to explore areas too dangerous for people, such as
nuclear plants or disaster sites. These robots need detailed
information about their surrounding situation to conduct their
activities. In order to acquire the position of surrounding
objects, 3D measurement methods are required.

Structure from Motion is a 3D measurement method that is
extensively studied in computer vision [1]. With this method,
we can simultaneously estimate both the 3D structure of
objects and the motion of the camera (rotational and trans-
lational parameters) with a single camera. Because of the
flexibility of camera motion, Structure from Motion is suited
to robot sensing. However, it is impossible to determine
absolute translational parameters from the images alone. This
is because when the scale of both scene and camera transfer
change according to the same ratio, the camera will capture
the same images that cannot be distinguished from the earlier
ones. As a result, the absolute 3D structure of the objects in
the scene cannot be estimated. In order to obtain absolute
scale with Structure from Motion using a single camera,
other information such as absolute scale in the scene or con-
straints on the camera motion is required [1]–[4]. However,
it is difficult to add scale information when exploring an
unknown environment by remote control robot. Furthermore
constraints on the camera motion decrease the flexibility
of Structure from Motion. Therefore, another approach to
reconstruct the scale is required.
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Fig. 1. System of the proposed method. The refractive plate is located
between the camera and scene objects.

In this paper, we propose an absolute Structure from
Motion method using refraction. Refraction changes the light
ray path, which causes images to differ, even if the scale of
both scene and camera transfer change at the same ratio.
This difference enables us to compute the absolute transla-
tional parameter and reconstruct 3D objects. The proposed
method is implemented with a simple system composed of
a refractive plate and a single camera.

II. RELATED WORK

Refraction occurs when a light ray passes though the
boundary surface between different media (e.g., air and
water). It is well known that the direction of the light ray
changes in accordance with Snell’s law [5]–[13]. Refrac-
tive geometry in computer vision is a well studied topic,
especially for underwater environments [5]–[8]. However
these studies focused on removing the effect of refraction
as distortion. On the other hand, the proposed method uses
refraction actively to reconstruct the scale of objects.

Refraction is used for 3D measurement in several studies.
The depth map is obtained from the difference of two images
with and without the refractive plate between the camera and
the scene [9]. In another study, the depth map was obtained
from images captured through a refractive plate rotating
around the optical axis of the camera [10]. Furthermore,
there are studies on 3D measurement from single images
with refractive objects such as a biprism [11] or special
waterproof case [12]. These studies measure 3D scenes using
active refraction. However, the measurement range is limited.
Therefore, these methods are not suited to the large-scale
measurement that is required by an exploring robot. In
contrast, the proposed method can measure a wider range
than the other methods using refraction.
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Fig. 2. Light ray passing through a refractive plane. Refraction occurs
twice between the camera and objects according to Snell’s law. There are
three vectors: rin, rmid and rout.
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Fig. 3. Vector rin is obtained from the image coordinates. Because the
refractive vectors are on the same plane, we can obtain rmid and rout using
Snell’s law.

III. MESUREMENT METHOD

A. Refractive Plate System

The system of this method is shown in Fig. 1. We use a
general single camera that is calibrated and place a refractive
plate between the camera and the scene objects. The refrac-
tive plate should be placed such that its surface is orthogonal
to the optical axis of the camera. The distance between the
camera and refractive plate l as well as the thickness of the
refractive plate w are known. Let the medium between the
camera and refractive plate be the internal medium, and the
medium between refractive plate and the measurement object
be the external medium. The refractive indices of these media
are known.

B. Light Ray Path Tracing

In this section, the path the light traces from image points
to 3D points considering refraction is explained. The light
ray refracts at both faces of the refractive plate. Therefore,
three different ray vectors exist between the camera center
and the object. Let the unit vectors of the ray from the camera
to the measurement object be rin = (α1, β1, γ1)

T, rmid =
(α2, β2, γ2)

T and rout = (α3, β3, γ3)
T , respectively. These

vectors and the normal vector of the refractive plate are on
the same plane (Fig. 2). On this plane, θ1 and θ2 are the angle
of the incident light and refractive light from the internal
medium to the refractive plate, respectively. In addition, θ3
is the angle of refractive light from the refractive plate to
the external medium. The relation between these angles are

explained by Snell’s law as follows.

n1 sin θ1 = n2 sin θ2, (1)
n2 sin θ2 = n3 sin θ3, (2)

where n1, n2 and n3 are the refractive indices of the internal
medium, refractive plate and external medium, respectively.

Using these relations, rin, rmid and rout can be computed.
First, rin can be computed from the coordinates of the image
point. When the coordinates of the image point are (u, v)
and the focal length of camera is f , rin is expressed as
normalized (u, v, f) (Fig. 3). Furthermore, we define the ψ-
axis whose direction is a projection of rin on the x-y plane.
The refraction occurs on the ψ-z plane.

Next, rmid can be computed. Because the three vectors
rin, rmid and the normal vector of the refractive plate N =
(0, 0, 1) are on the same plane, rmid is expressed as follows.

rmid =


α2

β2
γ2

 = p1


α1

β1
γ1

 + q1


0
0
1

, (3)

where p1 and q1 are constant.
Next, cos θ1 is calculated from the inner product of rin

and N.

rin ·N = | rin || N | cos θ1, (4)
∴ cos θ1 = γ1, (5)

and sin θ1 is calculated from the cross product of rin and N.

|rin ×N| = |rin||N| sin θ1, (6)

∴ sin θ1 =
√
(α1)2 + (β1)2. (7)

Furthermore, cos θ2 is calculated from the inner product
of rmid and N.

rmid ·N = | rmid || N | cos θ2, (8)
∴ cos θ2 = γ2 = p1γ1 + q1, (9)

and sin θ2 is calculated from the cross product of rmid and
N.

|rmid ×N| = |rmid||N| sin θ2, (10)

∴ sin θ2 =
√
(α2)2 + (β2)2

=
√
(p1α1)2 + (p1β1)2. (11)

From Eqs. (1), (7) and (11), p1 is obtained.

p1 =
sin θ2
sin θ1

=
n1
n2
. (12)

From Eqs. (5), (9) and (12), cos θ2 is expressed.

cos θ2 = p1γ1 + q1 =
n1
n2

cos θ1 + q1. (13)

We note that cos θ2 can also be expressed as follows
according to its trigonometric identity,

cos θ2 =

√
1− sin2 θ2 =

√
1−

(n1
n2

)2

sin2 θ1. (14)



From Eqs. (13) and (14), q1 is obtained.

q1 = −n1
n2

cos θ1 +

√
1−

(n1
n2

)2

sin2 θ1. (15)

Therefore, from Eqs. (3), (12) and (15), we can calculate
rmid.

rmid =
n1
n2

rin

−

n1
n2

cos θ1 −

√
1−

(
n1
n2

)2

sin2 θ1

N. (16)

Vector rout is computed by the same procedure.

rout =
n2
n3

rmid

−

n2
n3

cos θ2 −

√
1−

(
n2
n3

)2

sin2 θ2

N. (17)

Here, let the intersection point of rout and the optical
axis of camera be start point D, whose position vector is
expressed as follows.

d = (0, 0, d), (18)

where d is distance between point D and the camera center,
which is calculated geometrically (Fig. 2).

d = l + w − l tan θ1 + w tan θ2
tan θ3

. (19)

C. Geometrical Relation

An object to be measured is observed from two different
viewpoints in Structure from Motion. These two camera
coordinates are C and C’ respectively. The z-axis of each
coordinate corresponds to each optical axis of the camera and
the world coordinates correspond to the camera coordinates
C. The rotation matrix R is a transformation matrix from
camera coordinate C to C’, and transfer vector t is defined as
the position vector of the center of the camera coordinate C’.
Vector rout and d of each coordinate point can be expressed
as follows.

rout = (x, y, z)T, (20)
d = (0, 0, d)T, (21)

r′out = (x′, y′, z′)T, (22)
d′ = (0, 0, d′)T. (23)

Each of the rout vectors of the two coordinates and the
vector between each of the start points D of both coordi-
nates are on the same plane (Fig. 4). These three vectors
are expressed in world coordinates as rout, R−1r′out and
t +R−1d′ − d. Therefore, we obtain the equation for this
geometrical relation as follows.{

(t+R−1d′ − d)×R−1r′out
}T

rout = 0. (24)

If there is no refractive plate, Eq. (24) holds when vector
t is multiplied. This is the reason why the scale of vector t
can not be acquired by conventional method.
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Fig. 4. In the refraction scenario, the geometrical relation changes such
that the two vectors (rout and r′out) and the vector between the start points
of each camera position are on the same plane.

Equation (24) can be converted into a formula consisting
of an inner product of the vector u, composed of known
quantities and vector g, composed of unknown quantities by
the orthonormality of rotation matrix.



xx′

yx′

zx′

xy′

yy′

zy′

xz′

yz′

zz′

dyx′ + d′xy′

−dxx′ + d′yy′

d′zy′

dyy′ − d′xx′

−dxy′ − d′yx′

−d′zx′
dyz′

−dxz′



T

r12t3 − r13t2
r13t1 − r11t3
r11t2 − r12t1
r22t3 − r23t2
r23t1 − r21t3
r21t2 − r22t1
r32t3 − r33t2
r33t1 − r31t3
r31t2 − r32t1

r11
r12
r13
r21
r22
r23
r31
r32



= 0, (25)

⇐⇒ uTg = 0, (26)

where rij is the i, j-th element of rotational matrix R, and
ti is the i-th element of transfer vector t.

Because Eq. (26) is obtained from every measurement
point, a homogeneous equation is obtained from n points.

Ug = 0, (27)

where
U = (u1,u2,u3, · · · ,un)

T. (28)

In order to compute the unknown vector g, a least-squares
method is applied to Eq. (27). Let gi be the i-th element
of g. Then g10∼g12 and g13∼g15 are the same as the first
and second columns of R respectively. This leads to two
constraints because of the orthonormality of the rotation
matrix.

g10
2 + g11

2 + g12
2 = 1, (29)

g13
2 + g14

2 + g15
2 = 1. (30)



The norm of g is determined uniquely because of Eqs. (29)
and (30), which enable us to estimate the absolute scale
of the transfer vector and scene objects. These constraints
are applied to the least-squares method using the Lagrange
multiplier method.

D. Computing the Rotation Matrix and Transfer Vector
Rotation matrix R and transfer vector t are computed

from elements of g. The first and second columns of R
are the same as g10∼g15, and the third column of R can be
calculated using orthonormality.

g10
g11
g12

×


g13
g14
g15

 =


r10
r11
r12

×


r13
r14
r15



=


r31
r32
r33

. (31)

The transfer vector is computed using the decomposition
of matrix E that includes g1∼g9.

E =

g1 g2 g3
g4 g5 g6
g7 g8 g9


=

r12t3 − r13t2 r13t1 − r11t3 r11t2 − r12t1
r22t3 − r23t2 r23t1 − r21t3 r21t2 − r22t1
r32t3 − r33t2 r33t1 − r31t3 r31t2 − r32t1


= RT, (32)

∴ T = R−1E, (33)

where

T =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 . (34)

Therefore, the transfer vector can be obtained from ele-
ments of T.

After the camera motion is computed, the 3D coordinates
of the points to be measured are computed by triangulation.
The intersection point of the rout vectors of both calculated
camera positions forms the estimated point position. If the
rout vectors do not intersect because of the error, the center
of the orthogonal line of both vectors is the estimated
position which should be the nearest point to both vectors.

E. Application to Measurement in Air
The proposed method is general because internal and

external media are not specified. It can be applied as long as
the refractive indices of those media are known. For exam-
ple, this method can be used for underwater measurement.
However, in this section, we focus on measurement in air
because many 3D measurements occur in air in practice.
The refractive index of air is approximately 1.00. When both
external and internal media are air, n1 = n3 = 1.00 and
θ1 = θ3 modified from Eqs. (1) and (2), respectively, hold.
Therefore, Eq. (19) is modified as follows.

d = w − w tan θ2
tan θ1

. (35)

TABLE I
SIMULATION CONDITIONS

Situation Air

n1 1.0 (air)

n2 1.49 (acryl)

n3 1.0 (air)

l 200 [mm]

w 50 [mm]

R
(-0.15π,-0.15π, 0.1π) [rad]

(Euler angles)

t (600, -300, 50) [mm]
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x [mm]400
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Fig. 5. In the simulation, camera positions are given. Blue vectors indicates
the optical axis of each camera. One hundred points (red circles) are placed
randomly in 3D space such that each camera can capture all of them.
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Fig. 6. Images captured by both cameras in the simulation.

In Eq. (35), distance d has no relation to the length l
between the refractive plate and camera center. Because
both internal and external media are air, rin and rout are
parallel. Therefore, the distance between these vectors does
not change with respect to l. Other calculation procedures
are the same as the above method.

IV. SIMULATION EXPERIMENTS

A. Simulation in Air

In order to validate the effectiveness of the proposed
method, a simulation experiment was conducted. Simulation
conditions are shown in Table I. We placed 100 measurement
points randomly in a 3D space where both cameras could
capture all of them. The blue vectors indicate the optical axis
of each camera in Fig. 5. First, images of all the points for
both cameras as captured through the refractive plates were
simulated (Fig. 6). From those image coordinates, the 3D
coordinates of the points were computed using the proposed
method and compared with the true position of the points.
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Fig. 7. Simulation results of the proposed method (in air). The distances
between the real position (red dots) and estimated position (blue triangles)
are extremely small. This shows that the proposed method can reconstruct
scene objects with absolute scale
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Fig. 8. Simulation results of the proposed method (in water). This shows
that the proposed method is effective in water.

The result is shown in Fig. 7. The red circles indicate the real
positions and the blue triangles indicate their estimated posi-
tions. It is clear that the points were reconstructed correctly.
The average of each Euclidean distance between the true and
reconstructed positions was extremely small (8.6×10−6mm).
Therefore, the proposed method can reconstruct the scale of
a scene object.

B. Simulation in Water

In order to ensure the effectiveness of proposed method
in a general situation, a simulation experiment in water was
also conducted. The conditions were the same as those of the
air simulation (Table I), excluding n3. The refractive index
of water was set to n3 = 1.33 in this simulation. The result
is shown in Fig. 8. The average of each Euclidean distance
between the true and reconstructed positions was extremely
small (1.1× 10−7mm). Therefore, the proposed method can
reconstruct the scale of scene objects in water as well as in
air. This indicates that if the internal and external media are
different, the proposed method is still effective.

C. Influence of Refractive Plate Thickness

The proposed method makes use of refraction to re-
construct the absolute scale of the objects. Therefore, it
is assumed that the precision of the reconstruction would
be improved by increasing the effect of refraction. In this
system, the refraction is generated by the refractive plate,
and its effect changes according to the thickness of the plate.

Thickness of Refractive Plate [mm] 
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Fig. 9. Error for various thicknesses of refractive plate. The horizontal
axis is the thickness of the plate w, and the vertical axis is the distance
between the true positions and estimated positions. This indicates that the
precision of measurement is improved when the plate is thicker.

In this section, the thickness of the plate was changed in the
simulation to investigate the influence of thickness.

The thickness of refractive plate w was changed by 10 mm
(from 10 to 100 mm), and the error of the reconstruction
results were compared. In this experiment, the distance
between the camera center and refractive plate l as well as
the positions of the data points were the same as for previous
experiments (Table I). The medium of this simulation was
air. The result is shown in Fig. 9. The horizontal axis is the
thickness of the plate w, and the vertical axis is the amount of
error between the true and estimated positions. This indicates
that the precision of the measurement is improved when the
plate is thicker. Therefore, in the proposed method, the grater
the amount of refraction, the more precise the refraction
result.

D. Quantization Error

The proposed method uses the effect of refraction. How-
ever, that effect should be extremely small. Therefore, this
method could be sensitive to error. In this simulation, there
is no error in the image coordinates. In practice, however,
quantization error will be generated because of the size of
the pixel. We usually determine the coordinates to the integer
precision of a pixel. In this section, we generate quantization
error artificially and inspect the effect of this error to the
result of the 3D reconstruction.

During image capture in the simulation, the coordinates
of the image points were rounded to zero, one, two and
three decimal places. The proposed method was applied
to these coordinates. The medium of this simulation was
air. The results are shown in Figs. 10 (a)–(d), respectively.
It is clear that the coordinates rounded to zero and one
decimal places are not precise enough to reconstruct the real
positions. We need precision to at least the two decimal
place. Therefore, the proposed method requires sub-pixel
accuracy for detection of the corresponding points.

V. CONCLUSIONS

In this paper, we proposed a scale-reconstructable Struc-
ture from Motion method with a single camera by using
refraction and verified its effectiveness in simulation. The
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(b) Rounded to the one decimal places
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(c) Rounded to the two decimal places
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Fig. 10. Results of the proposed method when quantization error exists in the simulation. It is clear that the coordinates rounded to zero and one decimal
places are not precise enough to reconstruct the real positions. We need precision to at least the two decimal place.

proposed method is simple because it requires only a refrac-
tive plate that causes light rays to change their direction and
is attached in front of a single camera. Furthermore, it is
clear that this method is applicable to various media such as
water as well as air. This indicates that this method could
be used for underwater exploration. The experiments also
show that the precision of the reconstruction is improved
by using a thicker refractive plate because the effect of
refraction increases. However, it is also clear that this method
is sensitive to error. Even the quantization error has a bad
influence on the results of reconstruction. This means that
detecting corresponding positions with sub-pixel accuracy is
necessary. Therefore, the robustness of this method should
be improved.

Experimental results using actual measurements have not
been acquired yet. This task will be future work. Fur-
thermore, it would be interesting to examine whether this
method would be more accurate when using a special-shaped
refractive object instead of a refractive plate.
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