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Abstract— An automated diagnosis methodology is necessary
for the maintenance of superannuated social infrastructures.
In this context, the hammering test is an efficient inspection
method, and it has been widely used because of the resulting
accuracy and efficiency of operation. While robotic automation
of the hammering inspection method is highly desirable, the
development of an automatic diagnostic algorithm that can
operate at actual inspection sites is essential. Furthermore,
portability of the diagnostic algorithm is also highly desir-
able. In this study, in order to construct reliable detectors
and to improve their portability for the performance of the
hammering test, we propose a boosting-based defect detector
that is robust against variations in environmental conditions.
In particular, we present the construction of a noise-robust
classifier with a refinement of the feature values extracted from
hammering sounds and an updating rule of template vectors of
its evaluation function. Our experimental results in a concrete
tunnel demonstrate the effectiveness of the proposed method;
the accuracy of the classifier at an actual site and adaptivity
to environmental noise are confirmed.

I. INTRODUCTION

In recent years, the superannuation of social infrastructure

has become a major social problem involving installations

such as concrete tunnels and bridges. Particularly in Japan,

infrastructures constructed during the era of rapid economic

growth are over fifty years old, which is considered the

interval of their usefulness. Indeed, some serious accidents

have already occurred, and the early detection of problems by

continuous inspection of such aging infrastructure has now

become indispensable. However, the number of infrastruc-

tures that need inspection raises a huge amount [1]. Thus,

it is extremely difficult to inspect all of them manually.

Moreover, the locations to be inspected, such as those in

high and narrow places, are dangerous for workers in many

cases. Therefore, the development of an automated inspection

system that can be installed on robots such as Fig. 1 is

strongly desired.

The hammering test is a kind of inspection method to

evaluate infrastructures, and this method uses special sticks

called percussion sticks or inspection hammers (Fig. 1).

The method has been used for a long time, and it is still

widely used for inspection work because of the accuracy

of the resulting diagnosis and ease of execution. From the

aspect of these advantages, robotic automation of hammering

inspection has attracted considerable attention [2], [3], [4].
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Fig. 1. A prototype of a hammering robot. Such a robot is highly desirable
for the inspection of social infrastructures, particularly concrete tunnels.

Our research group has also developed an automated

inspection method to detect material defects using the ham-

mering test [5]. Our defect detector is based on a template

matching and boosting algorithm [6], which is a machine

learning technique. With this approach, it has confirmed that

material defects in infrastructures can be detected.

However, the application of this method in environments

such as concrete tunnels is problematic. In field conditions,

portability of the defect detector becomes a necessity. For

example, a detector that is configured for one tunnel should

ideally be available to tackle a variety of different situations

(i.e., at different times or at other tunnels). In such a case,

the difference in the prior learning environment and the

actual measurement environment ought to be considered,

such as the site’s geographical conditions and environmental

noises caused by wind and traffic. Building a new detector

from scratch for each inspection target is unfeasible and

impractical. Thus, a method to calibrate the defect detector

to accommodate changes in the working environment is

necessary in order to automate inspection at various sites.

This issue has not formed the focus of most previous studies

on hammer testing.

In the field of transfer learning, many studies on the ad-

ditional learning of boosting algorithms have been proposed

[7], [8], [9]. For example, Pang et al. proposed a method that

can transfer features of interest and relearn a prior detector

by using a weighting loss function with covariate values

between the auxiliary training set and target training set.

The method uses only a small number of additional training

samples to update the prior learner generated by a large

number of auxiliary training sets. Many applications of the

methods focus on the problem of applying the prior detector



to the real world, since the prior detector is obtained un-

der well conditioned computer graphic (CG) environments.

These methods cannot be applied to actual inspection sites,

which forms our focus.

Therefore, in this study in order to improve the porta-

bility of defect detectors for hammering tests, we propose

a boosting based defect detector that is robust to changes

in environmental conditions. In particular, we present the

construction of a noise-robust classifier with refinement of

feature values extracted from hammering sounds and an

updating rule of template vector. Our method can be applied

not only to problems similar to the prior one, but also to

other problems under different environments.

II. NOISE-ROBUST DEFECT DETECTOR

A. Short-Time Fourier Transform

The Fourier transform has been commonly applied to

signal processing to obtain the frequency domain represen-

tation of a time series. However, for material diagnoses that

solve some kind of matching problem, the difficulty arising

in performing a frequency analysis is that the shapes of

frequency distribution alter according to the sampling timing.

Thus, a slight degree of time lag of sampling causes an

error of diagnosis. The short-time Fourier transform (STFT)

is a method for time-frequency transformation. The method

has been used for machine fault detection or nondestructive

inspection of infrastructures [10], [11]. In this approach,

signals are multiplied by a window function sliding along

the time axis and transformed by Fourier transform. The

resulting signal in the frequency domain can be analyzed

via a time-frequency dimensional representation.

STFTx,w [n, ω] =

∞∑
m=−∞

x[n + m] w[m]e−iωm , (1)

where w[n] represents a window function that is a Hanning

window function in our study and ω denotes the angular

frequency.

The resulting signals include the frequency signals of any

sampling timing. These signals can be considered as a set

of feature values of hammering sounds that represent the

conditions of an inspection target. In this study, a large

number of resulting signals in the frequency domain are

used for the learning of a defect detector as training samples.

Upon exploiting these signals for learning, the accuracy of

diagnosis increases because the single FFT in any timing can

be applied to the diagnosis. Furthermore, because a single

FFT is fast, our method can be used for online diagnosis.

B. Templatization Using Weighted ZNCC

The amplitude scale of the spectrum amplitude can vary

according to the impact strength when an inspection target

is struck or hit in the hammering test. In order to classify

signals robustly without the influence of sound pressure,

similarities among signals are evaluated by template match-

ing based on the zero-mean normalized cross-correlation

(ZNCC) that is extended by introducing the weights of the
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(a) Spectrum subtraction: Spectra of hammering sounds are preprocessed
by subtracting environmental noise.
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(b) Bootstrapping feature extraction: the components of selected feature
vector u are discrete values.
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(c) Optimization via the downhill simplex method: the components of
the optimized feature vector u′ are continuous values.

Fig. 2. Feature refinement of proposed method: Feature extraction using
a spectrum subtraction (II-C.1) and bootstrapping (II-C.2) and optimization
of feature vector using the downhill simplex method (II-C.3)

frequency components. The evaluation function S (A,u, x) is

represented as follows:

S (A, u, x) =

∑
k∈K u(k)(A(k) − Ā)(x(k) − x̄)√∑

k∈K u(k)(A(k) − Ā)2
√∑

k∈K u(k)(x(k) − x̄)2

, (2)

where A represents the template vector calculated with the

frequency data of the training set in learning step t. Let Ā and

x̄ denote the average values of A and x, respectively. The

set K , the details of which are described later, represents

the index set of the frequency components used in the

classification of x. The index k denotes each frequency index

in K . The vector u consists of the weights of the frequency

components included in K , which represents the feature

vector of a hammering sound The function evaluates the

similarity between the template vector A and input vector x.

The range of S (A,u, x) is [−1, 1] and the same as that of

the general ZNCC.

Using S (A,u, x), we obtain the classification of x by each

weak learner h(x) ∈ {−1, 0, 1} as

h(x) = sign
[(

S (DA, Du, x) − S (CA, Cu, x)
)
/ θ − 1

]
, (3)

where θ represents the positive threshold for the classification

to be designed. Further, DA represents the template vector



created by the training set obtained from defect materials

and CA the one from “clean” (defect-free) materials. Both

the template vectors are calculated considering the weights

w(i) of training samples x(i). They are defined as DA(k) =∑
i∈I w(i)x(i)(k), CA(k) =

∑
j∈J w( j)x( j)(k), where I denotes

the defect class that is the set of indices of the training set

obtained from defect materials, and J is the clean class. That

is to say, x(i) belongs to the defect class if i ∈ I, and x( j)

belongs to the clean class if j ∈ J . Similarly, the vectors Du
and Cu represent the weights of frequency components.

In eqs. (2) and (3), K and θ represent the parameters

that must be designed for the defect detector. In particu-

lar, K represents the feature vector space in which x is

compared with the template vector. The parameter K is

optimized simultaneously during defect detector learning.

By the optimization of K , an adaptive detector can be

constructed to solve the diagnostic problem whose acoustic

features can vary according to the soundness or kind of

material. Variable θ denotes the threshold that determines the

result of classification by the balance between the ZNCC

function values of S (DA, Du, x) and S (CA, Cu, x). Further, K
and θ for the defect detector are selected so that the error

ratio ε is minimized. Parameter ε is evaluated repeatedly in

trials wherein the plural candidates of the defect detector

correspondingly classify all training sets. The selection of K
is described in detail in section II-C.2.

Furthermore, w(i) must be set for each training sample x(i).

The method to weight the training samples is described in

section III-A.

C. Feature Refinement of Hammering Sound

1) Spectrum Subtraction: In order to improve environ-

mental adaptivity, it is necessary to reduce the influence of

changes in environmental sounds, such as wind noise inside

tunnels. For this purpose, the spectra of hammering sounds

are preprocessed by spectrum subtraction (Fig. 2(a)). Be-

cause the background noise varies continuously, the spectrum

to subtract is templatized by using sounds obtained before

hammering.

2) Feature Extraction using Bootstrapping: The index set

K represents the feature vector space of a hammering sound.

In order to obtain an appropriate K value for the template

vector of the detector, the components of K are selected

using bootstrapping, which is a random resampling method

with replacement (Fig. 2(b)). In the proposed method, let

the dimension of the whole feature space be N, and further,

we assume that the components are resampled randomly M
times with replacement. Therefore, the set of indices of the

selected components is the feature vector space K , in which

a target sample is compared with the training samples in

evaluation. Let r = M/N (r > 0), which is defined as the

extraction ratio that is also one of the parameters that must

be designed for the detector.

By repeatedly evaluating each result of random resam-

pling, the appropriate template and feature vector to classify

the defects of the target material are obtained. In particular,

the weights of the components of a feature vector u can
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Fig. 3. Schematic of proposed boosting framework. Each weak learner
in the proposed boosting framework has two functions: templatization
and extraction that generate a template vector from training samples by
selecting an appropriate frequency component using bootstrapping, and
optimization that adjusts the weights of the frequency components by a
direct search technique.

be obtained as a result of the replacement in the sampling.

However, in this technique, there is the problem that com-

ponents that hinder accurate detection are present in the

feature vector because of the randomness of selection. In

order to solve this problem, we combine the techniques of

an optimization of the feature vector (described in the next

section) and synthesis of learners by boosting (III-A).

3) Optimization of Feature Vector: The process of setting

the weights of the frequency components that can reduce

the error of classification through iterative evaluation is

formulated as a nonlinear constrained optimization problem

as follows:
minimize : V(u)

subject to : u ∈ Su ,
(4)

where V(u) denotes the objective function that is equal to

the error ratio εt described in subsection III-A; u denotes a

vector that consists of optimized parameters that are equal

to the weights in the frequency domain; and Su a set of

optimized parameters that satisfy certain constraints, which

are conditions that must be fulfilled to ensure validity of

evaluation.

The difficulty in this optimization problem lies in obtaining

the derivatives of the objective function with respect to

the optimized parameters. The difficulty arises because the

mathematical relation between a sample and the label is not

obvious, that is, the error ratio is obtained only through trials.

Therefore, we used a direct search technique: the downhill

simplex method [12]. The initial values of the optimized vec-

tor are significant in this regard. In the proposed method, the

initial vector can be given as the result of the bootstrapping

selection.

III. UPDATING METHOD

A. Synthesis of Learners by Boosting

This section briefly describes the basis for classifier con-

struction based on boosting [6]. Boosting, an ensemble

learning algorithm, is a machine learning meta-algorithm



that can be used to create a strong learner by integrating

a set of weak learners. In a boosting algorithm, the whole

learner (strong learner) consists of plural learners (weak

learners). The strong learner combines the outputs of the

weak learners using a weighted majority vote. Each weak

learner is created in order along with the updating of the

weights of training set. The training set that a previous weak

learner misclassified is weighted in the next learning step, so

that the weak learner in later steps can focus on the difficult

examples that the learners generated in previous steps cannot

classify.

The strong learner H(x) for a signal x is a binary classifier

that can be expressed as

H(x) = sign

⎡⎢⎢⎢⎢⎢⎣
T∑

t=1

αtht(x)

⎤⎥⎥⎥⎥⎥⎦ ∈ {−1, 0, 1} , (5)

where ht(x) denotes a weak learner in learning step t. Param-

eter T denotes the number of weak learners that organize a

strong learner. Further, αt denotes the confidence coefficient

of each weak learner as computed by the error ratio.

Let χ =
{
(x(1), y(1)), · · · , (x(I), y(I))

}
be labeled training set

where I denotes the number of training sets. Let εt be the

error ratio of ht(x), which is calculated by testing all training

sets. Subsequently, αt is calculated as following

αt =
1

2
log

(
1 − εt
εt

)
, (6)

such that the conditions εt ≤ 0.5 and αt ≥ 0 are always

satisfied in binary classification.

The subscript i denotes the index of the training set, for

the i-th set of the training set x(i) and the corresponding their

label y(i) (i = 1, · · · , I). The weights w(i)
t of x(i) are updated

at the end of learning step t as

w(i)
t+1
= w(i)

t e−αt y(i)ht(x(i)) , (7)

At the beginning of each learning step, w(i)
t is normalized as∑

i w(i)
t = 1. As a result, if the example is classified correctly

by ht(x(i)), the weight decreases relatively in the next learning

step. However, if it is misclassified, the weight increases

relatively.

The schematic of the proposed algorithm is shown in

Fig. 3. In our algorithm, each weak learner has the feature

refinement functions mentioned in section II.

B. Updation of Frequency Template

Let us consider a labeled auxiliary training set
∼
χ ={

(
∼x (1),

∼y (1)), · · · , (∼x (I),
∼y (I))
}

with an additional training set

χ′ =
{
(x′(1), y ′(1)), · · · , (x′(J), y ′(J))

}
. Further, I and J represent

the numbers of prior training samples and additional samples,

respectively. Accordingly, let x∗ (i) denote the new training

samples in the new training set χ∗, which is defined as

x∗ (i) =

{ ∼x (i) (1 ≤ i ≤ I)

x′(i−I) (I + 1 ≤ i ≤ I + J)
. (8)

Let
∼w(i)

t represent the weights of the i-th prior training

sample in
∼
χ , and w′ (i)t the weights of the additional training

k
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Fig. 4. Schematic of template vector updation in our method as expressed

by eq. (17). The original template vector
∼
At that was obtained in prior

learning is reduced constantly by ct . The reduced vector is supplied by
the differential template vector A′t , which is calculated by the weights of
additional training samples according to the result of the additional tests.

sample in χ′. The ratio between both training sets is defined

as ΣI
i=1

∼w(i)
t : ΣJ

j=1
w′ ( j)

t =
∼
γt : γt

′, where
∼
γt and γt

′ represent

the constant variables in each learning step t. The weight

coefficients
∼
γt and γt

′ are calculated from the weight of the

number and the confidence of weak learners, respectively, as

follows:

∼
γt =

ΣJ
j=1
ΣT

t=1( 1
2

∼
αt (1 + y ′ ( j) ∼ht (x′ ( j))))

ΣJ
j=1
ΣT

t=1

∼
αt

, (9)

γt
′ =

ΣJ
j=1
ΣT

t=1( 1
2
αt
′(1 + y ′ ( j)h′t(x′ ( j))))

ΣJ
j=1
ΣT

t=1
αt
′ , (10)

where
∼
αt represents the confidence coefficient of a prior

learner and αt
′ the confidence coefficient of an additional

learner, which is calculated in the same manner as in eq. (6)

in section III-A. At learning step t = tc, let the confidence

coefficients in the forwarding steps αt
′ (tc ≤ t ≤ T ) be defined

as

αt
′ =
{
αt
′ (1 ≤ t < tc)

∼
αt (tc ≤ t ≤ T )

. (11)

Let w∗ (�)
t (� = 1, · · · , I + J) denote the weights of the new

trainings samples in
{ ∼
χ ∪ χ′

}
as

w∗ (�)
t =

⎧⎪⎪⎨⎪⎪⎩
∼w′ (�)t (1 ≤ � ≤ I)

w′ (�−I)
t (I + 1 ≤ � ≤ I + J)

, (12)

where
∼w′ (�)t denotes the updated

∼w(�)

t that is multiplied by a

constant factor. Upon satisfying ΣI+J
�=1

w∗ (�)
t = 1 and ΣI

i=1

∼w(i)
t :

ΣJ
j=1

w′ ( j)
t =

∼
γt : γt

′ in each learning step t, the new weights

of training samples are updated as follows:

∼w′ (i)t ←
∼
γt

(
∼
γt + γt

′)ΣI
i=1

∼w(i)
t

∼w(i)
t , (13)

w′ ( j)
t ← γt

′

(
∼
γt + γt

′)ΣJ
j=1

w′ ( j)
t

w′ ( j)
t . (14)
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Fig. 5. Experimental environment and devices: (a) An example of defect in concrete material (delamination), (b) Measurement of hammering sounds and
inspection experiment on high-lift work vehicle, (c) Measurement equipment and prototype of hammering unit

By considering the updating rules of the training sample

weights expressed by eqs. (13) and (14), the updating rules

of the template vector can be obtained. In a manner similar

to the process described in section II-B, the template vector

is calculated by considering the weights of trainings samples

as follows:

A∗t (k) =

I+J∑
i=1

w∗ (i)x∗ (i) (15)

=

I∑
i=1

∼w′ (i)t
∼x (i)(k) +

J∑
j=1

w′ ( j)
t x ′( j)(k) (16)

= ct
∼
At (k) + A′t(k) , (17)

where ct =
∼
γt /((

∼
γt + γt

′)ΣI
i=1

∼w(i)
t ), which is the constant

appearing in eq. (13). Let
∼
At (k) =

∑I
i=1

∼w(i)
t
∼x (i)(k), which

is the k-th component of the auxiliary template vector.

Parameter k represents the frequency index in the feature

space K . Let A′t(k) =
∑J

j=1 w′ ( j)
t x ′( j)(k), which is the k-th

component of the template vector from the additional training

samples. The vector can be calculated using the weights of

the samples, which are updated in the similar manner of

eq. (7) as

w′ ( j)
t+1
= w′ ( j)

t e−αt
′ y ′ ( j)h′t (x′ ( j)) . (18)

Noting, as these updation rules of eqs. (17) and (18) indicate,

the whole learner can be updated by only the values that are

calculated in prior learning and the additional training set in

χ′.
The schematic of the updation of the template vector is

shown in Fig. 4. In each learning step, the original template

vector
∼
At that was obtained in prior learning is reduced

constantly by ct. The differential template vector A′t supplies

the reduced vector with the weights of the additional training

samples according to the result of the additional tests. The

new template vector A∗t is the sum of the reduced vector and

the differential vector.

0

20

40

60

80

100

0 200 400 600 800 1000

E
rr

o
r 

ra
ti

o
 [

%
]

Number of weak classifiers

False negative
(w/o refinement)

False negative
(proposed method)

False positive
(w/o refinement)

False positive
(proposed method)

Fig. 6. Feature refinement result of the relation between the number of weak
learners and the error ratio of evaluation samples that were not included
in training samples. The horizontal axis represents the number of weak
learners, and the vertical axis represents the error ratio [%]. Because of the
synthesizing multiple learners, the error ratio of false negatives decreased.
The best (smallest) error ratio of false negatives as obtained by the proposed
detector was 13.6%.

IV. EXPERIMENTS IN CONCRETE TUNNEL

In order to confirm the validity of the proposed method,

inspection experiments were conducted in a concrete tunnel.

A. Experimental Settings

With regards to various kinds of concrete defects, de-

lamination is considered to be a particularly serious de-

fect because pieces that delaminate from a wall frequently

fall down and damage cars and injure pedestrians. In the

experiments, we thus particularly focused on the detection

of delamination. An example of delamination is shown in

Fig. 5(a). While the detection of delamination is highly de-

sirable, the process is complex. This is because delamination

is a complex phenomenon that can arise, for example, due

to closing cracks or expansions of rusted reinforcing iron.

Hammering sounds were recorded at a concrete tunnel in

Kanagawa Prefecture in Japan, wherein a road was closed

temporarily for the experiments. In order to obtain the
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(b) Result of defect detection by the detector without feature refinement
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(c) Result of defect detection by the detector with feature refinement

Fig. 7. Comparison of the detection results between the prior detector
(Fig. 7(b)) and the updated detector (Fig. 7(c)): Hammering motions were
executed 15 times in 10 seconds, which can be confirmed in both figures
as signal peaks. They consisted of three strikes against defect parts of
delamination (between 4,500 ms and 6,000 ms), and the other twelve strikes
against clean parts. The areas emphasized by the half-tone background
indicate the time intervals corresponding to the detection of defects.

signals classified between cleans and defects, the tunnel was

examined by professional inspection workers in advance. The

inspection works and measurements were conducted using a

high-lift work vehicle (Fig. 5(b)).

The experimental equipment used in our study is shown in

Fig. 5(c). Two condenser microphones and a recorder were

used for recording hammering sounds. The resolution and

sampling rate were 24 bit and 48.0 kHz respectively. As

diagnostic tools, we used inspection hammers, which are

generally used for inspection of concrete infrastructures. The

diameter and the weight of the hammer head were 12.4 mm

and 0.1 kg, respectively.

B. Experimental Results

1) Result of Feature Refinement: Figure 6 shows the effec-

tiveness of feature refinement described in section II-C. The

horizontal axis represents the number of synthesized weak

learners, and the vertical axis represents the error ratio [%] of

detection. The red lines indicate the results of the proposed

detector that consist of the weak learners constructed with the

feature refinement, and the blue ones indicate the results of

the detector with only bootstrapping feature extraction (II-
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Fig. 8. Frequency components selected by each weak learner. The whole
detector (strong learner) consisted of 1,024 weak learners. With each learner
focusing on different frequency bands, the accuracy of strong learner was
enhanced.

C.2). The solid lines denote the results of false negatives

that misclassified defects as cleans, and the dotted lines

denote the results of false positives that misclassified cleans

as defects. These values were evaluated by obtaining the

average of five-fold cross validation using the training set

obtained under different situations (i.e., time and place),

which training set consists of 6,926 sound samples including

1,010 delamination samples and 5,916 clean samples.

We were able to confirm that the feature refinement is

effective to detect delamination accurately. As a rough trend,

as the number of weak classifiers increased, the error ratio

of false negatives decreased. In contrast, the error ratio of

false positives deteriorated slightly as the number of weak

classifiers increased. However, the degree of deterioration

was quite small. Moreover, reduction of false negative case

is a greater concern in this kind of inspection application.

The result of delamination detection is shown in Fig. 7.

In the experiment, a professional inspection worker struck

the concrete wall 15 times continuously in 10 seconds. The

fifteen trials consisted of twelve hammer strikes against

clean parts (strikes 1st to 6th and 10th to 15th), and

three hammerings against delamination parts (strikes 7th to

9th). Figure 7(a) shows the spectrogram measured during

hammering, the horizontal axis represents time [ms], the

vertical axis represents frequency [kHz], the depth of color

indicates the amplitude strength in the frequency domain.

The moments of the impacts can be confirmed from sharp

changes of the spectrogram color. The comparison of the

time-domain detection results between the detector without

feature refinement and the proposed method is shown in Figs.

7(b) and 7(c), respectively. In both figures, the horizontal axis

represents time [ms], the vertical axis represents the normal-

ized signal amplitude, and the areas emphasized by the half-

tone background indicate the time intervals corresponding

to the detection of the defects by each detector. From these

results, we observe that the proposed detector with feature

refinement can detect delamination more accurately than the

one without feature refinement. For example, by applying

the proposed detector, the hammering sounds corresponding

to delamination between 4,500 and 6,000 ms were detected
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(a) An example of spectrogram of hammering with engine noise
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(b) Result of delamination detection without updation with engine noise;
The loud noise hinders accurate detection.
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(c) Result of delamination detection by the updated detector with engine
noise; Because of updation, the accuracy of detection was maintained.

Fig. 9. Comparison of the detection results with the presence of engine
noise between the prior detector without updation (Fig. 9(b)) and the updated
detector (Fig. 9(c))

more distinctly, and the other clean signals can be detected

as cleans correctly.

The process of how the weak classifiers of the detector

were constructed is shown in Fig. 8. The horizontal axis

represents the index t of the weak classifiers ht, and the

vertical axis represents the frequency band [kHz], wherein

each classifier evaluates signals. The depth of color denotes

the amplitude of the template vector. Here, we remark that

the weak classifiers are sorted in order of their lowest

limits of frequency bands to improve the viewing clarity of

the figure. The whole detector consisted of multiple weak

learners that focused on various frequency bands. It can be

understood that the diversity of learners contributed to the

improvement of the accuracy of detection.

2) Updation Against Environmental Noise: Furthermore,

in order to verify the effectiveness of the proposed method

against environmental noise, experiments were conducted

with the engine of the high-lift work vehicle kept running.

The detector was updated by the updation method described

in section III using the acoustic samples obtained with the

engine noise. For additional learning, 2,690 training sets

were used, which included the engine noise and hammering

sounds together.

An example of the spectrogram of the hammering sound
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Fig. 10. Result of template updation: The new template vector was updated
based on the prior template vector that was reduced constantly by a factor
of ct in eq. (17). Although A∗ basically retained the shape of the prior
template vector according to eq. (17), the shape changed partly.
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Fig. 11. Detection result for signals shown in Fig. 7(b) and Fig. 7(c)
with the use of the updated detector. This result indicates that the updated
detector maintains the diagnostic accuracy against the kind of defects of
prior learning.

with the engine noise is shown in Fig. 9(a), similar to

Fig. 7(a). In this case, the signal-to-noise ratio of the engine

noise was around 27 dB. A comparison of the detection

results between the prior detector and the updated detector is

shown in Figs. 9(b) and 9(c). Similar to the experiment for

verifying the feature refinement, hammering motions were

executed fifteen times in 10 seconds. Both figures follow the

same plot format as Figs. 7(b) and 7(c). In particular, from

Fig. 7(b), we note that because of the adverse influence of

noise, the accuracy of the detection by the prior detector

decreases considerably. A comparison of two sets of results

confirms that the updated detector is capable of detecting

defects accurately.

The result of template updation is shown in Fig. 10. The

horizontal axis represents frequency, and the vertical axis

represents amplitude. The shape of the updated template

vector A∗ is essentially the same as that of the prior template

vector according to eq. (17). However, as a result of updation,

the shape changed partly. These frequency components were

considered as significant for new detection tasks. Figure 11

shows the detection result for the set of signals illustrated in

Figs. 7(b) and 7(c). By retaining the original template shape,

the updated detector could address the defects for the prior

one.

In summary, we applied our method to construct a highly

accurate delamination defect detector using the hammering

signals obtained in an actual concrete tunnel, which is an



accurate representation of a real-world scenario. Further-

more, with the application of the proposed updation method,

the existing detector could be updated to the one whose

performance is robust to environmental noise.

V. CONCLUSION AND FUTURE WORK

In this study, in order to improve portability of defect de-

tectors for hammering tests, we proposed and demonstrated a

boosting-based defect detector that is robust to environmental

changes. A construction method of a noise-robust classifier

with refinement of feature values extracted from hammering

sound and an updating rule of the template vector are

presented. Our method can be applied not only to problems

similar to the prior one, but also to other problems under

different environments. Our experimental results showed the

proposed method can accurately distinguish signals under

conditions of loud environmental noise.

As a future work, we plan to apply the proposed method

to tasks under running noises of robotic hammering unit. For

accuracy improvement of the detector, the template vectors

have to deform in order not to decrease the accuracy of the

classification for the prior problem. The evaluation of vector

deformation is our future work.
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