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Abstract— Gaussian Processes have been previously used to
model wireless signals strength for its use as sensory input for
robot localization. The standard Gaussian Process formulation
assumes that the outputs are corrupted by identically inde-
pendently distributed Gaussian noise. Even though, in general,
wireless signals strength do not have homogeneous noise vari-
ance. If enough data samples are collected, the noise variance
in office-like environments is usually low. In such cases the
noise assumption holds. Previous work has demonstrated the
viability of wireless signal strength-based localization in such
office-like environments. We intend to extend the applicability
of these models to perform robot localization in search and
rescue scenarios. In such environments, we expect wireless
signals strength measurements to be corrupted with high
heteroscedastic noise variance. To extend the applicability of
previous approaches to these scenarios, we relax the assumption
regarding output noise, by considering that the noise variance
depends on the inputs. In this work, we describe how this
can be done for the specific case of modeling wireless signal
strength. Our results show how relaxing this assumption helps
improve localization using a synthetic data set generated by
artificially increasing noise variance of real data taken from
tests performed on a standard office-like environment.

I. INTRODUCTION AND MOTIVATION

Robot localization or position estimation is the problem
of determining a robot’s pose relative to a given map of
the environment - in this work the pose is understood as
the position in a x − y Cartesian coordinate system and
the robot’s heading direction. Robot localization has been
labeled as “the most fundamental problem to providing a
mobile robot with autonomous capabilities” [1], as robot’s
knowledge of its pose is essential for most non-trivial tasks.

The use of wireless signals for robot localization in
indoor, GPS-denied, locations has gained popularity in recent
years [7]. Our focus in this work is on Gaussian Processes
(GPs)[15], which are a type of fingerprinting technique. Fin-
gerprinting refers to the technique of first obtaining samples
of the measurements in known locations in the environment
(training points), to then predict the location of new values
based on new measurements. This is done by matching new
measurements to the closest training points or to models
based on the training data.

The standard GP formulation makes two assumptions:
first, outputs are assumed to be corrupted by i.i.d. Gaussian
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noise; second, the covariance of the outputs can be modeled
by a kernel function dependent on the inputs. Given training
data, the system is reformulated as a multivariate Gaussian
distribution, from which the mean and variance for new
measurements can be estimated. It is important to notice that
this formulation does not take into account the variance of
measurements at each training point. Mainly because when
modeling sensing for most applications, if enough training
samples can be obtained, the noise at each training point is
often reduced to signal-independent sensor noise. In this case
it is a fair assumption that measurements are corrupted by
i.i.d. Gaussian noise.

Gaussian Processes with these assumptions have been suc-
cessfully used for wireless signal strength-based localization
[9], [3], [2] in office-like settings. We wish to extend their
application for harsher environments, or when training data
has to be collected on the fly. In both cases training samples
will most likely have high non homogeneous variance - i.e.
training samples are composed of heteroscedastic data. In
this case the i.i.d. Gaussian noise assumption no longer holds,
and a new one need to be made.

Wireless signal strength can be characterized considering
the signal’s propagation thorough space. The signal propaga-
tion phenomena is accurately obtained by using Maxwell’s
equations, however, these are rarely used because of their
complexity. Simple models can be obtained by modeling
wireless signals path loss, shadowing and multipath effects.
Path loss is caused by the dissipation of the power radiated
by the transmitter, and it relates to the distance between the
transmitter and receiver. Shadowing effects are the result of
power absorption by obstacles, such as walls or furniture.
Multipath effects are caused by signals reaching the receiver
by several paths, like signals bouncing into walls and reach-
ing the receiver from different directions.

Multipath and shadowing effects not only affect the mean
value of the signal strength measured, but also its variance.
As both effects are position dependent, the assumption of
input-dependent noise variance for modeling signal strength
comes naturally. An approach for GPs with input-dependent
noise has already been proposed in [5]. We propose its refor-
mulation and addition into current wireless signal strength-
based localization algorithms. With this new input-dependent
noise assumption, we have obtained localization algorithms
that better handle variance estimation with heteroscedastic
training samples. The work herein presented exclusively
deals with wireless signal strength measurements, however,
the approach could be extended to any sensor that can
be modeled by a kernel function and has input-dependent



variance in its training samples.
Input-dependent wireless signal strength variance becomes

more important in settings where shadowing and multipath
effects are stronger. It is easy to imagine that this is the
case in disaster struck environments. When robots are used
in such scenarios, it is often desirable to at least have the
capability of monitoring them. For this, a wireless network
must be deployed in the affected area. Network deployment
using simple robots, some times called “robotic routers”, has
been the target of several studies, such as [11], [8]. These
wireless networks provide the essential infrastructure to
guarantee reliable communications between ground stations
and robots, which usually determines the success of search
and rescue missions [12]. We intend to use such networks
for robot wireless signals strength-based localization under
the approach just mentioned.

Our results show how our new assumption helps improve
localization in a synthetic data generated by artificially
increasing noise variance of real data taken on the fly from
tests performed on a standard office-like environment.

II. ROBOT LOCALIZATION PROBLEM

As previously mentioned, robot localization or position es-
timation is the problem of determining a robot’s pose relative
to a given map of the environment. Monte Carlo Localization
(MCL) algorithms are popular localization algorithms used
in robotics [13], having as most appealing characteristics
their ease of implementation and good performance across
a broad range of localization problems. An MCL algorithm
is essentially a particle filter, which is an implementation of
the Bayes filter, combined with probabilistic models of robot
perception and motion [4].

For this work, the pose in the localization problem is
defined as s. Given that planar motion is considered, this
pose consists of three values: the robot’s position in a
x − y Cartesian coordinate (xx xy) and the robots heading
direction θ - i.e., s = [xx xy θ]. For robot localization, the
possible actions the robot can take are considered to be two:
(a) the robot can influence its pose through its actuators,
and (b) it can gather information about the state through
its sensors. Although these interactions usually co-occur,
without loss of generality it is assumed that for any time
step t the robot first actuates and then senses. Actuating data
carries the information of this change of the robot’s pose and
will be denoted by the vector at - the variable at denotes
the change of pose in the time interval (t − 1; t] and no
action is assumed to occur at time t = 0. The environment
observations provide the information about a momentary
state of the environment, i.e, sensors’ measurements, and at
time t will be denoted by the vector yt.

In general, the Bayes filter addresses the problem of esti-
mating any state (s in the robot’s localization case) consider-
ing the robot state evolution as a partially observable Markov
chain (Hidden Markov Model - HMM). Furthermore, it
makes the assumption that the environment is a Dynamic
Bayesian Network (DBN) often called a Two-Timeslice BN

(2TBN) where given st−1, st becomes independent of all
previous states s0:t−2, a0:t−1 and y0:t−1.

Now, the main idea of Bayes filtering is to estimate the
pose using a probability density estimation of the state space
st conditioned on the time series data a0:t,y0:t and previous
states s0:t−1. This posterior is called the belief of s - Bel(s).
Using Bayes’ rule and the Markov assumption introduced by
the DBN it can be obtained that:

Bel(st) ∝ p(yt|st)
∫
p(st|st−1,at)Bel(st−1)dst−1 (1)

which is the basic equation for all Bayesian filters, including
the MCL and the dual MCL (see [13] for full description of
the algorithms and proofs).

In order to implement eq. (1), three things are required:
(a) a way to represent Bel(s) and a priori distribution for
Bel(s0), which is usually assumed to be an uniform distri-
bution; (b) the next state transition probability p(st|st−1,at);
and (c), the perceptual likelihood p(yt|st). In MCL and the
dual MCL, the belief Bel(s) is represented by a particle
filter. Particle filters represent any distribution by a set of s
weighted samples also called particles, distributed according
to that distribution. The next state transition probability
p(st|st−1,at) is implemented by a robot motion model -
which varies depending on the robot used. A complete
description of these models can be found at [13], [10].
Finally, the perceptual likelihood p(yt|st) depends on the
sensors used for the localization. This probability can be
understood as the likelihood of observing a measurement
yt at location pt. The calculation of this metric considering
input-dependent noise is the main contribution of the work
herein presented.

III. MODELING SIGNAL STRENGTH WITH
INPUT-DEPENDENT VARIANCE

A. Preliminaries

Gaussian Processes are a generalization of normal distribu-
tions to functions, describing functions of finite-dimensional
random variables. In a nutshell, given some training points, a
GP generalizes these points into a continuous function where
each point is considered to have normal distribution, hence
a mean and a variance. The essence of the method resides
is assuming a correlation between values at different points,
this correlation is characterized by a covariance function or
a kernel.

The standard GP formulation is as follows. Given some
training data (X,Y) where X ∈ Rn×d is the matrix of
n input samples xi,∈ Rd; and Y ∈ Rn×m the matrix of
corresponding output samples yi ∈ Rm; two assumptions
are made. First, each data pair (xi,yi) is assumed to be
drawn from a process with i.i.d. Gaussian noise:

yi = f(xi) + ε, (2)

where ε is the noise generated from a Gaussian distribution
with known variance σ2

n.



Second, any two output values, yp and yq , are assumed to
be correlated by a covariance function based on their input
values xp and xq . In conjunction with the first assumption,
we get that:

cov(yp,yq) = k(xp,xq) + σ2
nδpq (3)

where k(xp,xq) is a kernel, σ2
n the variance of ε and δpq is

one only if p = q and zero otherwise.
Finally, given these assumptions, for any finite number of

data points, the GP can be considered to have a multivariate
Gaussian distribution, and therefore be fully defined by a
mean function m(x) and a covariance function cov(xp,xq).
Without loss of generality, it is common to define m(x)
as the zero-function, as the m(x) can be subtracted from
training data prior to passing it to the GP. In this case, a GP is
fully defined only by the covariance function, and estimation
can be for an unknown data point x∗, conditioned on training
data (X, Y) becomes:

p(y∗|x∗,X,Y) ∼ N (E[y∗], var(y∗)), (4)

where,

E[y∗] = kT
∗ (K+ σ2

nIn)
−1y, (5)

var(y∗) = k∗∗ − kT
∗ (K+ σ2

nIn)
−1k∗, (6)

and, K = cov(X,X) the n× n covariance matrix between
all training points X, k∗ = cov(X,x∗) the covariance vector
that relates the training points X and the test point x∗; k∗∗ =
cov(x∗,x∗) the variance of the test point and In the identity
matrix of rank n.

This formulation ignores the variance of the training
samples Yvar. In order to incorporate this information into
the system, Goldberg [5] changed the first assumption by
considering that each data pair (xi,yi) is drawn from a
process with known variance that depends on xi. That is:

yi = f(xi) + v(xi), (7)

where Yvar = {v(x0), .., v(xn)}.
With this new assumption, eq. (3) becomes:

cov(yp,yq) = k(xp,xq) + var(xp)δpq, (8)

and E[y∗], var(y∗) from 4:

E[y∗] = kT
∗ (K+Kv)−1y, (9)

var(y∗) = k∗∗ + v(x∗)− kT
∗ (K+Kv)−1k∗, (10)

with Kv = diag(Yvar) and v(x∗) the predicted measure-
ment variance that would be obtained at x∗. The estimation
of v(x∗) now becomes a second regression problem. This
new regression problem can be solved by another GP, inter-
polation of training points (as this time the variance of this
function is not required) or any other regression algorithm.

To illustrate the differences between the standard GP
formulation and this new approach, we show the predictions
generated using a toy function y = sin(x) with variance
v = (x+1)/15. For each training point (20 in the example)

5 samples are drawn from the described toy function. Fig.
1 shows a comparison of the predictions using a standard
GP, which uses only the mean of the samples, and the
proposed approach, which also considers the variance of the
samples. From Fig. 1 it can be appreciated that the first GP
predicts homogeneous low variances. Contrary, the second
GP successfully models the toy-function variance. This is a
simple example, however the same properties observed here
will be obtained in the next section when generating signal
strength maps.

(a) Standard GP

(b) Proposed method

Fig. 1. Prediction generated for a toy function f = sin(x) with variance
v = (x+ 1)/15

B. Problem formulation

We consider the problem of localizing a robot using
wireless signal strength measurements as primary sensory
input. It is assumed that the robot has wireless capabilities,
specifically an 802.11-compliant Wireless Network Interface
Controller (WNIC). Standard 802.11 cards have a built-in
Received Signal Strength (RSS) indicators, that will be used
by the robot to acquire the signals strengths. Furthermore, it
is assumed that a wireless network composed of m access
points has been deployed, either by robotic routers or some
WLAN infrastructure is available, and is static (i.e., the
variations in signal readings are due to sensor noise or signal
propagation effects, and not by robotic routers moving).
Regarding the wireless signals, it is also assumed that the
heading direction of the robot does not affect measurements
(it is assumed that both the robot and the access points
have antennas with fairly homogeneous radiation patterns
- e.g., omnidirectional antennas). Therefore the perceptual
likelihood p(yt|st) is simplified to p(yt|xt).

Given these considerations, our approach creates models
for the RSS measurements using GPs. For using any GP,
it is first necessary to obtain training data (X, Y, Yvar).
With X ∈ Rn×2 being the matrix of n input samples xi

that correspond to the x − y Cartesian coordinates where



the samples were taken; Y ∈ Rn×m, the matrix created
from the sampled mean of RSS measurements taken from m
access points at n positions; and Yvar ∈ Rn×m the variance
corresponding to each RSS measurements. It is important
to notice that the signals originated from each access point
are easily distinguishable by their MAC address - which
is a unique identifier assigned to every access point and
transmitted as part of the IEE802.11 protocol.

The first problem to be considered is the acquisition of X.
In previous approaches [9], [3], data was collected manually,
therefore it was possible to self-label the positions xi where
the data was taken. However, in search and rescue scenarios
this would not be feasible; therefore, the systems must collect
labeled training data on its own. This can be achieved using
Gaussian Process Latent Variable Models [6], which has
already been used to generate RSS maps from unlabeled data
similar to those generated with labeled data[2].

The second problem to be considered is the correct
estimation of RSS variance. Data is collected on the fly,
and therefore not much time is taken for collecting data
samples. Therefore, the number of these samples can vary
from zero to the order of tens of measurements. It is
specially problematic when no measurements or only one
measurement is obtained, as the sampled variance would
be zero, misleading the algorithm into believing there is
high confidence in the measurement, when it is in fact the
opposite. Zero measurements at any given point represent
the absence of RSS measurements at the particular time
that it was sensed. This absence of RSS measurements can
be either by random occurrences, like glitches or corrupted
packages that are dumped by the WNIC; or the product
of shadowing effects, which provides valuable information
about that point. One approach is to simply not consider zero
measurements and only work with non-zero ones. However,
we prefer applying a prior over the variance estimation, and
using the information into our system.

C. Kernels and hyper-parameter optimization

For the GPs problem, a kernel must be selected. For
our implementation, we use an squared exponential kernel,
also commonly referred as the radial basis function or the
Gaussian kernel. It is defined as:

kse(xp,xq) = σ2
se exp

(
−|xp − xq|2

l2se

)
, (11)

with free parameters σ2
se (known as the signal variance), and

lse (known as the length-scale). These free parameters are
often referred to as hyper-parameters (θse = [σ2

se, lse]), and
are learned from the training data.

As the data Y and Yvar are generated from m different
access points, there are two options for defining the kernel:
(a) to use a single kernel that best models the behavior of
all m access points or (b) to have m independent kernels,
each a best fit for its corresponding access point. In our
approach we opted for the first option, as we consider that
the wireless signal propagation phenomena is highly environ-
mental dependent and given a common environment for all

access points, a single kernel should be able to model all the
relationships. In order to find this optimum kernel, we need
to find the maximum a posteriori estimation of the parameters
θ, which occurs when p(θ|X,Y,Yvar) is maximized. Using
Bayes’ rule and assuming an uninformative prior distribution
p(θ|X):

p(θ|X,Y,Yvar) = p(Y,Yvar|X, θ). (12)

To solve this optimization, we consider as two separate
problems the optimization of kernel parameters for estimat-
ing Y and those for estimating the variance Yvar. This is a
more a practical consideration, as we have found no major
differences between the joint optimization of parameters by
Maximization-Expectation, and that of independently maxi-
mizing the parameters.

Having this in consideration, we redefine the prob-
lem of finding the maximum a posteriori estimation of
p(θ|X,Y,Yvar) as that of minimizing the negative log
likelihood (nllGP ) of p(Y|X, θ), given by:

nllGP = 0.5nm log(2π) +

m∑
i=1

0.5 log |K+Kvi|

+ 0.5yT
i (K+Kvi)

−1yi (13)

with yi ∈ Rn being the vector composed by the means of
the RSS samples obtained from access-pointi, and Kvi =
diag(yvari) for yvari representing the variance estimation
of yi. Finally, optimization can be done by calculating the
partial derivatives of nllGP with respect to θ and performing
conjugate gradient descend.

D. Variance estimation

To solve the second regression problem, the variance vec-
tor yvari is assumed to have been generated by a function
dependent on the position v(X) and some small noise ε. It
is convenient to reformulate this regression problem using
the variable change z = log v(X). This way we ensure that
predicted variances will be always positive and placing a
prior with zero mean is equivalent to placing a prior with
mean ones, which by adding an offset on z can become
a prior with any desired value. With this change and the
assumption initially taken, we can re-state the problem as:

z = v(X) + ε (14)

which, if assuming ε as i.i.d. Gaussian noise, is exactly the
formulation for standard GP. Therefore, we opted to solve the
second regression problem with a standard GP. However, as
we stated before, any regression algorithm can be used.

Therefore using eq. (5) and making the variable exchange,
the estimated value of v(·) for a new input can be calculated
as:

yvar∗ = exp
(
kzT∗ (Kz+ σ2

nIn)
−1 log(Yvar)

)
, (15)

with Kz = cov(X,X) and kz∗ = cov(X,x∗) being gener-
ated from a covariance function different than that the one
used to solve the GP with input-dependent noise.



E. Calculating posterior probabilities

As stated at the beginning of the section, our goal is to
compute the likelihood of the set of new RSS measurements
ynew to have been generated from an specific location
x∗. We do this by individually calculating the conditional
probability for each access point that had non-zero values.
As the measurements are assumed to have a Gaussian
probability distribution, we only require the first and second-
order statistics (i.e., the predicted mean E[y∗] and predicted
variance var(y∗)), which are calculated from eq. (9) and
(10).

We do this only for non-zero elements as it was not
uncommon during testing that at some points, signals were
not found even though during the training phase they were
measured. Signals can be absent by a random occurrence or
simply because the access points was not active at the time.

Finally, once posterior probabilities for each access points
are found, we fuse the information using its geometric
average instead of using its product, as this would lead to
overconfident estimates [3].

Therefore, we define:

p(ynew|x∗) =

(∏
k

p(y{new,k}|x∗)

)1/|k|

(16)

for k ∈ {1, ...,m}, with y∗,k 6= 0, as the output of the GP.

IV. EXPERIMENTAL RESULTS

We tested and compared our approach with previous in-
carnations of GP-based localization by collecting data from a
building at the University of Tokyo, Fig. 2 shows a simplified
blueprint of the building. The building is approximately 70m
long by 50m wide.
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Fig. 2. Blueprint of Engineering Building 2 at the University of Tokyo

The dataset was constructed by collecting RSS samples
at 166 different positions. RSS samples were taken using a
Panasonic SX1 laptop, which has a sensing range of 0 to -90
dBm, any value under this will not be sensed at all. Whenever
an access point was not sensed, a value of -90 dBm was
assigned by default. RSS measurements were scaled by a
factor of 15 and offset them by 20/3, as to obtain data in

the range of 20/3 to 0 - the scaling and offset were done so
the prior set on z - the log variance estimator, would be a
zero mean function. Over 190 access points were detected
in the area. However, many of these access points provided
almost identical information as it is common for routers
to have several antennas, each with its own WNIC and
MACADDRESS. After eliminating repeating access points
and those that had few non-zero measurements, we retained
21 access points which are used for all the testings. In order
to test the approach, a 5-fold cross-validation scheme was
used.

A. Comparison of Posterior probabilities

The perceptual likelihood is the core of MCL and dual
MCL, as it provides information about the environment
through sensing. Figure 3 shows a comparison between the
posterior probability distributions generated by the standard
GP formulation and by our approach. A black X marks the
true pose. Red areas indicate high probability while blue
indicate low. A good perceptual likelihood would generate
high probability areas in the vicinity of the true position, and
as low as possible in areas far from it.

Fig. 3. Posterior probability distributions for (left) the standard GP
formulation, (right) our approach

As it can be observed from Fig. 3 both GPs generate
adequate posterior probabilities, our approach generating
slightly better outputs as the high probability area is closer
to the true position, than in the other approach.

B. Artificial addition of noise

We will now assess the performance of both approaches
with synthetic data sets generated by artificially increasing
noise variance on the real data set. To generate the synthetic
data, first a vector vu composed of values sampled uniformly
at random between 0 and a maximum noise variance is
created. For all non-zero values of Y the new data will
be sampled from a normal distribution with mean Y and
variance Yvar+vu - the new data is generated only for non-
zero values, cause it is not feasible for RSS signals bellow
the sensing threshold to be sensed, no matter how much noise
is added. Lastly, the new vector Yvar is computed based on
the new data Y. It is our assumption that this increase in
variance will happen in real disaster scenarios.

Figure 4 shows the posterior probability conditioned on the
same test point that Fig. 3 but with synthetic data generated
with maximum variance of 0.4.



Fig. 4. Posterior probability distribution using synthetic data generated with
maximum variance of 0.4 for (left) the standard GP formulation, (right) our
approach

It can be seen that the values for the posterior probabilities
become quite lower for both approaches when noise is
added (drop from 0.24 to 0.096). On the one hand, for the
standard GP formulation, it can be noted that high probability
area moves further from the true position, which is a very
undesirable effect. On the other hand, for our formulation,
the system becomes much more uncertain of the true position
(the high probability area increases); however, it still remains
near the true position.

C. Results with dual MCL

(a) Standard GP formulation

(b) Our approach

Fig. 5. Errors in location estimation using a dual MCL for synthetic data
generated with different maximum noise variances

Finally we assess and compare the performance of our
approach using a dual MCL algorithm. We selected the dual
MCL as it is highly dependent on the likelihood model.
A complete description of the dual MCL algorithm can be
found at [14]. Figure 5 shows the errors in location esti-
mation for different synthetic data when using the standard
GP formulation or our approach as perceptual likelihood. It
can be observed from the simulations that the localization
accuracy is adversely affected when the noise variance in-
creases, for both approaches. However, the impact is lesser
when using our approach. Furthermore, the system is able

to handle maximum noise variances of up to 0.4 without
inducing much error. Considering that RSS data was scaled
by a factor of 15, therefore a noise variance of 0.4 represents
a noise of ± 20 dBm.

V. CONCLUSIONS

We have presented an approach for wireless signal
strength-based localization that relaxes the assumption of
i.i.d Gaussian noise, by considering input-dependent noise.
This approach generates more consistent posterior density
distribution than the standard Gaussian Process formulation,
in environments with high noise variance. Furthermore, when
used as the perceptual likelihood of a dual MCL algorithm,
it has an accuracy error lower than 5m for almost all the
time, even when injected with noises of ± 20 dBm. Testing
involving high noise variance was performed using synthetic
data, therefore, it remains as future work its validation in real
scenarios. Nonetheless, the results obtained are encouraging,
and suggest the possible applicability of our approach in
search and rescue scenarios.
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