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In this paper we present an online unsupervised
method based on clustering to find void-type defects in
concrete structures using hammering. The dataset of
sound samples is clustered in order to find the regular
model for the hammering sound, which is assumed to be
the non-defective sound model. The algorithm is fast and
reliable enough to allow efficient diagnosis by running it
each time a new sample is acquired.

1 Introduction
Concrete structures are extremely common and can be

greatly affected by aging and environmental conditions,
those often lead to structural failure. A fast and reliable diag-
nosis method to ensure their proper maintenance is needed.

The popular hammering test consists of hitting the struc-
ture with a hammer and assessing the presence of defects
from sound. Its performance largely relies on the operator’s
skill and thus its automation is demanded.

Previous works consists of [1] and [2], using supervised
learning to correctly spot defective areas. However these ap-
proaches need to train the algorithm first using a training set
and, due to various factors, concrete can greatly differ from
one structure to another, therefore making these methods dif-
ficult to use in practice. In [3], we presented a new approach
to this task using unsupervised learning based on clustering.

In [3], crack-type defects only were examined. In this pa-
per, we expanded our previous work to the detection of void-
type defects and implemented it online.

2 Method
2.1 Concept

It assumed that most of the tested structure is non-
defective. Therefore, if a large group of similar sounds can
be found in the dataset, it can be inferred that it is the regular
sound of the structure and a model representing the regular,
non-defective sound of that structure can be made. Simple
clustering algorithms, such as k-means, can effectively ac-
complish this task. This regular model can then be used as a
reference to conduct a diagnosis of the whole dataset.

Having a fast enough algorithm, online implementation
can simply be done as in Algorithm 1.

2.2 Feature vector and dissimilarity measure
Fourier spectrum is used as feature vector for a hammering

sound sample and we need to define an appropriated metric.
To do this, we use the sample Pearson correlation coefficient
rAB . Given two Fourier spectrum A and B, respectively de-
fined by (a0, ..., aN−1) and (b0, ..., bN−1), our metric is de-
fined as in Eq. (1).

The defined distance is ranging in [0.0,1.0], returning
small values the more the compared sounds are alike and zero

Fig. 1 Online diagnosis being conducted: image of the test
block and the detected hammer head in red (upper),
results with distance shown using a colorscale, defec-
tive spots appear red (bottom).

if the sounds are identical. Cases of negative correlation are
located in the [0.5,1.0] range since negative correlation is in
our case not a similarity.
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2.3 The algorithm
The k-means++ seeding procedure described in [4]. In our

case, the first seed is chosen randomly following an uniform
distribution. For the second seed, a probability distribution to
reflect the similarity to the first seed is devised: each sample
Xi has a probability P (Xi), as defined in Eq. (2), based on
the previously defined metric to the first seed S1, d(Xi, S1),
to be chosen. Unlike the regular seeding process where the
seeds are simply chosen randomly,this procedure allows the



Data: dataset of hammering samples
Result: distance of each sample to the regular model
initialization;
while Nsample < Ninitial do

keep collecting samples;
end
run k-means++ with k=2;
find biggest cluster Clbiggest;
get its centroid Cbiggest;
foreach Xi do

calculate d(Xi, Cbiggest);
end
while testing is ongoing do

if new sample is acquired then
add new sample to the dataset;
run k-means++ with k=2;
find biggest cluster Clbiggest;
get its centroid Cbiggest;
foreach Xi do

calculate d(Xi, Cbiggest);
end

end
end

Algorithm 1: Pseudo algorithm for the proposed method

seeds to be spread trough the dataset and therefore close to
the final centroids location.

P (Xi) =
d(Xi, S1)

2

Nsample∑
i=1

d(Xi, S1)2
(2)

The clustering algorithm is applied using the correlation dis-
tance defined in Eq. (1) to classify the sound dataset in two
clusters. Then, the cluster containing the majority of sam-
ples, Clbiggest, is assumed to be the one containing all the
non-defective samples. Its centroid Cbiggest is used as a
model for the non-defective sound: each sound sample is
compared to it using the distance defined in Eq. (1). Since the
model represents the most regular sound shape in the dataset,
irregularities i.e. distant sound samples can be recognized as
characteristic of defects on the structure.

3 Experiments
Testing was conducted on a concrete test block contain-

ing a 200x200 mm square void on its center at a depth of 30
mm (Fig. 1). The used hammer was a KTC UDHT-2 (head
diameter 16 mm, length 380 mm, weight 160 g) and sound
was recorded at 44.1 kHz using a Behringer ECM8000 mi-
crophone coupled with a Roland UA-25EX sound board and
a laptop with an Intel core i7-4500U @ 1.80 GHz for data
analysis.

Receiver Operating Characteristic (ROC) curve was com-
puted and we obtained a value of 0.92 for the area under the
curve. This value close to 1 shows that this method’s effi-
ciency is high for the detection of void-type defects.

Time taken for the algorithm to return a result at each new
sample was measured. After stabilization, when around 200

Fig. 2 ROC curve of the proposed method, area under the
curve of 0.92 shows high efficiency.

samples were collected, the average was 454 ms. This al-
lows the hammer to hit the structure twice in one second and
therefore could be considered satisfying.

4 Conclusion
We proposed an online implementation of the method pro-

posed in the previous work and achieved satisfactory results
for the detection of void-type defects. In future work, we
would like to increase the robustness of this method, espe-
cially at the regular model generation stage.
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