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Abstract—This paper presents a novel scheme for the 

three-dimensional (3D) reconstruction of underwater objects by 

using multiple acoustic views based on geometric and image 

processing approaches. Underwater tasks such as maintenance, 

ship hull inspection, and harbor surveillance require accurate 

underwater information. In such cases, 3D reconstructed 

information would greatly contribute to a better understanding 

of the underwater environment. Acoustic cameras are the most 

suitable sensors because they provide acoustic images with more 

accurate details than other sensors, even in turbid water. In 

order to enable 3D measurement, feature points of each acoustic 

image should be extracted and associated in advance. In a 

previous study, we proposed a 3D measurement method, but it 

was limited by the assumption of complete correspondence 

information between feature points. This new methodology 

establishes a 3D measurement model by automatically 

determining correspondences between feature points through 

the application of geometric constraints and extracting these 

points. The result of the real experiment demonstrated that the 

proposed framework can automatically perform 3D 

measurement tasks of underwater objects. 

 

I. INTRODUCTION 

Numerous underwater tasks such as monitoring, 
investigation, and exploration require accurate underwater 
object recognition techniques [1–3]. However, there are many 
underwater environments where hazards prohibit human 
access (e.g., the Fukushima Daiichi nuclear power station, 
which has been in crisis since the 2011 earthquake off the 
Pacific coast of Tōhoku in east Japan), but accessibility is 
essential for investigation and exploration. In such cases, 
unmanned exploration by utilizing underwater robots such as 
autonomous underwater vehicles (AUVs) or remotely 
operated underwater vehicles (ROVs) is necessary in order to 
measure the 3D information of underwater objects for better 
understanding of the underwater environment. 

Optical cameras have been used in numerous studies for 
underwater simultaneous localization and mapping (SLAM) 
[4,5] and underwater investigation [6,7] because they can 
provide high-resolution images with high accuracy. However, 
optical cameras are limited in turbid or deep water. Obtaining 
clear images by using optical cameras in turbid water is not 
possible. 
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Thus, acoustic cameras such as dual-frequency 
identification sonar (DIDSON) [8], adaptive resolution 
imaging sonar (ARIS) [9], and BlueView [10] are the most 
suitable sensors because they provide acoustic images with 
more accurate details even in turbid water than other sensors, 
as shown in Fig. 1. The high operating frequency of acoustic 
cameras (1.8–3.0 MHz in the case of ARIS EXPLORER 
3000) allows them to provide high-resolution and wide-range 
images [11] to facilitate understanding of the underwater 
situation. However, there have been relatively few studies on 
establishing 3D measurement methodologies, despite their 
undeniable worth. Thus, there is a need to develop theoretical 
methodologies for the 3D measurement of underwater objects 
by using acoustic cameras. 

Negahdaripour et al. and Majumder et al. conducted 
system calibration and 3D scene reconstruction by using 
opti-acoustic fusion systems [12–14]. Their approaches 
improve the accuracy of 3D reconstruction results for 
underwater objects by using a calibrated opti-acoustic stereo 
imaging system. However, their methods are still limited to 
clear water because they still rely on optical vision. Xu et al. 
mounted a concentrator lens on an acoustic camera [15] that 
allows acoustic camera beams to propagate further. Generally, 
an acoustic image from the acoustic camera does not include 
3D information, whereas an acoustic camera with a 
concentrator lens can obtain 3D information directly within a 
narrow range by narrowing the field of view of the elevation 
angle (as described in the next section). However, this 
approach cannot sense a wide field range, which is a major 
benefit of acoustic cameras. A 3D measurement system for 
determining feature points on two acoustic images from 
different viewpoints was proposed in [16]; however, this 
system limits the acoustic cameras to vertical movement. A 
method for determining the 3D shape of a target from multiple 
acoustic images by using sequential carving of the non-target 
space was proposed in [17]. However, this method also limits 
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(a) (b)

Figure 1. Because acoustic cameras provide acoustic images with accurate 

details, even in turbid water, they not only help with understanding the 

underwater situation but can also be applied to 3D measurement systems: (a) 
an acoustic camera system with ARIS in a turbid water tank and (b) an 

acoustic image of the turbid water tank bed. 



 

 

 

the movement of acoustic cameras to roll motions with only a 
few views. Consequently, these systems cannot determine the 
3D shapes of underwater objects from arbitrary viewpoints. 

Our research group previously proposed a novel method 
that reconstructs 3D feature points from multiple acoustic 
views of underwater objects [18]. When compared to previous 
research, our proposed methodology has the advantage in that 
it does not matter how far each viewpoint is from the others. In 
other words, the proposed methodology can successfully deal 
with the discontinuous frames of acoustic views, whereas the 
previous studies required obtaining successive frames of 
acoustic views. Huang et al. also recovered 3D feature points 
based on an optimization approach for the Bayesian SLAM 
[19]. However, both of the methods are restricted by the 
assumption of complete correspondence information between 
feature points because of difficulties with associating adjacent 
indistinguishable features. To overcome the limitation, this 
paper extends our previous work on using multiple acoustic 
views. In order to enable fully automated 3D measurement, 
the feature points of each acoustic image should be 
automatically extracted and associated in advance.  

The contributions of this paper are as follows. Earlier 
approaches were limited by measuring 3D feature points 
under restrictive assumptions where operator instructions are 
required to define and associate feature points, as mentioned 
above. On the other hand, the proposed complete 3D 
measurement system in this paper requires no operator 
instructions for feature definition. In other words, the 
proposed 3D measurement methodology automatically 
determines correspondences between feature points by 
applying geometric constraints and extracting the points by 
using image processing techniques without any operator 
instructions. 

The rest of this paper is organized as follows. Section II 
briefly introduces the principles of the acoustic cameras. 
Section III describes the 3D measurement model by using two 
acoustic images from different viewpoints. Section IV 
presents the feature extraction and association method for a 
fully automated system in detail. Section V discusses the 
effectiveness of the proposed 3D measurement framework 
based on the experimental results. Finally, section VI presents 
the conclusions and future works. 

II. PRINCIPLES OF ACOUSTIC CAMERA 

Acoustic cameras sense a 3D area in the same way as 
optical cameras; however, their output images are different, as 
shown in Fig. 2. This phenomenon can be explained by the 
models described in this section. These models elucidate the 
unique characteristics of acoustic cameras, including the 
signal processing and display mechanism. The principles of 
acoustic cameras are the basis for establishing the acoustic 
camera-imaging model that is represented in this section. 

A. Acoustic projection model 

As shown in Fig. 3 (a), acoustic cameras insonify acoustic 
waves in the forward direction to span the field of view with 

the azimuth angle cam and elevation anglecam within the 
scope of the maximum range rcam. These parameters depend 
on the specifications of each acoustic camera. An insonified 
acoustic wave is propagated within the area of the determined 
sensing scope. After a forward-traveling acoustic wave hits 
underwater objects, it is reflected in different directions from 
the original propagation direction. The acoustic pressure of the 
acoustic wave diminishes with the travel distance and 
reflection. 

As shown in Fig. 3 (b), acoustic cameras handle the 
sensing scope by using a few cross-sectional beams for signal 
processing. Each beam plane is perpendicular to the Xc-Yc 
plane. The number of beams and the beam width also depend 
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shadow

Figure 2. While optical cameras provide the same scenes as human sight, 

acoustic cameras provide significantly dissimilar images. 

 

(a) (b)

Figure 3. Acoustic projection model: (a) acoustic cameras insonify acoustic 
waves in the forward direction by spanning the field of view with the 

azimuth angle cam and elevation angle cam within the scope of the 

maximum range rcam; (b) acoustic cameras handle the sensing scope by using 
a few cross-sectional beam slices (beam k, k = 1, …, n) for signal processing. 

Each beam plane is perpendicular to the Xc-Yc plane, and the number of 

beams and the beam width depend on the specifications of the acoustic 
camera. 
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Figure 4. Overlapping phenomenon: (a) cross-sectional diagram of beam k 

and (b) pixels where acoustic pressure data overlap (red solid line). Because 
multiple acoustic pressure values overlap on the acoustic image when the 

detected points are located at the same distance from the acoustic camera in 

identical beam slices, the acoustic pressure values regarding the 

measurement points x and x′ are output on the same pixel (rc, c). 



 

 

 

on the specifications of the acoustic camera. Because the beam 
slices are arranged in the direction of the azimuth angle, the 
beam index is related to the value of the azimuth angle. This is 
clearly described in the next subsection. 

B. Imaging geometry model 

Although an acoustic camera senses a 3D area determined 

by rcam, cam, and cam, the output of the sensing process is a 2D 
acoustic image. This is because reflected acoustic waves are 
processed by an array of transducers as a function of the range 
and azimuth angle; the elevation angle is not included. In other 
words, the coordinate system of an acoustic image comprises 

the range and azimuth angle (rc, c). For instance, although the 
measurement point x is identified by the camera coordinate 

system (rc, c, c), the elevation angle value c does not matter 
when forming the acoustic image, as shown in Fig. 4. 

This subsection focuses on the key aspects of the problem 
of omitting elevation angle values. Note that pixel values of an 
acoustic image originate from the acoustic pressure p. The 
diminished acoustic pressure value of acoustic waves detected 
at the measurement point x as they travel is output to the pixel 
corresponding to the range and azimuth angle coordinates 

(rc, c) of x. Thus, if there is another measurement point x′ 
which has the same range and azimuth angle as x but a 
different elevation angle, the acoustic pressures at x and x′ are 

output at the same pixel corresponding to (rc, c). This is 
shown in Fig. 4. 

Thus, acoustic images are represented by three parameters: 

r, , and p. This means that pixels on acoustic images 
corresponding to the area where acoustic waves cannot travel 
(e.g., behind underwater objects) have no acoustic pressure 
values, so they rendered black in color (a black area in an 
acoustic image is called an acoustic shadow, as shown in 
Fig. 2). In addition, if multiple acoustic waves travel the same 
distance in identical beam slices, the numbers of acoustic 
pressures regarding those acoustic waves overlap at the same 
pixel on the acoustic image. For instance, in Fig. 4, because 
the upper side and part of the right side of the object are 
located at the same distance from the acoustic camera in 
identical beam slices, multiple acoustic pressure values 
overlap on the acoustic image. When the data overlap, the 
displayed pixel values are the aggregate of acoustic pressure 
values at each measurement point. 

However, the pixel value is not a raw acoustic pressure 
value but a scale-converted color. Because the acoustic image 
is represented in grayscale, the applicable value mapped to 
each pixel is in grayscale. Each acoustic pressure value is 
rendered based on the correspondence between the range of all 
acoustic pressure values and the grayscale. 

III. OVERVIEW OF 3D MEASUREMENT MODEL 

Acoustic images are represented by three parameters: r, , 
and p. In other words, the values for the range r and azimuth 

angle  are directly obtained from the pixel coordinate of 

acoustic image, but the elevation angle  is missing. Therefore, 
it is generally impossible to recover the 3D information of 
objects by using an acoustic image. This section briefly 
explains the proposed theoretical methodology to recover 3D 
coordinates from two acoustic images from different 
viewpoints [18]. 

First, extracting feature points from an acoustic image in 
advance is an important task. Feature points indicate 
distinguishable points on acoustic images, such as corners or 
areas whose materials differ from each other because sound 
energy changes rapidly with such structures. The method for 
extracting and associating such feature points is described in 
detail in the next section. 

It is impossible to obtain 3D coordinates of each feature 
point from an acoustic image, as mentioned above. 
Fortunately, however, candidates 

Vn
P

Car
 with respect to the 

global Cartesian coordinate frame can be predicted as follows: 
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where N indicates the number of candidates for the viewpoint 

n. 
Vn1 and 

VnN are respectively zero and cam (maximum 
elevation angle). Therefore, a larger number of candidates N 
improves the accuracy because the candidate points are denser 
given that it represents a discretization resolution. The 
superscript Vn represents a viewpoint (V1 or V2 in this case). 
Here, each 

Vn
pi

Car
 is calculated from each 

Vn
pi based on the 

relationship between the spherical and Cartesian coordinate 
frames as follows. 
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After the above process is applied to acoustic images of 
each viewpoint, the 3D coordinates of the feature point p

Car
 

can be determined by finding an arc–arc intersection between 
the two candidates 

V1
P

Car
 and 

V2
P

Car
. Note that the set of 

candidates 
Vn

P
Car

 is in the shape of an arc (as shown in blue 
dotted line in Fig. 4 (a)). Because an intersection point may not 
exist due to various noises, the minimum distance between 
two arcs is calculated in actual implementation as follows:  
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Figure 5. Conceptual image of the 3D measurement model using two 

acoustic viewpoints. 
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Here, Euclidian distance function dist(·) is applied to calculate 
minimum distance between two arcs. Figure 5 depicts a 
conceptual image of the 3D measurement model using the two 
acoustic viewpoints mentioned above. 

IV. FEATURE EXTRACTION OF ACOUSTIC IMAGES 

The previous section briefly presented a methodology for 
the 3D measurement of underwater objects by using two 
different acoustic views. However, the premise that 
underwater objects are known objects is indispensable not 
only to extract feature points from each acoustic image but 
also to determine the correspondences between them. To 
apply the 3D measurement methodology to unknown objects, 
an automated system for determining the correspondences 
between feature points from each acoustic image and 
extracting them is necessary. Therefore, a novel methodology 
is proposed in this section for automated feature extraction and 
association that is applicable to 3D measurement of unknown 
underwater objects. The approach assumes that extracted 
features in one viewpoint are visible from another viewpoint.  

A. Extraction 

In the proposed methodology, feature points indicate 
distinguishable points where acoustic pressure values change 
rapidly in the acoustic images. In the fields of computer vision, 
many studies about point feature extraction for the optical 
image, which includes SIFT [20] or SURF [21], have been 
proposed. However, these do not work well in the acoustic 
images given that the configuration of the acoustic image is 
completely different from the optical camera image as 
described in section II.  

Our methodology limits the region of interest (ROI) to the 
area where acoustic pressure values are highest (white areas in 
acoustic images). Figure 6 shows the entire feature point 
extraction process. To improve the accuracy of the feature 
point extraction, the acoustic images are mapped in black 
except for the ROI (Fig. 6 (b)). Then, the contours of the 
images are extracted by Canny edge detection (Fig. 6 (c)). Not 
only the lines with a high level of confidence but also the 
endpoints of the line segments are extracted by probabilistic 

Hough transform [22] after contour detection (Figs. 6 (d) and 
(e)). The endpoints of the extracted line segments are utilized 
as feature points because they must be theoretically 
distinguishable on acoustic images. 

B. Association 

A geometric design is used to find correspondences 
between feature points on each acoustic image. As described 
in the previous section, feature point candidates, which 
presumably include the real coordinates, make part of an arc. 

 

(a) (c)(b) (d) (f)(e)
 

Figure 6. Process to extract feature points from an acoustic image: (a) original image, (b) designation of ROI, (c) contours of the image extracted by Canny 

edge detection, (d) extraction of lines with a high level of confidence by the probabilistic Hough transform, (e) extraction of endpoints of the lines as feature 

points, and (f) the feature points on the original image. 

 

Set of candidates on acoustic 

image of viewpoint 2: V1àV2G

Figure 7. Conceptual image of the geometric design to find correspondences 

between feature points on each acoustic image. 

TABLE I.  SPECIFICATIONS OF ARIS EXPLORER 3000 

Specification item [Unit] Value 

Identification frequency [MHz] 3.0 

Identification range scope rcam [m] 5.0 

Azimuth angle cam [deg] 32.0 

Elevation angle cam [deg] 14.0 

Field of view [deg × deg] 32.0 × 14.0 

Beam width [deg] 0.25 

Number of transducer beams 128 

 



 

 

 

The proposed feature association methodology utilizes the 
imaginary arcs comprising the candidates. Figure 7 shows an 
example of finding correspondences between feature points. 
The set of candidates for the feature point p from viewpoint 1 
is represented by 

v1
P

Car
, as given in Eq. (1). Next, the 

imaginary arcs made from viewpoint 1 (i.e., the set of 
candidates for the feature point 

v1
P) are projected onto an 

acoustic image of viewpoint 2. The set of projected points on 

an acoustic image of viewpoint 2 is defined as 
v1àv2

G. With 
respect to an acoustic image from viewpoint 2, there must be 

at least one feature point which is on the curve 
v1àv2

G because 
the feature point p that makes the arc is also taken from 
viewpoint 2. 

However, more than one feature point (from viewpoint 2) 

is likely to be on the line 
v1àv2

G. In such cases, the index of the 

projected points that make up the line 
v1àv2

G serves to 
distinguish whether or not the feature points from viewpoint 2 
actually correspond with the feature point p from viewpoint 1. 
Here, measuring the real 3D coordinates of the candidate 
feature points greatly helps with the distinguishing because the 
calculation results of the minimum distances (described in the 
previous section) can be selection criteria. When the distance 
between both derived 3D coordinates is less than the threshold 

, the feature point on the line 
v1àv2

G is determined as the 

corresponding point with the feature point p from viewpoint 1. 

Here, the threshold  is set to the maximum distance between 
feature points in a real environment when they have the same 
elevation angle. This is because of the uncertainty that 3D 
reconstructed feature points separated from vertices of 
underwater objects by more than that distance can be 
considered as vertices of underwater objects. 

V. EXPERIMENTAL RESULTS 

This section describes the results of a real data experiment 
performed with ARIS EXPLORER 3000, as shown in 
Fig. 8 (a), to validate the proposed methodologies. The 
detailed specifications of ARIS EXPLORER 300 used in this 
study are shown in Table I. A triangular prism (110L mm × 
220H mm) was used as the underwater object, as shown in 
Fig. 8 (b). The acoustic camera was located higher than the 
objects to insonify acoustic waves at the objects diagonally. 
The distance from the prism to the acoustic camera was set to 
1.35 m, and two acoustic images were acquired at different 
viewpoints by rotating the target object and the pitch angle of 

the acoustic camera . Changing the acoustic camera poses 
allowed different incidence angles to be obtained at the same 
points on the underwater object. Figure 8 (c) shows 
conceptual images of the changing the viewpoint.  

(b) (c)(a)
 

Figure 8. Experimental setup: (a) acoustic camera ARIS EXPLORER 3000 fixed to steel bar, (b) triangular prism used in the experiment, and (c) a conceptual 
image of environment settings for the experiment. 
 

(a) (b) (c) (d) (e) (f)

Viewpoint 1

Viewpoint 2

Figure 9. Feature extraction procedure and results from the triangular prism with respect to viewpoint 1 (top) and viewpoint 2 (bottom). Yellow squares 

represent the ROI: (a) original images, (b) designation of ROIs, (c) contours of the images extracted by Canny edge detection, (d) extraction of lines with a 
high level of confidence by probabilistic Hough transform, (e) extraction of endpoints of the lines as feature points, and (f) feature points on the original 

images. 
 



 

 

 

Figure 9 (top) shows the feature extraction procedure and 
results for the triangular prism with respect to one viewpoint. 
Note that the corresponding conceptual images are illustrated 
in Fig. 6. Point features were extracted from the corners of the 
triangular prism. Similarly, the feature extraction procedure 
with respect to another viewpoint was also performed, as 
shown in Fig. 9 (bottom). 

Figure 10 shows the results of finding correspondences 
between feature points using the method presented in 
subsection IV.B. In this experiment, two extracted feature 
points with the largest distance between them among all 
extracted feature points were selected to determine the 

threshold . The distance between the selected two feature 

points in the real space when given the same elevation angle 

value was adopted as the value of threshold. The results 
(Figs. 9 and 10) showed that the proposed method described in 
section IV not only extracted feature points from each acoustic 
image but also determined the correspondences between them. 
Thus, it is applicable to 3D measurements, even for unknown 
objects.  

Next, the 3D measurement of feature points was 
performed by using the proposed methodology described in 
section III. Figure 11 presents the results of the 3D 
reconstructed feature points with the ground truth. Table II 
compares the measured values with the ground truth and lists 
the root mean square errors. The results showed that the 
proposed methodologies are effective for the 3D measurement 
of underwater objects. However, as indicated in Table II, 
errors of approximately 0.014–0.027 m occurred. 

The errors in the real data experiments can be explained as 
follows. The first problem was with the range measurement, 
which is strongly influenced by errors in acoustic speed. The 
possible error of the measured acoustic speed is known to be 
10 m/s, which is approximately 0.667 % of the actual acoustic 
speed. As a result, an error of approximately 0.01 m in the 
range can occur when an object is located 1.5 m away from the 
acoustic cameras. The second problem was the extraction of 
feature points on acoustic images. Although acoustic cameras 
have outstanding visibility even in dark or turbid water, 
problems such as noise, multipath reflection, and scattering 
remains unsolved. Moreover, when bordering beam slices 
have a greater difference in acoustic pressure than 3 dB, the 
acoustic pressure values tend to be output on the neighboring 
beam. Therefore, areas where materials or the incidence angle 
of acoustic waves are greatly different from others tend to 
interfere with the output results of bordering beam slices, even 
though such areas are simultaneously considered to be 
distinguishable points for measuring 3D information. There 
were problems with extracting feature points from the acoustic 
image in the real experiment; for instance, the edge of the 
triangle prism was rounded at the end, as shown in Fig. 9 (b). 
The third problem was finding the exact location of the 
transmitter (i.e., origin point of the generated acoustic waves) 
which needs precise camera localization. The location of the 
transmitter could be calculated by using the floorplan. 
However, even though the location of the transmitter was 
guessed from the position relationships, the exact location of 
the transmitter was difficult to calculate. This also reduced the 
accuracy of the 3D measurement. Consequently, problems 
with the range measurement, exact extraction of feature points 
on acoustic images, and finding the exact location of the 
transmitter can be associated with the occurrence of errors. 

(a) (b) (c)

(d) (e) (f)

Figure 10. Finding correspondences between feature points: (a), (b), and (c) 

real acoustic images of the triangular prism with respect to viewpoint 1 and 

(d), (e), and (f) real acoustic images of the triangular prism with respect to 
viewpoint 2. The red point in (a) is a reference feature point to find the 

corresponding point in (d), and the red point in (d) is determined as 

corresponding by the red plotted line. Other correspondences can also be 
seen in (b), (e) and (c), (f). 

 

(a) (b)

(c) (d)

r

pq

Figure 11. Experimental results for 3D measurement of the triangular prism. 

The 3D coordinates of the triangular prism’s three vertices were measured 
from the real experiment: (a) 2D floorplan drawn on the x-y plane, (b) 2-D 

floorplan drawn on the x-z plane, (c) 2D floorplan drawn on the y-z plane, 

and (d) projection plan. The red circles indicate the ground truth, and the 
blue diamonds indicate the measured values. 

 

TABLE II.  EXPERIMENTAL RESULTS FOR 3D MEASUREMENT 

Vertex 
Ground truth 

(x, y, z) [m] 

Measured value  

(x, y, z) [m] 

RMSE 

[m] 

p (1.564, 1.500, 0.220) 

(1.541, 1.491, 0.191) 

(1.557, 1.502, 0.196) 

(1.541, 1.488, 0.190) 

0.022 

0.014 

0.023 

q (1.468, 1.555, 0.220) 
(1.442, 1.561, 0.187) 

(1.434, 1.561, 0.188) 

0.025 

0.027 

r (1.468, 1.445, 0.220) 

(1.443, 1.438, 0.205) 

(1.438, 1.437, 0.200) 

(1.444, 1.437, 0.208) 

0.017 

0.021 

0.016 

 



 

 

 

VI. CONCLUSION 

In this paper, a novel scheme for 3D measurement of the 
underwater object using two acoustic views is proposed. In 
order to achieve a complete 3D measurement system that can 
automatically extract feature points from acoustic images and 
determine correspondences between them, a geometric model 
and image processing techniques are adopted. These serve to 
prevent matching failures for feature points to obtain reliable 
3D measurement results. 

An experiment was performed to demonstrate an 
application of the proposed approach in a real environment 
with an acoustic camera. Our system can measure the 3D 
coordinates of feature points on an underwater object even in 
turbid water. Consequently, the proposed methodology can 
deal with unknown objects and greatly contribute to 
performing underwater tasks in real environments. 

Future works related to this paper will involve extending 

our methodologies to manage the various causes of errors 

described in the previous section. Especially, precise 

localization scheme for each viewpoint of the acoustic camera 

should be established. Furthermore, there still remains future 

work on more general structures with smoother and complex 

shapes (e.g., natural objects as shown in Fig. 12) because the 

proposed methodology in this paper could manage the cases 

that the target object has acute corners (i.e., distinguishable 

feature points on acoustic images).  
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Figure 12. An example of difficult case to extract feature points from acoustic 

images: (a) an optical image of a coral and (b) a corresponding acoustic 

image. 


