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Abstract—In this paper, we propose a novel method for global
six degree of freedoms (DoF) localization of a spherical camera
in a man-made environment. Specifically, a 3D-2D matching
method based on line information of a known 3D model of the
environment is proposed. There are two challenging points. First
is to design a unique representation of 2D line information from
the image and 3D line information from the 3D environment
model. Second is to evaluate similarity of the line information
extracted from both a real spherical camera image taken in the
environment and arbitrary 6 DoF poses in the 3D environment
model in order to localize the camera. To deal with the former, a
novel descriptor is designed based on a Hough space for the line
information. Then, earth mover’s distance (EMD) is calculated
to evaluate similarity between the descriptors. We evaluated the
proposed method in a real environment with its 3D model. The
results demonstrated that our proposed method can effectively
estimate the 6 DoF pose of a spherical camera using a single
image.

I. INTRODUCTION

Usage of mobile robots or drones has been expanding
recently. For example, large infrastructures such as bridges
or tunnels often need to be inspected by drones. For these
uses, self-localization of a robot for inspection or monitoring
of man-made structures is an important task. With regard to
self-localization of robots, a Global Positioning System (GPS)
can often be used [1]. However, use of GPS is difficult in places
where signals are weak, e.g. under bridges, tunnels, or indoor
environments. Moreover, drones cannot carry sophisticated
sensors due to their loading limitations. Thus, cameras, which
are lightweight and inexpensive, are a good choice. Especially,
a spherical camera, which can capture in all directions, is
much more effective at self-localization as compared to a
perspective camera. This is because the information obtained
by the perspective camera is not enough due to its limited field
of view, particularly in situations where the robots moves close
to a wall or an obstacle, facing it.

Approaches based on feature points extracted from an
image such as visual SLAM [2] and Parallel Tracking and
Mapping (PTAM) [3] can be effective to estimate the posi-
tion and orientation. However, since it is necessary to track
the feature points in these approach, accumulation of errors
becomes problem in case of images accompanied by moving
long distance. Instead, an approach that estimates the self
position and orientation using the information from the whole
environment can be more effective.

In this work, we focus on 3D environment models such as
CAD models for construction or 3D models built by laser range
finder. Since there are cases in which it is difficult to include
accurate color information in the model, we propose the

Fig. 1. Approach of the proposed method. We extract line information by
generating descriptors from both a spherical camera image and arbitrary poses
in the 3D model. The descriptors are compared to estimate the position and
orientation of the spherical camera.

method to just use shape information. Especially for man-made
environments, 3D line information is available. Therefore,
our proposed method estimates position and orientation of
a spherical camera by matching the line feature distributions
from both arbitrary poses in the 3D environment model and
one real spherical camera image.

Thus, the objective of this research is 6 DoF localization
by 3D-2D matching using the known 3D environment model
and a single spherical image.

II. RELATED WORK

A number of approaches have been developed in 3D-2D
matching for the position and orientation estimation for mobile
robots or computer vision applications. Ramalingam et al. [4]
proposed a method for estimating the positions and orientations
of omnidirectional camera images using skylines. Ishizuka et
al. [5] and Cham et al. [6] also proposed methods using
the line information of the known 3D environment model.
However, these methods can estimate only 3 DoF pose on
a plane for a camera in a vertical orientation and cannot be
applied to complete 6 DoF estimation problems. For 6 DoF
localization, Ji et al. [7] and Bleser et al. [8] proposed methods
for estimating the position and orientation of a perspective
camera using the line information of a known 3D environment
model. However, these methods can be applied to only a
normal perspective projection camera and distortion of lines
must be considered for a spherical camera.



Fig. 2. An equirectangular image. 3D lines in the environment are represented
as red lines in this equirectangular image.

In this paper, a novel method of 6 DoF estimation of
the position and orientation using the line information from
a spherical image is proposed.

III. PROPOSED METHOD

A. Overview

Figure 1 shows the approach of our method. Line informa-
tion is extracted in order to generate descriptors from both a
spherical camera image and arbitrary poses in the 3D model.
The descriptor in this method represents the distributions of
3D straight lines in the scene of the environment. Lines in
the environment are projected as great circles on the spherical
image. A great circle is a circle on the surface of a sphere
that passes through its center and divides the sphere into
two halves. These lines can be defined by the normal vectors
defined by these circles. Consequently, the distribution of these
normal vectors generate the descriptors. The descriptors cor-
respond to the positions and orientations of the view points in
the environment. Therefore, it is possible to estimate position
and orientation by evaluating similarity of the descriptors from
both a spherical camera image and arbitrary poses in the 3D
model. The similarity of them is evaluated by earth mover’s
distance (EMD) [9] which has an advantage of being able to
evaluate similarity of multidimensional distributions. The pose
where computed EMD is the minimum in the environment is
the final estimation result.

B. Generation of Descriptors

The camera pose is estimated by comparing the descriptors
from both a 2D spherical image and the 3D environmental
model as mentioned above. The descriptors of the line infor-
mation from 2D spherical image can be obtained from the lines
within the image. Meanwhile, the descriptors from arbitrary
poses in the 3D model can be obtained directly from the line
information contained in the model. Since these descriptors
depend on the position and orientation of a camera, they can
describe not only the line information but also the information
of the position and orientation of the camera.

1) A descriptor from a spherical image: The line informa-
tion is extracted by a randomized Hough transform to generate
descriptor. Lines in the environment are represented as red
lines in an equirectangular image as shown in Fig. 2. In a
spherical image, 3D lines in the environment are projected as
great circles as shown in Fig. 3. A vector n denotes a unit
normal vector with respect to the plane defined by the great

Fig. 3. Schematic of projection of a line and transforming a unit normal vector
into spherical Hough space. In a spherical image, 3D lines in the environment
are projected as great circles. n is a unit normal vector with respect to the
plane defined by the great circle.

circle. This great circle can define a line uniquely. Accordingly,
the Hough space is defined as a unit sphere that takes unit
normal vectors as parameters that define environmental line
information. The line information is extracted by transforming
the unit normal vector into this spherical Hough space. This
expression of distribution of lines on the spherical Hough space
can describe the line information and the pose of a spherical
camera, i.e. the spherical Hough space is the descriptor from
a spherical image.

In order to obtain these unit vectors, line detection in the
spherical image is necessary. The lines are detected based on
a randomized Hough transform. For Hough transform, edge
detection is necessary. First, a real spherical image is blurred
by a Gaussian operator for reduction of influences of noise.
Next, the edge image is generated from the blurred image using
the Canny edge detection operator. Here, we refer to points
on the edge as edge points. Randomized Hough transform
implements a voting procedure repeatedly for a certain number
of times. The voting procedure is as follows:

1) Select two edge points from the edge image randomly
(because two points can completely define a line).

2) Derive a unit normal vector by a cross product of
position vectors of the selected points.

3) Update the spherical Hough space with voting the
derived unit normal vector.

If a newly voted point is close to previously voted ones, they
are averaged and a new point is created. In order to make sure
that the two points selected are from the same line, a constraint
is applied to limit the distance between the two points. In
this way, the spherical Hough space voted repeatedly is the
descriptor from a real spherical image.

2) Descriptors from 3D environmental model: To extract
line information from the 3D environmental model, a line map
that contains only line information of the 3D environment
model is prepared. For example, the lines of Fig. 4(a) are
drawn as Fig. 4(b). In order to extract the descriptor of line
information at an arbitrary camera pose, the camera pose is
set as the origin and orientation of the 3D line map. All
calculations are done with respect to the camera pose. In the
same way as the descriptor from a spherical image, the lines
in the line map are transformed directly into the spherical
Hough space. A unit normal vector n is derived by a cross
product of two position vectors p1 and p2 of the start and end
points of the line. These unit normal vectors are inserted into
a spherical hough space which forms the descriptor from a 3D



Fig. 4. 3D environment model and line map: (a) 3D environment model, (b)
line map in which only lines are drawn

environmental model with respect to the arbitrarily given pose.
Thus, the descriptor for any arbitrary camera pose in the 3D
model can be generated.

C. Similarity Evaluation of the Descriptors

The similarity of the descriptors mentioned above is cal-
culated as below. For line based matching, it is often the
case that lines are not detected perfectly. Wrong lines can
be detected and lines can be missed or slightly displaced.
Therefore, the evaluation function should be robust. Then, we
adopt earth mover’s distance (EMD) as the evaluation function
which computes the similarity of the descriptors. EMD is
a measure of the distance between two multi-dimensional
distributions. It measures the amount of work needed to convert
one distribution into another. Due to this, unlike the L2 norm,
it can take partial matches into account in a natural way. For
example, if two distributions are slightly displaced from each
other, the L2 norm will result in a high error. However, the
EMD between them will remain small. In other words, it can
manage line detection errors. That is why EMD is qualified to
compute the similarity of the descriptors.

In our case, the descriptors can be treated as spherical
distributions in order to evaluate their similarity using EMD.
In order to compute EMD between two descriptors, each
descriptor is convert to a set of clusters Q.
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]
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where q and w denote the coordinates of the descriptor and
the weight values that belongs to that cluster, respectively.
The weight w for the descriptor from a spherical image is the
number of votes in the randomized Hough transform. As for
the descriptor from a 3D model, the weight w is the angle
between p1 and p2 as seen from the camera center. This
is because lines that are closer to the image are projected
as longer and are more important since they are easy to be
detected from a real spherical image. The size of cluster N is
equal to number of the unit normal vectors transformed into
the spherical Hough space. EMD is defined as follows:

EMD(Q(1),Q(2)) =
ΣN(1)

i=1 ΣN(2)

j=1 fijdij

ΣN(1)

i=1 ΣN(2)

j=1 fij
, (3)

where dij denotes user-defined ground distance. The distance
dij is the angle between two unit normal vectors computed as
follows:

dij = arccos(n
(1)
i · n(2)

j ), (4)

where n(1) and n(2) denote the unit normal vector of the
descriptors from a real spherical image and 3D environmental
model, respectively. The variable fij denotes a flow element

Fig. 5. Experimental setup showing the RICOH THETA S spherical camera
placed in the environment.

Fig. 6. The line map of the experimental environment. Spherical images
were taken at points 1 to 3 at different orientations as shown in Table I.

TABLE I. THE POSITIONS AND ORIENTATIONS OF THE POINTS 1 TO 3.

Pose x [m] y [m] z [m] ϕ [deg] θ [deg] ψ [deg]
1 2.0 4.1 0.9 0 0 0
2 5.6 4.1 0.9 0 -45 0
3 3.8 2.8 0.9 90 0 180

that is derived by solving the transportation problem using the
weight w. Additional details on EMD can be found in [9].

The minimum value of EMD is 0 and value of EMD
becomes larger as similarity of the descriptors is lower. The
position and orientation of the camera is estimated as that
pose whose EMD from the descriptor obtained by the spherical
image becomes the minimum.

IV. EXPERIMENT

A. Experimental Setup

A spherical camera used for this experiment was RICOH
THETA S shown in Fig. 5. The 3D environment model of
a corridor was prepared in advance. Figure 6 shows the line
map of the experimental environment. Spherical images were
taken at points 1 to 3 with respective orientations. The position
and orientation of each point are shown in Table I. This line
map was created by manually determined start points and
end points of the lines from the 3D environment map. The
descriptors from the 3D environmental model with respect to



arbitrary poses were generated by using this line map. The
descriptors from the captured spherical images were generated
by manually detecting the lines in each image.

In order to estimate the position and orientation, a full
coarse-to-fine search in the environment was conducted as
a 3 step approach. In the first step, EMD was calculated at
every 0.5 m in the direction of each axis and every 45 deg
rotation around each axis and the pose whose EMD was at the
minimum was decided. In the second step, with reference to
the result of the first step, EMD was calculated at every 0.1 m
in the direction of each axis within ±0.5 m and every 15 deg
rotation around each axis within ±45 deg. In the third step,
EMD was calculated at every 1 deg rotation around each axis
with reference to the result of second step.

The pose whose EMD was minimum in the third step was
regarded as the final estimation result. In short, estimation of
the position and orientation was performed with a least count
of 0.1 m and 1 deg.

B. Experimental Result

The estimation errors for the 3 poses are shown in Table II.
Our proposed method succeeded in estimating the position and
orientation of the spherical camera up to 0.3 m and 1 deg for
each axis.

TABLE II. THE ERRORS OF THE ESTIMATION RESULT.

Pose x [m] y [m] z [m] ϕ [deg] θ [deg] ψ [deg]
1 0.1 0.0 0.0 1 0 1
2 0.0 0.0 0.0 1 1 1
3 0.3 0.1 0.1 1 1 0

It is noted that the estimation errors at the point 3 are
slightly larger than those of the point 1 and 2. This is because
point 3 is far from every wall in the environment as compared
to points 1 and 2. In the computation of EMD, the weight
w is designed to become larger as the lines come closer
to the camera because they can be easily detected. In the
case of point 3, the camera position is almost at the center
of the experimental environment, far away from all lines as
Fig. 7, thus making line detection difficult. Moreover, the effect
of noise is also enhanced in such cases. Nevertheless, the
accuracy of this result is adequate. Thus, the effectiveness of
our method is confirmed.

V. CONCLUSION

A novel method for 6 DoF localization of a spherical
camera within a known 3D model of a man-made environment
was proposed in this study. A new descriptor was designed
based on a spherical Hough space for representation of line
information from both a 2D spherical image and a 3D envi-
ronmental model. EMD was used to effectively and robustly
compute the similarity between these descriptors. Finally, an
experiment was conducted in a real environment and the results
demonstrate that our proposed method can effectively estimate
the 6 DoF pose of a spherical camera up to 0.3 m and 1 deg in
each axis within a 3D model using a single spherical image.

As future work, we plan to improve the automatic line
detection from a real spherical image to make it robust and
accurate as well as to develop a method to find the pose without
resorting to a full search.

Fig. 7. The spherical image taken at the point 3. Its position is far from
every wall and there are no lines that are very close to the camera.
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