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Abstract— This paper presents an approach to detect and
solve the kidnapped robot problem using range data from a
laser range finder and Wifi signals. Localization based on range
finders has high accuracy, but fails to detect the kidnapped
robot problem, a situation where a well-localized robot is moved
to a random location without itself noticing about it. On the
other hand, localization based on wifi signals has very high
reliability and can be used to detect the occurrence of the
kidnapped robot problem; but lacks accuracy. In our approach,
a probability density function is constructed using particles
sampled from the wifi signal models using kernel density
estimation, then the likelihood of every laser range finder
particle with respect to the constructed probability density
function is calculated. The mobile robot reset its localization
process if these probabilities are too low.

I. INTRODUCTION

Localization is one of the fundamental abilities that any
mobile robot should possess. Localization enables mobile
robots to identify their own location in an area based on a
prebuilt map. This is a requisite before they can perform
most tasks, such as office documents delivery, museum
tour guidance, etc. In order to perform robust mobile robot
localization, many approaches have been developed in the
past. The sensors employed play an important role in deter-
mining the accuracy of those approaches. Sensors such as
Laser Range Finder (LRF) and RGB-D cameras are some
of the most popular sensors for indoor localization. Another
alternative is to use wireless signals such as Wifi for the
localization. However, due to its lower accuracy, this sensor
is not so popular.

As the approaches for mobile robot localization are getting
mature, more complex problems have started to be addressed
such as the Kidnapped Robot Problem (KRP). In this paper,
KRP is the main issue that will be addressed. KRP is a
situation where a well-localized mobile robot is teleported
to an arbitrary location without being told. KRP differs
from global mobile robot localization as the mobile robot
strongly believes itself to be somewhere else at the time
of the kidnapping, as shown in Fig. 1, making it much
more difficult to solve. KRP is considered as the worst-case
scenario for sensor failure, thus, is often used to test mobile
robots recovery ability when localization failure occurs.
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Fig. 1. When KRP occurs, LRF particles (green arrows) fail to relocate,
making the robot belief it is still located at its previous location; while Wifi
particles (yellow arrows) successffully relocate near to its current location
(red dot).

II. RELATED RESEARCH

One popular algorithm for localization is the Monte Carlo
Localization (MCL) algorithm [1]–[5]. MCL is preferred
over other approaches as it has been proved to be accurate
and robust in tackling the robot localization problem [1]. For
example, in [1], using a LRF and a sonar, MCL was preferred
over Kalman-filters because of its ability to represent multi-
modal distributions, enabling global localization. And over
grid-based Markov localization algorithms for its higher
localization accuracies.

MCL is not limited to range sensors, and can be applied
to most sensors. For example, MCL has been used with a
color camera in [2]; where features extracted from the camera
images, such as flags and goals, were used as data input for
the MCL. It is important to note that MCL’s localization
depends on the sensitivity of the sensor it uses. Therefore,
sensor selection is essential. Among popular sensors for
localization, LRF has the minimal error in environments with
visible features [6]. Thus, in this work, LRF is chosen as one
of the sensors to be used.

Unfortunately, even with such accurate sensor, MCL fails
to localize the mobile robot when the KRP occurs. This is
due to one of the characteristics of MCL itself. MCL employs
a particle filter to localize the mobile robot, and via this filter,
the particles are first distributed evenly on the map and then
converge into the area where the robot is likely located. If
the mobile robot is then kidnapped to an arbitrary position
and that position is not covered by any particles, MCL will
not be able to localize the robot [7].

For instance, Lenser et al. [8] proposed an extension to
MCL, named Sensor Resetting Localization (SRL). In classic
MCL, the localization error is corrected little by little based
on each sensor reading and motion model. Hence, huge errors



occurring in short times, such as collision or teleportation
(KRP) due to unexpected situations can not be corrected.
Under such situations, the robot is lost and MCL fails to
localize the robot. However, SRL manages to localize the
robot even under such situation by replacing some samples
of the estimated locations with samples drawn directly from
the probability distribution based on the sensor readings.
By slowly replacing these samples, the estimated probability
distribution slowly shifts to the correct robot location. Unfor-
tunately, SRL faces needless resetting due to wrong sensor
readings. To solve this, an expansion of SRL called ER
method was proposed by R. Ueda et al. [9]. The difference
between ER method and SRL is that ER method constructs
a probability distribution based on its previous probability
distribution, not based on it newest sensor readings. As a
result, the shape of the probability distribution is not changed
during the resetting but expanded. The expanded probability
distribution would covers the actual robot location and then
converge to that location.

Another type of robot localization uses Received Signal
Strength (RSS) measurements emitted by wireless devices
such as a Wifi modems to perform mobile robot localization
[10]–[12]. One of the benefits of using wireless-based indoor
localization is that robot location can be easily sampled
directly from the sensor’s models and current sensor mea-
surements, allowing for fast global localization. Therefore,
the robot can always be localized, even when the mobile
robot is kidnapped, as long as the mobile robot is in the range
of the Wifi coverage [12]. However, the accuracy of wireless-
based localization is lower than that of range sensor based
localization, the average error of wireless-based localization
could reach few meters [6].

In summary, robot localization using MCL algorithm with
LRF has high accuracy but fails when KRP occurs, while
robot localization that applies MCL algorithm with Wifi
signals has low accuracy but is robust to KRP. Thus, it
would be best if both approaches can be combined while
keeping both benefits: high accuracy and robustness to KRP.
Multi-sensor systems including Wifi have been previously
proposed; for instance, Ito et al. [13] proposed the usage
of both RGB-D camera images and Wifi signals when
performing mobile robot localization via MCL, and the
proposed approach was called W-RGB-D approach. In this
work, RGB-D camera was used to extract features from
the images captured, which were used as data input for the
MCL algorithm. For initialization, Wifi signals were sampled
and a probability density function (PDF) was constructed
based on the signal strength. Particles were initialized at area
with high probabilities. Then, localization which used the
features mentioned above was conducted. In this work, they
managed to perform global initialization using Wifi signal
as the initiative particles for the MCL algorithm. In their
approach, detection of the KRP while the robot stands still
was mentioned, but no further details were provided.

In this work, we propose an approach for detecting and
solving the KRP using both LRF and Wifi signal measure-
ments while the robot is moving.

III. APPROACH

In this section, we describe our proposed approach, which
is composed of a LRF-based MCL, a Wireless based local-
ization algorithm, and our proposed method to detect and
solve the KRP. Our approach’s flow is shown in Fig. 2.

Fig. 2. Program flow of the proposed approach.

A. Monte Carlo Localization

In our approach, we employed MCL [14] which represents
the belief of the position of the mobile robot as a cluster
of weighted samples called particles. These particles have
four important parameters: x, y, θ, and p, where x, y and θ
represent the mobile robot’s position in the map, and p is a
weight, analogous to a probability/likelihood.

In MCL, the particles are updated via three steps: predic-
tion, correction and resampling. This process is also called
particle filtering. In the prediction stage, MCL uses a motion
model to predict the next coordinates of each particles based
on the robot movement, with a certain degree of errors. Next,
in the correction stage, MCL uses an observation model to
compute the weight of those particles based on the newest
sensor readings. Lastly, in the resampling stage, new particles
are drawn from the existing particles and replace them.
Particles with higher weights have a higher chance to be
reselected, and thus at the end of the resampling stage, the
new cluster of particles is more focused on those high weight
particles, converging to the real mobile robot position.

B. LRF based MCL

Without any prior information, LRF-based MCL uni-
formly distributes its particles across the map and those
particles will be converged into a single high likelihood robot
position. This process is necessary for global localization.
Although LRF-based MCL is fast and can achieve high
accuracy, it is not reliable when it is used to perform
global localization in symmetric environments. Usually, in
symmetric environments, where multiple possible locations
need to be traced for some time, LRF-based localization
tends to converge into one of those possible locations in
short time, leading to incorrect robot localization [15]. When
the global localization fails, the whole process need to be
restarted, thus wasting a lot of time. For initialziation, instead
of sampling uniformly, it is possible to sample directly
from the Wifi posteriors, as done in [13]. Such initialization



schemes reduce convergence time and enhance robustness. In
our approach, we noted that when a single Wifi measurement
was used for bootstrapping, LRF-based MCL sometimes
failed to converge. LRF being very precise sensors, require
high concentration of samples at initialization to guarantee
convergence; which did not always occured. Figure 3a shows
an example of samples obtained from a single measurement.
To increase samples concentration, we made particles first
converge over several Wifi measurements in a MCL-like
approach. This yielded higher concentration of particles, as
shown in Fig. 3b, lowering the risk of convergence failures.
By doing so, after bootstrapping the concentrated particles,
LRF-based MCL managed to not only always successfully
converge, but also achieve higher accuracies. The disadvan-
tage is that some time was wasted while waiting for the
measurements in the bootstrapping stage.

(a) Initialization from single
measurement

(b) After 5 measurements

Fig. 3. The yellow arrows are the Wifi particles. In (a), the Wifi particles are
widely distributed, but after 5 measurements, the Wifi particles converged
and become more concentrated (b).

C. Wireless based localization

In this work, Gaussian Processes (GPs) and Path loss
models are used to learn location-signal strength mappings.
The exact approach taken in this work is the same presented
in [12]. For completeness of ideas, the core components of
this approach are presented in this subsection.

Given a training dataset, GPs can learn a continuous
function where each point is considered to have normal
distribution. For our problem we define our training dataset
as (X,Z) where X ∈ Rn×2 is the location matrix of n input
samples xi ∈ R2; and Z ∈ Rn×m the matrix of received
signal strength RSS measurements vector zi ∈ Rm, with
zi = [z(i,0), · · · , z(i,m−1)] being the signal strength infor-
mation from m different access points in the environment.

The GP approach makes two assumptions. First, each
data pair (xi, zi) is assumed to be drawn from a noisy
process zi = f(xi) + ε, where ε is the noise generated
from a Gaussian distribution with known variance σ2

n. Sec-
ond, any two output values are assumed to be correlated
by a covariance function based on their input values as
cov(zp, zq) = k(xp,xq) + σ2

nδpq , where k(xp,xq) is a
kernel, σ2

n the variance of ε and δpq is one only if p = q
and zero otherwise. Given these assumptions, for any finite
number of data points, the GP can be considered to have a

multivariate Gaussian distribution:

z ∼ N (m(x), k(xp,xq) + σ2
n), (1)

and therefore be fully defined by a mean function m(x) and
a kernel function k(xp,xq).

For wireless based localization, the chosen mean function
is a Path loss model (which is a parametric function which
is a simplification of the physical phenomena of electromag-
netic wave propagation through space) of the form:

PL(x) = k0− k1 log(d) + εpl, (2)

with d being the euclidean distance between the position
where the RSS measurements were taken and the position
of the access point |x− (apx, , apy)|, k a positive constant
and εpl a Gaussian noise with variance σ2

pl.
While the kernel is chosen to be a squared exponential

kernel:

kse(xp,xq) = σ2
se exp

(
−|xp − xq|2

l2se

)
, (3)

with free parameters σ2
se (known as the signal variance), and

lse (known as the length-scale). These free parameters are
often referred to as hyper-parameters (θse = [σ2

se, lse]), and
are learned from the training data. All parameters in eq. (2)
and (3) are learned from the training dataset.

For making new predictions z∗ at any arbitrary location
x∗, we can condition the predicted signal strength vector on
its location and the training dataset, obtaining

p(z∗|x∗,X,Z) ∼ N (E[z∗], var(z∗)) (4)

where,

E[z∗] = PL(x∗) + kT
∗ (K+ σ2

nIn)
−1(Z− PL(X)), (5)

var(z∗) = k∗∗ − kT
∗ (K+ σ2

nIn)
−1k∗, (6)

with K = cov(X,X) being the covariance matrix between
all training points X, usually called Gram Matrix; k∗ =
cov(X,x∗) the covariance vector that relates the training
points X and the arbitrary location x∗; k∗∗ = cov(x∗,x∗)
the variance of the location.

Importantly for our approach, this can be efficiently com-
puted as both the inversion of the Gram matrix, and its prod-
uct with the difference between the training outputs (Z) and
the predictions of the inputs by the Path loss model (PL(X)),
is fixed for a set of learned kernel hyper-parameters. There-
fore can be cache, making mean predictions scale in O(n)
and variance predictions in O(n2) with respect to the number
of training data points. In practice, for datasets in the order
of several hundreds of points and few hundreds of access
points, predictions can be computed extremely fast; and even
learning which scales in O(n3) is performed in just a few
seconds. However, if larger training datasets are required to
be used scalability can be greatly improved to the order of
107 points using distributed Gaussian Processes [16].

Mean and variance prediction computations are extremely
important, as for new signal strength measurements, infer-
ences are computed solely from these two metrics as:

p(x∗|zj ,X,Z) = Φ(zj − E[z∗], var(z∗)). (7)



D. Kidnapped robot problem

We can detect the occurrence of the KRP by identifying
the distance between the Wifi particles cluster and LRF
particles cluster. However, calculating the average distance
between both clusters, which are two different probability
distributions, is an oversimplification. In this section, we will
discuss the method implemented in our approach, which used
to detect the KRP.

1) Detecting KRP: In our approach, we have two set of
particles operating while the localization is running: those
from using a LRF and those sampled directly from the
Wifi posterior particles. MCL with LRF plays the role of
localize the mobile robot while the Wifi particles play the
role of detecting the KRP. In order to detect the occurrence
of KRP, both LRF and Wifi particles need to be compared
and evaluated. We assume that the further away both LRF
and Wifi particles are to each other, the likelihood that KRP
occurred is higher. In order to evaluate this, we built a PDF
based on the Wifi sensor posterior and evaluate the likelihood
of the LRF particles to belong to this distribution. As
mentioned before, the wireless-based localization is robust
to KRP, thus, in our work, the Wifi particles are treated as
the reference to indicate where the robot is, as shown in
Fig. 4. In this work, we argue that the likelihood of LRF
particles to belong to the Wifi PDF is inversely proportional
to the occurrence of KRP. Kernel Density Estimation (KDE)
is chosen as the method to construct the PDF.

(a) No KRP (b) KRP

Fig. 4. When no KRP occurs (a) both LRF particles (green arrows) and
Wifi particles (yellow arrows) are close to the ground truth (red dot). When
KRP occurs (b), LRF particles remain at their previous position, far from
the ground truth; while Wifi particles update their positions to remain close
to the ground truth.

2) Kernel density estimation: KDE is a method to con-
struct PDF via a non-parametric way, which means the value
of parameters such as mean and variance of the data are not
necessary needed in constructing the PDF. Via KDE, each
sample from the reference distribution is assigned a normal
distribution, then all of the normal distributions from the
reference samples are be added up to form the PDF. In this
work we define the kernel density estimator p̂(x∗) of the
probability value p(x∗) at reference location x∗ as:

p̂(x∗) =
1

sh
√

2π

∑
xi∈Xs

exp

(
− (x∗ − xi)(x∗ − xi)

T

2h2

)
,

(8)
where h is a smoothing parameter, usually referred to as
bandwidth; and Xs ∈ Rs×2 is the matrix composed of all s

reference location samples.
The value of h influences the estimation strongly. In our

approach, the value of h is decided using Scott’s Rule:

h = s
−1

(d+4) , (9)

with d = 2 being the number of dimensions of our location
samples.

Then, the probabilities of the evaluating samples can be
calculated based on the reference PDF. A threshold value is
selected, which acts as the indicator for the occurrence of
the KRP. If the mean probability of the evaluating samples
is lower than the threshold, KRP occurs. In this case, the
reference sample was referring to the Wifi particles, while the
evaluating sample was referring to the LRF particles. Figure
5 shows an example of visualizing the PDF using color,
where red represents high probability while blue represent
low probability.

(a) LRF and Wifi particles (b) Probability of a particle
to belong to the Wifi particle
set

Fig. 5. Using Wifi particles (red dots) shown in (a) as inputs, KDE
is capable of generating the PDF of the particles shown in (b). If LRF
particles are then evaluated using this PDF, when KRP has occurred as in
the example, the probabilities are expected to be low.

3) Resetting the localization: When probability obtained
is lower than the threshold, the robot localization is reset
by using Wifi particles as prior information, as a one-time
initialization of LRF particles, as shown in Fig. 6. This is
to narrow down the particles to a certain wide area where
the robot is most probably located at. As mentioned in
the previous section, the Wifi particles were allowed to
converged before being used as to reinitialize the localization.
After the initialization, the sensor data input is switched back
to LRF data which enable the particles to further converge
into a highly precise location.

(a) KRP occurs (b) Reset localization

Fig. 6. When KRP occurs (a), the localization will reset (b) and the particles
will be reinitialized and shift near to the ground truth (red dot).



IV. EXPERIMENT SETUP

Experiments were conducted on the ground floor of the
Engineering Building No. 2 of The University of Tokyo,
Hongo campus by tele-operating a Pioneer 3DX mobile
robot equipped with a LRF and a Wifi sensor. First, the
mobile robot was navigated around the first floor of the
building in order to build the map of that particular floor
and collect the RSS of the Wifi signal emitted by various
Wifi routers. The layout of that particular floor was scanned
using a LRF, which was mounted on the robot, while the
RSS measurements of the Wifi signals were collected via a
laptop, which was put on top of the robot. Fast-Slam [17]
was used to build the map.

Three cases of KRP were emulated in the same floor as
shown in Fig. 7. The red circles indicate the location before
the robot is kidnapped while the purple circles indicate the
location where the robot is being kidnapped to. A trolley
was used to move the mobile robot during the kidnapping
process. The movement of the robot’s wheels during the
kidnapping process were kept at minimal so no odometry
could be recorded which could tell the mobile robot that
kidnapping is happening. At the same time, the LRF was
turned off to prevent the robot identify any environment
changes.

Fig. 7. Paths of robot being kidnapped for each emulated cases.

A. Implementation details

The main software framework was employed on Robot
Operating System (ROS). There are three KRP emulations
named Case 1, Case 2 and Case 3. All emulations were
performed on a Panasonic CF-SX1 with Intel 2.6GHz Quad-
Core i5-2540M and 8GB memory laptop, by using time-
stamped logs of the acquired data.

In our approach, in addition to the normal LRF-based
MCL, for KRP, we added Wifi models and KDE. Wifi models
are sampled in order to obtain the likely robot locations
from given RSS measurements, which is the Wifi particles
initialization process, while the KDE is used to evaluate the
occurrence of the KRP. Furthermore, there is also a update
process where Wifi particles are sampled and used as the
reference samples for the KDE. Both processes running at
0.25Hz. In our approach, the number of particles used in the

LRF-based MCL uses 2000 particles at initialization, which
are reduced to 700 once they converge.

To evaluate the performance of Wifi model and KDE, the
computational time needed for the initialization process and
update process of Wifi model, and the evaluation process of
KDE were recorded and tabulated. the computation time of
three processes are categorized into mean±standard devia-
tion(std) and max as shown in Table I. The Wifi model and
the KDE are executed in the rate of 0.25Hz.

TABLE I
COMPUTATION TIME FOR THREE PROCESSES

Initialization
process [s]

Update
process [s]

Evaluation
process [s]

mean±std max mean±std max mean±std max
Case 1 2.46±0.38 3.13 0.16±0.12 0.74 0.25±0.11 0.86
Case 2 2.33±0.29 2.85 0.10±0.07 0.26 0.25±0.12 0.91
Case 3 2.57±0.52 3.45 0.08±0.07 0.27 0.25±0.11 0.59

Although the sensors data was collected at an earlier time,
during the playback of the data, the data time-stamps were
recreated and adjusted so the robot would belief no time
passed between the beginning and end of the kidnapping.
Thus, the results would be no different from using real time
data obtained on the mobile robot.

In this experiment, for the LRF-based MCL, the maximum
number of particles was set to be 2000 and the minimum
number of particles was 700.

V. RESULTS

For comparison purposes, we run MCL using our ap-
proach, as well as LRF-only and Wifi-only. Localization
errors for all three sets of data were calculated and tabulated.
Figure 8 shows the result of the emulated KRP Case 1, 2
and 3, where the changes of mean Root Mean Squared Error
(RMSE) between the robot position and ground truth, and the
standard deviation (SD) of the particles, before and after the
KRP occurred, are displayed. In addition, the moment where
the particles of our approach converged is set when the mean
RMSE and SD are less than 0.5m and 2.0m respectively.
Table II shows the results for all three emulated KRP cases.
Those results are the convergence time of the particles and
the mean RMSE of the robot position after the particles
converged for three emulated KRP cases.

TABLE II
EXPERIMENTAL RESULTS

Convergence
time [s]

Mean RMSE [m]
Wifi+LRF Wifi LRF

Case 1 77.8 0.18 2.61 33.10
Case 2 64.5 0.11 3.13 23.43
Case 3 99.8 0.12 2.35 30.02

For explanation, we focus on Fig. 8a. From the figure,
we can clearly see that before KRP occurs, our approach
and the LRF approach have a small RMSE but not for the
Wifi approach. When the KRP occurs, all three appraoches



(a) Case 1

(b) Case 2

(c) Case 3

Fig. 8. Graphs constructed using data from (a) Case 1, (b) Case 2 and (c)
Case 3. Red lines and shades represent the RMSE and SD of our proposed
approach (Wifi+LRF), blue lines and shades represent the RMSE and SD
of LRF-only approach, while green lines and shades represent the RMSE
and SD of Wifi-only approach.

show increasing RMSE due to unable to localize the mobile
robot correctly. However, the Wifi approach managed to
recover from the KRP and successfully localize the mobile
robot location for the rest of the navigation, although the
RMSE is still not good enough. On the other hand, the
MCL approach fails to recover from the KRP. The RMSE
of the MCL approach keeps on increasing and fluctuating
for the rest of the navigation. The combination of the above
approaches which is our approach shares the properties of
high accuracy and robust to KRP. When KRP occurred, our
approach performs similar to the MCL approach, which has
an increasing RMSE, but after a certain time, our approach
managed to detect the KRP and recover from the KRP by
reset the localization using the Wifi particles as prior infor-
mation. As a result, our approach managed to achieved small
RMSE after KRP is detected. The graphs were constructed
using the data just before KRP is going to happen so that we
can observe and analyze the changes/behaviors of all three
approaches due to the KRP.

VI. CONCLUSIONS

The objective of this paper was the development of a
system that integrates both Wifi and LRF measurements. The

system should have high accuracy and be robust to KRP.
From the experiment, we can see that our proposed approach
manages to detect and recover from the KRP, and achieves
high accuracy in localizing the mobile robot. However, the
particles convergence time of the proposed approach was
longer than expected. Furthermore, if the particles converged
and the estimated mobile robots position is always near to
the ground truth for the rest of the navigation, this approach
failed to adjust and refine the estimated mobile location.
Future work will address these issues.
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