Fast and Robust Localization using Laser Rangefinder and WiFi Data

Renato Miyagusuku, Yiploon Seow, Atsushi Yamashita and Hajime Asama

Abstract— Laser rangefinders are very popular sensors in
robot localization due to their accuracy. Typically, localization
algorithms based on these sensors compare range measurements
with previously obtained maps of the environment. As many
indoor environments are highly symmetrical (e.g., most rooms
have the same layout and most corridors are very similar) these
systems may fail to recognize one location from another, leading
to slow convergence and even severe localization problems. To
address these two issues we propose a novel system which
incorporates WiFi-based localization into a typical Monte Carlo
localization algorithm that primarily uses laser rangefinders.
Our system is mainly composed of two modules other than the
Monte Carlo localization algorithm. The first uses WiFi data in
conjunction with the occupancy grid map of the environment
to solve convergence of global localization fast and reliably.
The second detects possible localization failures using a metric
based on WiFi models. To test the feasibility of our system,
we performed experiments in an office environment. Results
show that our system allows fast convergence and can detect
localization failures with minimum additional computation. We
have also made all our datasets and software readily available
online for the community.

I. INTRODUCTION AND RELATED WORK

Monte Carlo Localization (MCL) is among the most pop-
ular localization algorithms used in robotics [1]. Having as
its most appealing characteristics its ease of implementation
and its good performance across a broad range of localization
problems. MCL can be used with a plethora of sensors
by changing its perceptual model to fit the desired sensor.
Previous works have use sonars [2], laser rangefinders [3],
color cameras [4], WiFi [5], among others.

In this work we propose a framework, W-LRF, which
incorporates the advantages of WiFi-based localization into a
typical MCL that uses laser rangefinders. Figure 1 shows the
main components of our approach. We incorporate WiFi data
in order to achieve faster convergence and higher robustness.
In particular, we are interested in: (i) how to combine range
and WiFi data in order to achieve fast and reliable global
localization; and (ii) how to detect localization failures once
the system has converged. We achieve (i) by initializing our
MCL using samples taken directly from the WiFi posteriors
with constraints given by the environment’s occupancy grid
map; and (ii) by monitoring WiFi particle weights.

Laser rangefinders are quite popular due to the accuracy
of their solutions. However, they have two main issues: they
are susceptible to the data association problem and MCL

This work was funded by Tough Robotics Challenge, InPACT Program
of the Council for Science, Technology and Innovation (Cabinet Office,
Government of Japan).

All authors are with the department of Precision Engineering, Graduate
School of Engineering, The University of Tokyo, Japan. {miyagusuku,
seow, yamashita, asama}@robot.t.u-tokyo.ac.jp

[I
WiFi models = (g)%%u%aanpcy I LRF model
L - - - = 1
- Global localization —)
Monte Carlo
=3 | Localization failure detection |===gp»- localization

Fig. 1. Overview of our proposed approach and its two main components
(i) global localization module and (ii) localization failure detection.

systems using only laser rangefinders (LRF-MCL) have slow
convergence. The data association problem refers to the
misclassification between confusable features (e.g., failing to
distinguish between two rooms with similar scans or different
corners in a room), and can lead to severe localization
problems. LRF-MCL convergence is slow due to symmetries
in the environment, e.g., measurements at several spots in a
long corridor may be identical, or several rooms in an office
building may have the same outlay.

Using WiFi data is a less popular method for localization.
These methods employ WiFi signal strength previously ac-
quired in an environment to predict robot’s location. Either
by matching new measurements to the most similar samples
in their training dataset [6]—[8]; or by learning location-signal
strength mappings, and computing the likelihood of locations
given new measurements and these mappings [9]-[11]. Al-
though WiFi-based localization systems do not achieve as
high accuracy as those based on laser rangefinders, they
are immune to the data association problem and converge
quickly. WiFi data has no data association problem, as all
IEEE802.11 compliant WiFi packets transmit their sources’
own unique identifier (macaddress) as part of its message
header, identifying themselves unequivocally. And, although
several locations in an environment may have the same
signal strength values for a given access point, due to the
sheer number of access points in modern buildings (ranging
from several tens to few hundreds) symmetries are unlikely,
allowing fast convergence. Although these characteristics
make their usage appealing in a multi-sensor setting, few
researchers have used WiFi data in such manner, as most
research has concentrated in WiFi only approaches. Pre-
vious works in the area include the work by Biswas et
al. [12], where a multi-sensor system composed by a laser
rangefinder, a depth camera and WiFi data was proposed.
In this approach, each sensor was processed independently

using different localization algorithms; with the robot choos-
ing, at each location, the localization algorithm’s output
with the least variance as the system’s output. The work
by Ito et al. [13], where a system composed by a color
and depth camera, and WiFi data was proposed; with WiFi
data being used only for initialization of the localization
algorithm that used the color and depth camera. As well
as our previous work [14] where we presented a system
composed by a laser rangefinder and WiFi data, where WiFi
data was used to detect localization failures by comparing a
set of particles sampled for each new WiFi measurement
and MCL’s particles. Contrary to our previous work, our
new metric does not require constantly sampling the sensor
posteriors, which is computationally expensive.

II. MCL AND SENSOR MODELS

MCL is considered as a global localization technique,
as it can solve pose estimation without knowing the initial
pose, by addressing the problem under global uncertainty.
The more robust implementations also solve the so-called
kidnapped robot problem, in which a robot is carried to
an arbitrary position during its operation without its knowl-
edge. This problem is considered much more difficult than
global localization, as the robot might firmly believe to be
somewhere else at the time of the kidnapping. This problem
is commonly used to test a robot’s ability to recover from
catastrophic localization failures and it can arise in practical
robot applications from poor odometry, collisions, slippage,
and/or wrong sensors’ measurements. In our work, we design
a system that is capable of fast global localization, and is
resilient to the kidnapped robot problem.

A. MCL

An MCL is essentially a particle filter, which is an im-
plementation of the Bayes filter, combined with probabilistic
models of robot perception and motion. MCL recursively
estimates the posterior distribution of the robot’s pose 1 given
sensor observations s as,

P(lt) O(p(st“t)/p(lt|1t—17ut)p(lt—l)dlt—la (D

which is the basic equation for all Bayesian filters. With
p(st|l:) being the probability of the observation s; at position
1; computed by the robot perception model; and p(1;|1;—1, u;)
the next state transition probability as computed by the robot
motion model, with u; being velocity commands or most
commonly odometry information.

For this work, given that planar motion is considered,
the robot’s pose 1; consists of the robot’s position in a x-
y Cartesian coordinate system and its heading direction 6 -
i.e., 1= [z y 0]. MCL represents p(1;) by a set of s weighted
particles p(1) = {10 w®}i={1-=s}; where 1() is a pose and
w(® is a non-negative scalar. These weights are calculated
using the robot’s perception model, i.e., w® = p(s,[1{").
After incorporating odometry information to compute the
next state transition probability, MCL resamples this set of
particles according to these weights. So the density of the

particles within an area is proportional to the probability of
the robot being in the vicinity of that area. Making the set
of particles to converge to the robot’s true pose with time.

An important parameter in MCL is the number of particles
s, which can be either fixed or variable. For our implementa-
tion we set the initial, maximum, number of particles and use
KLD sampling [15] to reduce the number of particles over
time as MCL converges, requiring less particles to accurately
describe the robot’s pose posterior.

As two different sensors are employed, our system com-
putes two different perceptual likelihoods: p(r|l) for range
data measured using the system’s laser rangefinder, and
p(z|l) for received signal strength (RSS) data measured using
the systems WiFi network interface controller.

B. LRF perceptual model

For the LRF perceptual model, we employ the likelihood
field model as described in [1]. This model computes the
probability of each range measurement to hit an obstacle
given the robots pose and a map of the environment. Other
than the probability of hitting an obstacle due to the robots
location in the map, the model considers false measurements
due to sensor noise and random failures. Combining these
three distributions the model finally yields the sensor model

p(r[l,map).
C. WiFi perceptual model

For the WiFi perceptual model, in this work we learn
location-signal strength mappings using Gaussian Processes
and path loss models, as described in [5]. The most important
assumption of this approach is that heading direction does not
affect signal strength information. While this is not strictly
true, as most antennas have non-uniform radiation patterns,
it holds well in practice.

Our approach assumes a training dataset (X,Z), of n
data pairs (x;,z;) has been previously collected. Where
x; € R? are x-y Cartesian coordinates and z; € R™ with
z; = [2(5,0), " » Z(i,m—1)] are the RSS measurements from
m different access points collected at x;. Under the GPs
approach, it is assumed that the correlation of any two
output values can be described as a function of their input
values. Given this assumption, for any finite number of data
points, the GP can be considered to have a multivariate
Gaussian distribution, and therefore be fully defined by a
mean function m(x) and a kernel function k(x,,x,).

For our approach we chose path loss functions (which
is a parametric function which is a simplification of the
physical phenomena of electromagnetic wave propagation
through space) as the mean functions. Specifically we chose
functions of the form,

PL(x) = k0 — kllog(d) + €p, (2)

with d being the Euclidean distance between the position
where the RSS measurements were taken (x) and the pre-
dicted position of the access points (apz, apy), kO and k1
positive constant and ¢,; a Gaussian noise with variance crgl.
Path loss parameters (6, = [k0, k1, apz, apy,af)l]) are

« wifiinit - 1000 particles

+ uniform init - 5000 particles f
.
i
v

x(m]

= wirfinit - 1000 particles

-20

-20
-20 -10 0 10 20

x[m]

30 40 50 60 -20 -10 10

(a) Initialization from an uniform distribution

Fig. 2.

independently learned for each access point from the training
dataset, yielding m different path loss models.

A squared exponential kernel was chosen as the kernel
function, with free parameters o2, (known as the signal
variance), and [, (known as the length-scale). A single
kernel is used for all access points, with free parameters,
often referred to as hyper-parameters (0, = [aie, Ise]), also
learned from the training dataset.

For making new predictions z, ; at any arbitrary location
X, we condition the predicted signal strength vector on its
location and the training dataset, obtaining

Pefx X, 2) ~ N(Elz gl var(z) 3)
where,
B[z] PL;j(x.) + ki (K + 031,) " (Z — PL;(X))(4)
var(z.) = ke — ki (K+02L) 'k, 5)
with K = cov(X, X) being the covariance matrix between

all training points X, usually called Gram Matrix; k, =
cov(X,x,) the covariance vector that relates the training
points X and the arbitrary location X,; k.. = cov(X,,Xy)
the variance of the location.

The likelihood of an individual access point j for a new
measurement z,e,, ; at a location x, is then computed as,

— E[z,], var(z.)); (6)

and the integrated likelihood of all access points, p(Znew X),
as the geometric mean of all individual likelihoods,

p(Znew,j|X*) = (I)(Zneuhj

1/m
m

Hp(znewj|x*) ;
j=1

)

p(znew |X*)

which due to heading direction having been assumed no to
influence signal strength measurements is equivalent to the
sensor model p(z|l).

III. W-LRF

In this section we describe in detail the two additional
components of our approach, our global localization and
localization failure detection modules. As well as give the
overall algorithm of our whole approach.

20

x[m]

(b) Initialization from WiFi posterior

30 40 50 60 -20 -10 0 10 20

x[m]

(c) Initialization from WiFi posterior and
occupancy grid

Different initialization methods for MCLs.

A. Global localization

In order to solve the global localization problem, p(lp)
is often initialized using an uniform distribution over the
entire map (see Fig. 2a). Particle initialization is extremely
important as the solution may fail to converge to the true pose
if too few particles are placed in its vicinity at initialization.
This happens as the particle filter implementation of p(l;) is
based on constant re-sampling of particles at previous times,
if no particles are in the vicinity of a high probability area
at any given point, these high probability areas will not be
populated in next time steps, resulting in p(1;) deviating from
the true distribution. Therefore, leading to poor accuracy
or failure of estimation. While increasing the number of
particles ensures better accuracy and convergence, it can not
be indiscriminately increased, as it increases convergence
times and computation costs. Hence, what is desired is high
density of particles around the true location, with as few
particles as possible.

Instead of an uniform distribution, p(ly) can be initialized
by sampling the WiFi models’ posterior (see Fig. 2b). This
allows for a large number of particles at the true pose vicinity
while keeping the number of initial samples relatively low.
This initialization can be further improved by also consider-
ing the occupancy grid map required for the laser rangefinder
perceptual model (see Fig. 2c). One notable compromise
of this initialization is that sampling from WiFi models
is computationally more expensive than sampling from the
uniform distribution.

To sample from the WiFi posterior given a RSS mea-
surement z, p(x|z), we use a modified adaptive rejection
sampling algorithm. In rejection sampling, first an easy to
sample proposal distribution ¢(x) has to be chosen. The main
consideration is that given a constant &, kg(x) > p(x). Then
samples x are drawn from ¢(x) as well as random numbers
us sampled uniformly at random from [0, kq(x,)]. Finally,
if us > p(xs), the sample is rejected, if not, it is accepted.

For our implementation we discretize the entire environ-
ment into K x K x-y cells. For each cell we compute
its weight wy, as the WiFi posterior of its centroid using
eq. (7). We employ this discrete function as our proposal

distribution. In order to sample from it we use importance
sampling to select one cell and then uniformly at random
select a candidate sample x, within the cell. When using
information from the occupancy grid map, we immediately
reject the sample if it is not in an empty cell - i.e., a cell that
was found to be open space when the map was generated.
Finally, if the sample was not discarded, we evaluate the
particle’s WiFi posterior and use rejection sampling to keep
or discard the sample. This process is continued until all
desired samples have been obtained. Algorithm 1 outlines
our sampling algorithm.

Algorithm 1 Sampling WiFi posteriors

1: Discretize Environment into A}, cells

2: Compute cell centroids xy,

3wy = p(Xk|2z)

4. 1=0

5: while i < Nsamples do

6: Draw (Xk(z),wg)) using importance sampling
7: Draw x uniformly at random from X,gz)

8: if x, is not a free in the grid map then

9: reject

10: else

11: ws = p(z]Xs) ‘
12: Draw u, uniformly at random from [0, w,Ef)]
13: if us > wy then

14: reject

15: else

16: accept, increase %

Using this strategy for sampling allows for much faster
computation than using standard rejection sampling. How-
ever other sampling methods like Markov Chain Monte Carlo
sampling remain to be explored.

After initialization, we continue to use the WiFi in con-
junction with LRF for resampling. Once particles have
converged into small clusters (usually around a 1m diameter)
the particle weights when computed by the WiFi models tend
to have the same value, as WiFi localization accuracy is not
high enough. Therefore, once these weights converge, we
stop using WiFi data for resampling. Using both models
allows for faster particle convergence as WiFi data allows
the fast elimination of any leftover ambiguity from the
initialization, often caused by particles’ heading angles.

B. Localization failure detection

Once MCL converges, it becomes highly susceptible to
large localization failures, being the extreme case the pre-
viously mentioned kidnapped robot problem. Once particles
have converged and the localization error occurs, the like-
lihood of the new position to be covered by any particles
is extremely low. A straightforward approach to alleviate
the kidnapped robot problem in MCL is the addition of
random particles (usually between 1 to 5% of s). This
percentage is often made dependent on the particles’ weights
w, as low w values indicate wrong pose estimations. The

percentage of random particles can be computed based on
the average of w and a fixed threshold. Other approaches
include adding particles directly sampled from the posterior
of the sensor models instead of random particles [16];
and expanding the region where previous particles were
located when particle weights were low [17]. These two
approaches detect the occurrence of the kidnapping using
the average weight of particles as computed by the laser
rangefinder module. Other than average weight, it has also
been suggested to use the difference in the average weights
as well as the maximum weight of particles [18]. All these
metrics are fast to compute; unfortunately, for LRFs in highly
symmetric environments, these metrics do not reliably detect
the kidnapping.

Instead, the use of WiFi models for detecting localization
failure was suggested in our previous work [14]. There, we
sampled WiFi posteriors continuously and compared those
particles with MCL ones. A large difference between the
sets of particles would suggest the occurrence of localization
failure. While extremely effective, constant sampling from
sensor posteriors posses a high computational toll in the
system. In this work we propose a simpler metric, the
weight of particles when evaluated using the WiFi models
(wifi-weights), as contrary to Irf-weights, wifi-weights do
noticeably and reliably vary when the kidnapping occurs
due to RSS maps having no symmetries. Tests showing the
effectiveness of our approach can be found in Sec. IV-B.

Our W-LRF approach incorporates the ideas presented
in this section into a MCL that uses a laser rangefinder.
Algorithm 2 shows the overall algorithm of our approach.

Algorithm 2 W-LRF
1: while True do
2: Draw p from WiFi posterior using Algorithm 1
: wifi_lrf_update = True

3

4 no_localization_error = True

5: while no_localization_error do

6: kld_bound_staisfied = False

7 while not kld_bound_satisfied do

8 draw p(Y) with probability w(?)

9: update p(*) from the robot motion model
10: w(i)

wifi = Wifi_model

11: wl(i} = Irf_model
12: if wifi_lrf_update then

i) — () (1)
13: w® = Wl gy % Wy
14: else o
15: w® = w;! ¥
16: kld_bound_satisfied = Check kld bound
17: if std(wwiri) < thr_sd then
18: wifi_Irf_update = False
19: if mean(wy,;r;) < thr_mean then
20: no_localization_error = False

IV. EXPERIMENTS

To verify the effectiveness of our approach, experiments
were conducted on the third floor of the Engineering Building
No. 2 of The University of Tokyo by teleoperating a Pioneer
3DX mobile robot equipped with a laser rangefinder and
a laptop. This laptop was used to teleoperate the robot,
record all range data from the range finder and WiFi data
from its network interface controller. The used laptop was a
Panasonic Let’s Note CZ-SZ5 laptop which uses a Dual Band
Wireless-AC 8260 WNIC and a Core i5 6200U processor. All
reported computation times have also been measured using
this laptop.

All implementations of our algorithms run using the Robot
Operating System (ROS) and RSS data was acquired using
tepdump version 4.5.1 as wireless packet analyzer. RSS Data
was captured in monitor mode and only beacon frames were
recorded.

To build the required occupancy grid map and location-
signal strength training dataset, the robot was teleoperated
around the building. Fast-Slam [19] was used to build the
map, and provide the locations at which RSS data was
recorded. For testing purposes, the robot was once more
teleoperated around the environment, saving all data in time
stamped data logs. These time stamped logs allows us test
our algorithms thoroughly, using real data and in a real-time
manner. Due to the randomized nature of MCL algorithms,
this is necessary to guarantee that the results presented are
the average expected performances, and not just outliers with
good/bad performances; therefore all tests were performed
25 times. We have made all datasets acquired and software
developed in this work available online for the community
on our web!.

As we are interested in both the performance of global
localization, as well as detection of localization failures, we
perform two sets of tests. The first tests are used to assess
the quality of our initialization methods as well as its impact
on convergence success and speed. The second set of tests
are used to assess the detection capabilities of our approach
by emulating the kidnapped robot problem.

A. Global localization

For global localization, we first start establishing the com-
putation times necessary for sampling, as well as the percent-
age of particles in the vicinity of the true pose for each of the
three possible initializations described in Sec. III-A: uniform
initialization, wifi initialization, and wifi initialization with
occupancy map information (wlrf initialization). We use
the percentage of particles as an indicator of the quality
of the initialization as having a large number of particles
near the true pose increases the probability of successfully
converging to the true pose, while fewer particles allow
fast convergence and lowers computational costs for both
sampling and the following evaluation of particle weights
and resampling process.

Thttp://www.robot.t.u-tokyo.ac jp/~miyagusuku/software

N
o

I uniform initialization
I WiFi initialization
I WLRF initialization

[
ol

(%))

Ratio of particles[%)]
[
o

o

0.5 1 15
Maximum error[m]

(a) Percentage of particles placed in the vicinity of the true pose.

2000 = uniform initialization 1755
I WiFi initialization

1500 mEE WLRF initialization

1000

Time[ms]

500

500 1000

2500
Number of particles

5000 7500

(b) Runtime for sampling different number of particles employing the
different sampling methods.

Fig. 3. Comparison of sampling methods employed in the global localiza-
tion module.

Specifically, for all testing points in our test data, we
sampled 5000 particles using the different initialization meth-
ods. Then, we computed the percentage of particles within
different error radius. For this test we ignore the heading
angle as all initialization methods sample them at random.
Figure 3b shows our results. As it can be observed, wirf
initialization is the one that generates higher density of
particles around the true position, with almost 15% of the
particles being generated within 2m, compared to 4.1% and
1.4% for wifi and uniform initializations respectively. For
all cases wlirf initialization generates more than 3 times the
density of wifi initialization and more than 10 times that of
uniform initialization.

Figure 3 shows the times required to sample different
number of particles using each initialization method. Wlrf
initialization is the one requiring the longest time for sam-
pling, between 30 to 60% more time than wifi initialization.
While the uniform initialization is by far the fastest, with up
to 20 times faster sampling times.

From this result, it may seem that uniform distributions
are the best choice, as they generate the most particles
per computation time; however, it is important to note that
after initialization, MCL needs to continuously evaluate and
process all particles. Therefore, a higher concentrated, lower
number of particles is still computationally more efficient,
regardless of the extra initial computation time for sampling.

To assess the required time for MCL’s convergence, we
modified the testing data log so the robot starts at different 4
different locations (A,B,C,D) in the environment, see Fig. 5,
and obtained the success ratio of localization and the average
convergence time when successful for different number of
particles. We define the success ratio as the number of
successful global localization with respect to the total number
of runs, and a successful global localization as one where its
particles are within 1m from the true location with at least

TABLE I
SUCCESS RATIO OF LOCALIZATION WHEN EMPLOYING THE DIFFERENT
SAMPLING METHODS.

uniform wifi wirf

part | 5k 10k 15k | 1.5k 25k S5k | 025k 0.5k 1k

00 09 1.0 | 000 092 1.0 | 0.50 075 1.0
1.0 100 1.0 | 036 0.60 1.0 | 0.38 062 1.0
. 092 1.0 | 068 0.88 1.0 | 0.50 075 1.0
08 088 1.0 | 036 068 1.0 | 0.00 050 1.0

oQw»>
o
o

5000 10000
Number of particles

15000

(a) Uniform initialization for 5k,10k and 15k particles.

A I B —/c s D

2500 5000
Number of particles

(b) Wifi initialization for 1.5K, 2.5k and 5k particles.

10000

/A
100
804
@ 601
g
S 40 34.0 33.7
20
0

250

1000

Number of particles
(c) WIrf initialization for 250, 500 and 1000 particles.

Fig. 4. Comparison of convergence times when using the different sampling
methods.

95% confidence. Table I shows the success ratios for all our
tests; while Fig. 4 the average converge times.

As it can be observed from table I, the required number
of particles to obtain reliable localization widely vary for
each sampling method. As expected, the number of par-
ticles required for reliable global localization when using
uniform initialization is considerably larger than when using
our proposed wlrf initialization (15 against 1 thousands).
Furthermore, from Fig. 4 we can observe that less time is
required for convergence for all cases. Unexpectedly Wifi
initialization still required a large number of particles, around
5 thousand, and convergence times similar to those obtained
when using uniform sampling. This is due to most wifi
samples not being initialized in empty areas in the grid map,
which were then being heavily penalized by the LRF model.
This resulted in these particles being eliminated very early in
the localization process - equivalent to never having them in

60

50

40

30+

20

x[m]

=20 -10 0 10 20 30 40 50 60
x[m]

Fig. 5. Floor map of the environment where tests were performed.
Locations A, B, C, and D in the environment were used as initial points
for testing global localization. While paths krpA, krpB and krpC show the
locations of the robot before and after each of the emulated kidnappings.

TABLE I
LOCALIZATION FAILURE DETECTION RESULTS

p(false positives) Detection time [s]

thr 005 0.10 0.15 0.2 005 0.1 015 02
krpA | 0.0 0.0 025 042 | 42 21 27 0.8
kepB | 0.0 0.0 027 054 | 24 29 1.7 0.9
kepC | 0.0 0.0 0.0 0.0 3.6 24 238 2.0

the first place. From these experiments, it becomes obvious
that using our proposed initialization should be preferred
despite of the higher initial computational requirements.

B. Localization failure

For testing the detection of localization failures, kidnap-
ping of the robot was introduced by modifying the testing
data log. This test cases are krpA, krpB and krpC, and can
be seen in Fig. 5.

As previously mentioned, typically localization failure
is detected using the mean, max or gradient of weights
computed by the LRF model. When these metrics go bellow
or above certain thresholds, it is considered that a local-
ization failure occurred. Unfortunately in highly symmetric
environments with long corridors, as those commonly found
in modern offices, these weights do not vary considerably.
Figure 6a show particle weights computed by the LRF model
(Irf-weigths) in krpA. As it can be observed, neither one of
the three metrics noticeably change after kidnapping at time
t=73. In fact we could not find any combination of metrics
nor thresholds that could reliably detect kidnapping for our
three cases.

Our proposed strategy for detecting localization failures
uses the particle weights as computed by our WiFi models.
As it can be seen in Fig. 6b, for the same test case,
wifi-weights notably change after kidnapping, hence can be
reliably used for detecting them. For all test cases, the time
required for the system to detect the failure as well as the

0.14

0.12 —— Mean
2010 — Max
-go.oa — Diff
 0.06
& 0.04

0.02

0.00 A ANA ANM AAa_ N

0 50 100 150 200
Timel[s]
(a) Particle weights computed by the LRF model

0.4 —— Mean
[2]
£ — Max
5023
2 — Diff
202
[
e 0.1 r\

0.0 ,\Aﬂ A M ﬂﬂAAA.\A\ A

0 50 100 150 200

Time[s]
(b) Particle weights computed by the WiFi models
Fig. 6. Particle weights under localization failure (kidnapped robot

problem) test case krpA. Red line indicates time at which kidnapping
occurred.

probability of false detections was computed for different
threshold parameters. The probability of false detection was
computed as the percentage of false detections 50 seconds
before the actual induced error. Table II shows the results
from our tests, where it can be observed that for thresholds
of 0.05 and 0.01 no false positives were obtained, while
having a fast detection response, between 2 and 4 seconds.
Higher threshold values tend to cause a high false positives
probability.

V. CONCLUSIONS

In this paper we have proposed a novel system which
incorporates WiFi-based localization into a typical Monte
Carlo localization algorithm that primarily uses laser
rangefinders. In our system we employ WiFi data in con-
junction with the occupancy grid map of the environment for
MCL initialization. By generating high density of particles
around the robot’s true pose, while keeping particles in
other areas to a minimum, the system greatly alleviates laser
rangefinder’s data association problem - as areas with similar
range scans are not populated with particles. Experimental
results show that with between 500 and 1000 particles
our system achieves convergence, opposed to 5k required
when only WiFi data is used and over 15k with a stan-
dard MCL approach. We attribute the further improvement
of our approach over WiFi only initialization to several
wifi samples being initialized in occupied areas when grid
map information is not used. In following iterations, these
samples are heavily penalized by the LRF model, quickly
disappearing. This wastes resources, and is equivalent to
initializing the system with fewer samples. Other than this
initialization, our system resamples using not only range
but also WiFi data, which allows for convergence times to
be considerably reduced. In addition, by monitoring particle
weights computed using our WiFi models, our system can
successfully detect any possible localization failure. To test

this characteristic, several tests have been performed where
the fully converged system was displaced to an arbitrary
location, i.e., the kidnapped robot problem. Notably, opposed
to our previous work, the additional computations required
for localization failure detection are minimum.

REFERENCES

[1]1 S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[2] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localiza-
tion: Efficient position estimation for mobile robots,” AAAI/IAAI, vol.
1999, pp. 343-349, 1999.

[3] D. Fox, S. Thrun, W. Burgard, and F. Dellaert, “Particle filters for
mobile robot localization,” in Sequential Monte Carlo methods in
practice. Springer, 2001, pp. 401-428.

[4] T. Rofer and M. Jungel, “Vision-based fast and reactive monte-
carlo localization,” in Robotics and Automation (ICRA), 2003 IEEE
International Conference on, vol. 1, 2003, pp. 856-861.

[5] R. Miyagusuku, A. Yamashita, and H. Asama, “Improving gaussian
processes based mapping of wireless signals using path loss models,”
in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ Interna-
tional Conference on, 2016, pp. 4610-4615.

[6] J.S. Gutmann, E. Eade, P. Fong, and M. E. Munich, “Vector field slam

- localization by learning the spatial variation of continuous signals,”

IEEE Transactions on Robotics, vol. 28, no. 3, pp. 650-667, June

2012.

P. Bahl and V. N. Padmanabhan, “Radar: an in-building rf-based

user location and tracking system,” in INFOCOM 2000. Nineteenth

Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings. IEEE, vol. 2, 2000, pp. 775-784 vol.2.

[8] B. Benjamin, G. Erinc, and S. Carpin, “Real-time wifi localization
of heterogeneous robot teams using an online random forest,” Au-
tonomous Robots, vol. 39, no. 2, pp. 155-167, 2015.

[9] A. LaMarca, J. Hightower, I. Smith, and S. Consolvo, “Self-mapping
in 802.11 location systems,” in UbiComp 2005: Ubiquitous Comput-
ing. Springer, 2005, pp. 87-104.

[10] B. Ferris, D. Haehnel, and D. Fox, “Gaussian processes for signal
strength-based location estimation,” in In Proc. of Robotics Science
and Systems, 2006, pp. 1-8.

[11] J. Biswas and M. Veloso, “Wifi localization and navigation for au-
tonomous indoor mobile robots,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on, May 2010, pp. 4379-4384.

[12] ——, “Multi-sensor mobile robot localization for diverse environ-
ments,” in RoboCup 2013: Robot World Cup XVII. Springer, 2014,
pp. 468-479.

[13] S. Ito, F. Endres, M. Kuderer, G. Diego Tipaldi, C. Stachniss, and
W. Burgard, “W-RGB-D: floor-plan-based indoor global localization
using a depth camera and wifi,” in Robotics and Automation (ICRA),
2014 IEEE International Conference on, 2014, pp. 417-422.

[14] Y. Seow, R. Miyagusuku, A. Yamashita, and H. Asama, “Detecting and
solving the kidnapped robot problem using laser range finder and wifi
signal,” in Proceedings of the 2017 IEEE International Conference
on Real-time Computing and Robotics (RCAR2017), July 2017, pp.
303-308.

[15] D. Fox, “Adapting the sample size in particle filters through kld-
sampling,” The international Journal of robotics research, vol. 22,
no. 12, pp. 985-1003, 2003.

[16] S. Lenser and M. Veloso, “Sensor resetting localization for poorly
modelled mobile robots,” in Robotics and Automation (ICRA), 2000
IEEE International Conference on, vol. 2, 2000, pp. 1225-1232.

[17] R. Ueda, T. Arai, K. Sakamoto, T. Kikuchi, and S. Kamiya, “Expan-
sion resetting for recovery from fatal error in monte carlo localization-
comparison with sensor resetting methods,” in Intelligent Robots and
Systems (IROS), 2004 IEEE/RSJ International Conference on, vol. 3,
2004, pp. 2481-2486.

[18] 1. Bukhori, Z. Ismail, and T. Namerikawa, “Detection strategy for
kidnapped robot problem in landmark-based map monte carlo lo-
calization,” in Robotics and Intelligent Sensors (IRIS), 2015 IEEE
International Symposium on, 2015, pp. 75-80.

[19] S. Zaman, W. Slany, and G. Steinbauer, “Ros-based mapping, local-
ization and autonomous navigation using a pioneer 3-dx robot and
their relevant issues,” in Electronics, Communications and Photonics
Conference (SIECPC), 2011 Saudi International, 2011, pp. 1-5.

[7

—

