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ABSTRACT

Conventional techniques for frame-to-frame camera motion
estimation rely on tracking a set of sparse feature points.
However, images taken from spherical cameras have high dis-
tortion which can induce mistakes in feature point tracking,
offsetting the advantage of their large fields-of-view. Hence,
in this research, we attempt a novel approach of using dense
optical flow for distortion-robust spherical camera motion
estimation. Dense optical flow incorporates smoothing terms
and is free of local outliers. It encodes the camera motion
as well as dense 3D information. Our approach decomposes
dense optical flow into epipolar geometry and the dense dis-
parity map, and reprojects this disparity map to estimate 6
DoF camera motion. The approach handles spherical image
distortion in a natural way. We experimentally demonstrate
its accuracy and robustness.

Index Terms— Spherical vision, Distortion, Optical flow

1. INTRODUCTION

Frame-to-frame camera motion estimation is very fundamen-
tal to visual odometry/structure from motion. Convention-
ally, many sparse feature points are tracked and camera mo-
tion is back-calculated based on its projective geometry. Re-
cently developed full-view spherical cameras, such as the Ri-
coh Theta, are considerably advantageous over perspective
cameras [1]. They have no directional bias of information,
and image information never goes out of view. However,
spherical images do not exist on a planar manifold. They can
be expressed as planar images in the equirectangular projec-
tion, which induces severe distortion that is highly non-linear
to camera motion, especially to rotation as shown in Fig. 1.
This induces many mistakes in tracking sparse points.

Several approaches have tried to deal with such distor-
tion. [2] tried to project spherical images to planar cubes.
A-KAZE [3], spherical versions of SIFT [4], ORB [5], and
SURF [6] tried to robustly match points across distorted
views. [7] implemented SIFT [8] on an interpolation-based
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(a) Equirectangular Spherical Image (b) Image Rotated by 30 deg. (pitch)

Fig. 1. Spherical images undergo strong non-linear distor-
tions on rotation, as shown in the zoomed-in red area.

regularized spherical grid. However, these sparse approaches
throw away vast, useful dense information and make for un-
stable estimation. A single mismatched outlier can drastically
affect the result. In contrast, there are several dense optical
flow algorithms which can track all image pixels at the cost
of spatial smoothening [9]. Due to this smoothening, they
suppress local mismatches and can provide a reliable consen-
sus of camera motion, as was exploited in [10], and also in
[11, 12, 13]. Similarly, [14] and [15] estimated motion by
separating rotational and translational flows.

In this research, we explore spherical camera motion esti-
mation using dense optical flow, similar to [10]. The dense
optical flow field is decomposed to epipolar geometry and
the dense disparity, and then densely reprojected to estimate
camera motion. We take advantage of the complete spherical
field of view, i.e. the property that they can be rotated to any
orientation without loss of information. Initially, 2 spherical
images are rectified to an equirectangular stereo pair through
multiple image rotations, via an iterative energy minimiza-
tion based on equirectangular dense optical flow. This step
simultaneously estimates the 5 DoF epipolar geometry and
the dense disparity map. Next, this dense disparity map is uti-
lized to reproject one of the images to a third image to give
the full 6 DoF estimate of the third image. This is analogous
to conventional motion estimation in which sparse points are
tracked across 3 views, and the triangulated 3D points from
the first two are used to find the pose of the 3rd, and so on.
The purpose of this paper is to demonstrate a novel method,
and to show the superiority of using dense optical flow. This
results in a robust, accurate estimate, as demonstrated later by
experiments. In our previous work [16], a method for dense



3D reconstruction based on 2 spherical images was detailed.
In this work, we expand it to an iterative estimation and dense
reprojection in order to estimate the frame-to-frame motion in
a distortion resistant manner.

Our proposed approach consists of 2 steps. The first is a
5 DoF epipolar estimation between two equirectangular im-
ages I1 and I2 displaced by a rotation R1,2 and translation
t1,2. The spherical image pair is converted into a rectified
equirectangular stereo pair via energy minimization, based on
the dense optical flow between them. The final resultant opti-
cal flow field in the equirectangular projection automatically
forms the dense disparity map of the two images. In the sec-
ond step, this dense disparity map is used for a pixel-to-pixel
reprojection of I2 on a third image I3, which is displaced from
I1 by R1,3 and t1,3. A dense, photometric reprojection error
is minimized in order to obtain a full 6 DoF estimate of the
third image. The translation scale |t1,2| between the first two
images is set to one without loss of generality. From the 3rd
image onwards, the estimation is 6 DoF.

2. DENSE OPTICAL FLOW-BASED MOTION
ESTIMATION

The first step estimates two-frame motion i.e. epipolar geom-
etry and the dense disparity map, simultaneously. Our method
can naturally handle the distortion of spherical images on a
2D equirectangular grid. If two spherical images are verti-
cally displaced without any rotation between them, all corre-
sponding pixels lie on the same vertical line, unlike complex
curves as done in [17]. This is shown below in Fig. 2. Sim-
ilar to [10], we use dense optical flow in an iterative energy
minimization to rectify the two images to this arrangement.

First the rotation between the two images can be corrected
by aligning them to the same orientation. Following this, they
can both be rotated in order to align the translation vector in
a vertical direction. In this arrangement, the equirectangular
images should have a vertically oriented dense optical flow
field. Thus, we estimate the epipolar geometry that best fits
the desired vertically oriented dense optical flow field. The
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Fig. 3. Rectifying an arbitrary pair of spherical images.

pipeline is shown in Fig. 3.
All rotations are done pixel-wise between equirectangu-

lar images after projecting each equirectangular pixel (u, v)
to its spherical unit vector x̂ = [x, y, z]T , with bilinear inter-
polation to fill the gaps due to discretization of pixels. Thus,
I1 and I2 are converted to two rectified equirectangular im-
ages I1,r and I2,r via multiple rotations. In this state, the
dense optical flow fv(ur, vr) between the two rectified im-
ages is estimated and an energy function that depends on the
horizontal component of the optical flow field fu(ur, vr) is
defined. In order to densely estimate the energy function
over the whole image, a weighting scheme ws(vr) is used
to counter the stretching of pixels in the equirectangular im-
age. Here, the epipolar geometry is represented in 5 DoF by
G = (α, β, γ, θ, φ), the first three being euler rotation an-
gles, and the last two being translation parameters expressed
in spherical coordinates. A minimization of this energy over
the epipolar geometry gives the final rectified state:

minimize
G=(α,β,γ,θ,φ)

∑
∀(ur,vr)

ws(vr)fu(ur, vr)
2
. (1)

This is iteratively solved by optimizing the rotation and
translation components separately till convergence, via the
Levenberg-Marquardt routine. We used the Deepflow [9] al-
gorithm to compute the dense optical flow between I1,r and
I2,r. In order to avoid recomputing the optical flow field in ev-
ery iteration, we simply reproject the dense optical flow state
followed by rotational transformations.

At the end of the minimization, we obtain a vertically ori-
ented optical flow field. Its magnitude component |fv(ur, vr)|
directly forms the dense disparity map. The final estimate of
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Fig. 4. 3D Reprojection of I1 to a virtual image I3,v followed
by dense photometric minimization

G = (α, β, γ, θ, φ) is converted to R1,2 and t1,2. The mag-
nitude of t1,2 is set as 1, without loss of generality.

Once the disparity is obtained, the radius r(ur, vr) of each
pixel can be calculated from its disparity |fv| in the same man-
ner as given in [18] to obtain P1(u, v), its 3D coordinates.
These 3D coordinates can be reprojected to the expected posi-
tion and orientation of I3. We perform a pixel-wise transfor-
mation of every point P1(u, v) in I1 to form a virtual image
I3,v which should be the same as image I3. This pixel-wise
transformation also incorporates bilateral interpolation in or-
der to fill the gaps. Finally, a photometric reprojection error
between I3,v and I3 is minimized over t1,3 and R1,3. The
same weighting scheme ws(v) is used.

minimize[
R1,3|t1,3

] ∑
∀(u,v)

ws(v)
(
I3(u, v)− I3,v(u, v)

)2
. (2)

This problem can also be solved by the same Levenberg-
Marquardt scheme as used in the previous step. For both
steps, iterative rectification and reprojection error minimiza-
tion, a coarse-to-fine scheme was used by downsampling the
images three times. Thus, if there is a sequence of n images,
the position of the first image I1 can be set as the origin. The
position of the second image I2 can be estimated via the iter-
ative epipolar estimation alone and the scale of translation set
as 1. From I3 onwards, the estimation becomes 6 DoF and
can proceed via the dense reprojection alone.

3. EXPERIMENTAL EVALUATION

In order to test the robustness of our proposed approach, we
evaluated it against a recent sparse feature descriptor that pro-
vides high resilience to non-linear distortions via a non-linear
scale space - A-KAZE [3]. The Ricoh Theta S spherical
camera was used for all experiments. It provides completely
stitched equirectangular images without the need for addi-
tional calibration. Initially, a set of two textured cardboards
were used to provide an environment easy for disparity esti-
mation - the ‘board’ sequence. A set of 3 images I1, I2, and

Fig. 5. Experimental Setup consisting of two sheets of card-
board forming a perpendicular structure. 3 images I1, I2, and
I3 were captured at arbitrary positions from right-to-left.

(a) I1 (b) I2

(c) I3 (d) I1,p: I1 rotated by 50 deg. pitch

Fig. 6. Image sequence captured for evaluation using two
cardboard sheets - ‘board’ sequence. Large distortions are
induced in I1 by rotating it with a pre-decided pitch angle.

I3 of equirectangular image resolution 800× 400 pixels were
captured from left to right, as shown in Fig. 5. Following this,
I1 was rotated with a known pitch angle to a new image I1,p
to create a fourth image in the sequence. This induces large
distortions in the equirectangular image, as shown in Fig. 6.
Thus, an image sequence I1, I2, I3, and I1,p is created, with
I1 and I1,p in the same position, with a known rotation angle.

Estimation was performed linearly as I1 → I2 → I3 →
I1,p. The error of estimation of I1,p w.r.t. I1 was used as
the estimation error. Essentially, we checked the ability to re-
sist the distortion induced by the pitch rotation and ‘close the
loop’. This estimation was done in two ways and compared.
The first was by sparse features tracking with A-KAZE [3]
using the same method proposed in [19]. The second way
was using our dense optical flow-based method. Further, in
order to provide an environment where disparity estimation is
difficult, a similar experiment was repeated by arbitrarily cap-
turing three images in a cluttered room, as shown in Fig. 7 -
the ‘room’ sequence (please see footnote for link to dataset)1.
An example of dense photometric minimization in the ‘board’
sequence is shown in Fig. 8.

1Dataset available at: www.robot.t.u-tokyo.ac.jp/%7Epathak/research



Fig. 7. Sample experimental image from a cluttered room

The pitch angle was varied from 0 to 180 degrees and er-
rors between the true and estimated positions and orientations
of I1,p were plotted with respect to each angle, as shown in
Fig. 9(a). The position error is without real-world scale and
is expressed as a factor of the translation distance and the ori-
entation error is expressed in the quaternion angle. The re-
sults in Fig. 9(a) and (b) for the ‘board’ sequence show that
the estimation derived from the proposed dense optical flow
approach is much more stable and robust to the strong dis-
tortions induced by the pitch rotations whereas the estimation
obtained by sparse A-KAZE [3] is unstable and affected quite
strongly. From Figs. 9(c) and (d), which show the errors of
the ‘room’ sequence, it can be seen that even in conditions
that make 3D reconstruction or disparity estimation difficult
(which increased the average position errors), the use of dense
optical flow showed more robustness and lower errors.

4. DISCUSSION AND CONCLUSION

In this research, we built a frame-to-frame motion estimation
framework for spherical cameras using dense optical flow. In-
stead of conventional sparse feature point matching and 3D
triangulation, we estimated 2-frame epipolar geometry and
dense disparity in an iterative, distortion resistant manner us-
ing dense optical flow. Then, instead of reprojecting sparse
3D points and minimizing a geometric error, we reprojected
the recovered disparity map and minimized a dense photo-
metric error to obtain a 6 DoF estimate.

This novel approach took care of outliers due to the
smoothing involved in dense optical flow and allowed the
use of all the available information in an image. It provided
epipolar geometry as well as the dense disparity, leading to
a stable, robust estimate which was tested by inducing dis-
tortion in the equirectangular image. Experimental validation
in different situations, including cluttered settings, demon-
strated that the use of dense optical not only results in lower
errors, but also vastly increases robustness to the distortion
induced by rotation. A possible limitation is that it may
not work across large translational displacements, which can
make it difficult to compute dense optical flow, as also noted
in [10]. Studying the effect of the baseline, and a full dense
optical-flow based visual SLAM, remain as future work.

(a) Initial state. (b) Final, optimized state

Fig. 8. Minimizing the dense photometric reprojection error
between I3,v and I3 (red area zoomed-in for visibility).

(a) ‘board’ sequence: Position Errors vs. Angle of Pitch (without scale,
fraction of I1 → I2 distance)

(b) ‘board’ sequence: Orientation Errors vs Angle of Pitch (degrees)

(c) ‘room’ sequence: Position Errors vs. Angle of Pitch (without scale,
fraction of I1 → I2 distance)

(d) ‘room’ sequence: Orientation Errors vs Angle of Pitch (degrees)

Fig. 9. Estimation errors. Estimation using dense optical flow
shows lower errors, and is robust to distortion.
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