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Abstract—1In this paper, a three-dimensional (3D) environ-
ment reconstruction framework based on graph optimization is
proposed that uses acoustic images captured in an underwater
environment. Underwater tasks such as unmanned construction
using robots are becoming more and more important. In recent
years, acoustic cameras which are forward-looking imaging
sonars are being commonly used in underwater inspection.
However, the loss of elevation angle information makes it diffi-
cult to get a better understanding of underwater environments.
To cope with this, we apply 3D occupancy mapping method
based on the acoustic camera rotating around the acoustic axis
to generate 3D local maps. Next, from the local maps and a
graph optimization scheme, we minimize the error of camera
poses and build a global map. Experimental results demonstrate
that our 3D mapping framework for the acoustic camera can
reconstruct dense 3D models of underwater targets robustly
and precisely.

I. INTRODUCTION

In recent years, waterfront development such as construc-
tion and reclamation projects of airports, ports and submarine
tunnels has become much more important; however, hazards
may prohibit human access and the limited field of vision
due to turbidity and lack of illumination make it difficult
for underwater operations. In order to fulfill tasks like in-
spection, removal of hazardous materials or excavation work,
a remote control robot with a reconstruction system of a
three-dimensional (3D) underwater environment is necessary
(Fig. 1).

Recently, the development of acoustic cameras, such as
dual frequency identification sonar (DIDSON) and adaptive
resolution imaging sonar (ARIS) which can generate high-
resolution and wide-range image, facilitates understanding
of underwater situation [1]. To the best of our knowledge,
most previous studies that achieve 3D reconstruction using
acoustic cameras are feature-based methods because it is pos-
sible to calculate 3D coordinate values through matching of
corresponding feature points extracted from multiple acoustic
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Fig. 1. Example of underwater construction by remote control of under-
water robot based on 3D reconstruction of surrounding environment using
acoustic camera.

images, akin to stereo matching in optical images. Corners or
lines are usually used as features for 3D reconstruction. Mai
et al. achieved sparse 3D reconstruction from simultaneous
localization and mapping (SLAM) system by tracing such
features using extended Kalman filter (EKF) [2][3]. However,
automatically detecting such features on the acoustic images
is not easy due to noise and other factors. Moreover, this kind
of sparse 3D model consisting of limited number of features
is not suitable for representing complex objects; thus, a dense
3D reconstruction method is required.

To solve this problem, 3D occupancy mapping theory can
be considered as a way for building dense 3D volumetric rep-
resentation. Teixeira et al. accomplished 3D reconstruction
of shiphull consisting of volumetric submaps using acoustic
images. In this research, alignment of submaps is optimized
by pose-graph [4]. However, they mounted a concentrator
lens on acoustic camera which can obtain 3D information
directly within a narrow range by narrowing the field of
view of the elevation angle. Therefore, this approach cannot
sense a wide field range, which is a major benefit of acoustic
camera. Detailed description of the elevation angle will be
given in the next session.

In our previous study, we treated the acoustic camera as a
range sensor, instead of an image sensor and designed a full
probabilistic mapping framework which can reconstruct 3D
environment using acoustic images from multiple viewpoints
[5]. However, it assumed that camera poses corresponding to
each viewpoint are already given which is not effective in
realistic problem.

In this paper, in order to solve the problem in our previous
study [5], 3D local maps are generated from an effective
movement which is rotating around the acoustic axis (i.e.,
roll rotation of acoustic camera) and graph optimization



is implemented to realize accurate pose estimation of the
camera and generation of a 3D global map simultaneously.
As a result, it is possible to reconstruct a dense underwater
3D environment robustly and efficiently.

The remainder of this paper is organized as follows.
Section II explains principles of the acoustic camera briefly.
Section III describes 3D occupancy mapping framework with
the acoustic camera via roll rotation. Section IV introduces
the graph optimization algorithm in order to build the 3D
global map from the 3D local maps. The effectiveness of the
proposed method is evaluated with the experimental results
in Section V. Finally, Section VI gives conclusions and future
works of this paper.

II. PRINCIPLES OF ACOUSTIC CAMERA

An acoustic camera is an active sonar which insonifies a
wide range of 3D fan-shape ultrasonic wave in the forward
direction and receives the reflection signal after hitting an
object. Each point within the wave can be represented in a
polar coordinate system by range r, azimuth angle 6 and
elevation angle ¢ within the scope of 7cum, Gcam and Geam
respectively as shown in Fig. 2(a).

As a multiple beam sonar, acoustic wave can be considered
as an integration of 2D beam slices in the azimuth angle
direction as shown in Fig. 2(b). For each 2D sonar wave,
only range data is available which means the information of
elevation angle is lost. The 2D acoustic images are generated
by projecting intensity of reflection signal to the imaging
plane as shown in Fig. 2(a). Range r and azimuth angle 6
information is acquirable from the image. More details on
the principles of the acoustic camera can be found in [6].

III. 3D MAPPING
A. 3D Occupancy Mapping

3D occupancy mapping is used to solve uncertainty prob-
lem of the elevation angle in our previous study [5][7]. An
acoustic camera is considered as a range sensor; thus, areas
that beams have passed can be classified as occupied, free
and unknown voxels. Note that the entire 3D space is divided
into small voxels in this study. In order to perform the 3D
mapping based on the classified voxel information in the
3D space, we take several principles into consideration as
follows [5]:

e Each area with the same range and azimuth angle has
the same probability.

o There is less uncertainty in free space than occupied
space.

« Unknown area exists because of possible occlusion.

B. Camera motion and local maps

Camera motion may affect the result of 3D reconstruction
[8]1[9]. For a deterministic method, corresponding points in
different images can be found by intersection of two arcs for
elevation angles, which can be considered as triangulation
[10]. On the other hand, in the case of the probabilistic
method we proposed, since each voxel belonging to one
arc for the elevation angle has the same probability in one
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Fig. 2. Acoustic projection model:(a) geometrical model and imaging plane
of the acoustic image and (b) beam slices in acoustic camera.

observation, we have to narrow the occupied points using
intersection. The arcs for the elevation angles from different
observations are better to intersect rather than coincide or
parallel. In other words, translation of z-axis, rotations of roll
and pitch (i.e., rotation on the x and y axes) are relatively
effective.

In a realistic problem, it is difficult to build a whole map
of an entire space directly with one measurement. Therefore,
a common way is to generate several local maps and fuse
them into the final global map. In order to generate a local
map, camera motion should be as simple as possible. For one
single motion, roll rotation can be one of the most effective
ways for leading to intersection of arcs with uncertainty and
easy to be implemented by using pan & tilt module mounted
on the acoustic camera in general. As a result, roll rotation
is chosen to generate local maps in this study.

IV. GRAPH OPTIMIZATION
A. SLAM Framework

As we mentioned above, in order to realize 3D recon-
struction of underwater scene, measurements should be taken
from multiple viewpoints in different camera position. How-
ever, it is difficult to acquire accurate camera pose at every
measurement. In order to build a 3D global map robustly and
precisely, pose estimation method of the camera is necessary.
Hence, we designed a novel simultaneous localization and
mapping (SLAM) framework which is divided into the two
stages: front-end and back-end stages as shown in (Fig. 3).
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Fig. 3. Overview of SLAM framework using graph optimization. Local maps are generated from acoustic images of ¢-th rotation and odometry information.
In the front-end stage, ICP constraints are generated by 6 DoF matching of current local map and previous local maps. Next, constraints are passed to
back-end stage. Finally, global map and corrected camera pose are generated by graph optimization simultaneously.

In the front-end stage, local maps are built and matched
using 3D registration through iterative closest point (ICP)
[11]. Results of ICP transform and odometry data of camera
movement are used as constraints which are passed to
the back-end stage. In the back-end stage, we implement
optimization of pose graph to find the best configuration of
camera poses and realign the local maps to generate a correct
global map.

B. Front-end Stage

In the front-end stage of the framework, first, we generate
local maps using odometry data and acoustic images from
one rotation. Due to noise and other problems like slipping,
odometry data may include error which means local maps
may be aligned in a wrong position. Here, ICP is used to
match different local maps which is a 6 degrees of freedom
(DoF) matching method for 3D registration. A coarse to
fine principle is followed that max correspondence distance
is large in the first ICP matching step and becomes small
for the second ICP matching step. The final ICP transform
matrix is reserved and transferred to the back-end stage of
the framework. Denote that x; is the ¢-th pose. In order to
generate local maps, robot remains stable and does only roll
rotation of acoustic camera which is considered as one scan.
Roll angle is assumed to be accurate here and camera pose
X; is the pose at the beginning of the i-th scan. Figure 4
shows the local maps built from robot pose x; and x;1. It
is worth mention that ICP method does not work so well
when two consecutive scans are too far to each other which
means local maps from camera pose x; and pose x;; should
have enough overlap as shown in Fig. 4.

C. Back-end stage

Local maps are realigned using graph optimization, also
known as graph-based SLAM [12].

The trajectory of robot can be described by the sequence
of robot poses x;.7 = X1,...,X7. Each pose is considered
as a node in one graph. While moving, it acquires a sequence
of odometry measurements u;.7 = uj,...,ur and the
measurements of the environment z1.7 = 21, ..., Z7. Graph
SLAM is a full SLAM method consists of estimating the
posterior probability of robot trajectory x;.7 and the map m
of the environment given all the measurements plus an initial
position xy. The posterior probability can be written as:

p(X1:7, M|Z1.7, W17, X0).- (D

In this study, initial camera pose X is taken as origin
point of global coordinate. Let x = (xy,...,x7)7, z;; and
);; be the mean and the information matrix of a virtual
measurement between the node (pose) ¢ and the node j. This
virtual measurement can be considered as the position of
x; seen from x; based on the observation. Z;; denotes the
prediction of a virtual measurement given a configuration of
the nodes x; and x;, which is calculated by ICP algorithm
in this study. The information matrix here is calculated by
the root mean square error (RMSE) of the corresponding
point sets between the two nodes, with a line process weight
for loop closure detection[13]. The log-likelihood I;; of a
measurement z;; is

N T N
lij o [z — 2ij(xi,%5)]” Qj (205 — 2i5(xi,%5)] . (2)

Here, the error between two nodes is defined as:
eij(Xi, Xj) = 2ij — 2ij(Xi, %;)- 3)

In order to find the optimal configuration of the nodes x*,
maximum likelihood approach is used to minimize the sum
of the error as follows:

x* = argmin Eijeg;ﬂijeij. )
X
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Fig. 4. Examples of local maps generated from simulation data: (a) is the local map generated from a certain pose x; and (b) is the local map generated
from x; 1. Enough overlap is necessary between two consecutive local maps as shown in (c). Global map is generated from the integration of local maps.
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Fig. 5. Underwater robot equipped with acoustic camera on end effector
of 3 DoF manipulator in underwater simulation environment. Color here is
to show the height of simulation environment.

In this study, Levenberg-Marquardt algorithm is used to
find the best configuration of camera poses x*. Figure 3
shows an example of graph optimization. In front-end stage,
constraints between each node are generated and the optimal
configuration of nodes is calculated in the back-end stage in
order to get a minimum sum of error.

V. EXPERIMENT

To verify our method, simulation experiments were con-
ducted with virtual acoustic images generated from acoustic
camera imaging simulator [6].

A. Simulation setting

An underwater simulation environment that consists of six
artificial objects fixed on ground was generated as shown in
Fig. 5. The resolution of the simulation environment was
15mm.

An underwater robot equipped with an acoustic camera
was used as construction machine model as shown in Fig. 5.
We assumed that the acoustic camera was mounted on end
effector of 3 DoF manipulator with a pan & tilt module. To
generate local maps, the motion of the robot is as follow:

« Robot alternatively moves its wheels and stops to im-
plement roll rotation of acoustic camera.

« Robot stops in a certain position, alternatively moves
its arm and stops to implement roll rotation of acoustic
camera.

This is to say during roll rotation of acoustic camera, robot
does not move in order to sense the area and acquire local

maps. In other cases, robot moves its wheels or arm in order
to sense a larger area. In a realistic problem, the manipulator
is much heavier than the camera, so that roll rotation is
considered stable without vibration. The initial robot pose
was set as a global coordinate frame.

In this simulation, odometry data could be obtained under
assumptions that the underwater robot equipped with sensors
including encoders on the wheels and each joint of the
manipulator, and the acoustic camera had a built-in compass.
Here, the pitch and roll angles from compass were considered
to be accurate with little rounding error, but the yaw angle
is not reliable which is consistent with real data. In order to
simulate noise in odometry, we added Gaussian noise with
a standard deviation about maximum 50 percent of control
input u; to robot pose when robot moved. Robot moved in the
first eight poses to get closer to the environment and stopped,
continued to move its arm to sense the environment.

B. Simulation result

After local maps are generated, graph optimization pro-
posed in Section IV was performed. we implemented it
by utilizing Open3D library [14]. Figure 6 shows the re-
alignment result between the local maps generated by 3D
occupancy mapping described in Section III. Here, each local
map is represented by a different color. To reconstruct the
entire 3D environment, 14 local maps. Each local map is
generated from acoustic images every 10 degree during a
360 degree roll rotation. It can be seen from the result that
there are aberrations of local maps in Fig. 6(a). In other word,
several planes exist which are supposed to be the same plane.
On the other hand, these staggered layers overlapped after
graph optimization, as shown in Fig. 6(b). To evaluate the
3D reconstruction results quantitatively, distances between
3D point cloud of each result and the ground truth (Fig. 5)
were calculated, using nearest neighbor distance based on
Euclidean distance between the two points. The average
distances were 0.049 m in case of the 3D point cloud before
optimization and 0.028 m in case of the 3D point cloud after
optimization.

Figure 7 shows the camera trajectory of position from
odometry, proposed method and ground truth. The movement
can be separated into two steps. In the first 8 poses robot
moves towards the environment, during each node robot
stops to rotate the camera in order to sense the area. When



Fig. 6.
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Fig. 7. Trajectory of camera position. Result of our proposed method
provides promising correction of camera position.

robot gets close enough to the environment, robot stops
moving and starts to move its arm to sense the area. The
red trajectory is estimated from our proposed method which
better fits the blue trajectory of ground truth. To evaluate
the rotation of camera, since roll angle and pith angle are
considered accurate in this research, we mainly focus on yaw
angle of camera. Figure 8 shows the yaw angle of camera
from odometry, proposed method and ground truth. At the
beginning, robots moves towards the environment without
changing its arm angle so that odometry value is closer to
the ground truth. However, from the 9-th pose, when robot
starts to change its arm angle, much noise was added to the
input of control that the error of odometry became larger. Our
proposed method gets a better result which is much closer to
the ground truth. Due to noise and distortion in local maps,
3D registration using ICP is not perfect. In some cases, like
the yaw angle of camera from the 1-st pose to the 8-th pose,
if noise in odometry is small, 3D registration may introduce
noise to the system which leads to larger errors in estimated
poses.

The above mentioned results show that our framework
can successfully correct the odometry error to estimate the

(b)

Registration result:(a) shows local maps before optimization (b) shows local maps after optimization. Different colors here represent different
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Fig. 8. Yaw angle of acoustic camera. At first, robot keeps moving without
changing the yaw angle of camera. From the 9-th pose, robot starts to move
its arm in order to sense the environment.

camera trajectory and build an accurate 3D global map of a
surrounding environment.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a graph optimization-based 3D dense map-
ping framework using acoustic images is proposed. Local
maps are generated from roll rotation of the acoustic camera.
A graph optimization scheme is implemented to realize pose
estimation and build a global map of a surrounding envi-
ronment. Experimental results demonstrate that our SLAM
framework for the acoustic camera can reconstruct dense 3D
model of underwater targets successfully.

Future work may include real experiment, considering the
noise during roll rotation and changing the algorithm of ICP
for a more robust 3D registration.
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