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ABSTRACT 

Three-dimensional (3D) reconstruction of the Primary 

Containment Vessel (PCV) internal structure provides useful 

information for cleanup of the fuel and debris submerged in 

the coolant. This internal structure can be recovered by 

Structure from Motion (SfM) technique using the investigation 

video sequences, such as the video captured by an underwater 

robot at Unit 3 PCV. However, the inside of Unit 3 PCV is 

filled with coolant. This underwater environment is different 

from the air environment. Thus, the camera equipped on the 

robot is confined in a waterproof camera housing. Light rays 

entering to the camera are refracted twice in this situation. One 

happens at the interface of water and camera housing, and the 

other happens at the interface of camera housing and the air. 

The refraction will result in geometric distortion in 3D 

reconstruction. In this paper, we propose a Refractive 

Structure from Motion (RSfM) approach to solve the refractive 

distortion problem during the 3D reconstruction. The approach 

includes camera system modeling, camera housing calibration, 

camera system pose estimation and geometric reconstruction. 

The camera system modeling method based on ray tracing is 

proposed to model the camera system of the underwater robot 

sent to Unit 3 PCV. A new camera housing calibration is based 

on back-projection error is proposed to achieve accurate 

modeling. Furthermore, camera system pose estimation based 

on modeled camera system is proposed for the geometric 

reconstruction. Finally, the 3D reconstruction can be obtained 

by triangulation. The effectiveness of proposed approach is 

confirmed using the video captured by the underwater robot at 

Unit 3 PCV of Fukushima Daiichi Nuclear Power Station. The 

geometric reconstruction results show that the proposed 

method can reduce the refractive distortion effectively and 

achieve better results than the conventional SfM method. 

 

1. INTRODUCTION 

The Fukushima Daiichi Nuclear Power Station has been 

facing crisis since 2011 Tohoku Earthquake and Tsunami 

(Ogawa, 2018, Masuda, 2018). One of the tasks is to remove 

the contaminated debris from the PCV. However, due to the 

highly radioactive environment and narrow penetration hole to 

access to the PCV, the internal status of PCV is almost 

unknown.  

To give detail of investigation, several robots were 

developed for this highly radiated environment (Nagatani et al., 

2011, Arai, 2018). An investigation carried out by Tokyo 

Electric Power Company (TECPO, 2015) on October 2015 

found that the PCV of Unit 3 is filled with 6-meter-deep 

coolant. Fuel and other debris with radiation are submerged in 

the coolant. An extremely important task is to clean up the 

radiated debris in the plant. In this highly radiated environment, 

it is impossible for human to accomplish the task and the clean-

up task may rely on the robotic techniques. Thus, the debris 

must be located and mapped in the 3D internal structures. The 

3D reconstruction of the inside of PCV is essential to provide 

useful information for the cleanup and reduce the unknown 

factors for human and robots (Asama, 2018). 

An underwater robot equipped with cameras and LED lights 

was sent to the Unit 3 PCV filled with coolant (Adachi, 2018). 

The robot captured the video in the PCV and collected 

information about the key structures. SfM using a single 

camera, as one of the 3D reconstruction techniques, can 

estimate the camera pose meanwhile reconstruct the 3D 

structure from the image sequences captured by the camera. 

Compared with hybrid or stereo camera systems (Bruno et al., 

2011, Bastanlar et al., 2012), the rescue robots can be designed 

compactly using one single camera for narrow disaster area 

investigation.  

SfM has been received intensive investigations 

(Aliakbarpour et al., 2015, Li et al., 2015). However, these 

studies are effective in air environment. In underwater 

environments, typically, the camera is confined in a 

waterproof housing. Thus, the light rays are refracted twice. 

One happens at the interface of water and the camera housing, 

and the other happens at the interface of the camera housing 

and the air. To obtain accurate 3D reconstruction, one 

challenge is the refraction during the image formation. 

In this paper, we propose a SfM approach to solve the 

refraction problem. The approach solves the refraction 
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problem based on the camera system modeling, camera 

housing parameter estimation and camera system pose 

estimation. 

The remainder of this paper is as below. Section 2 describes 

the proposed approach. Section 3 gives a brief description of 

the experiment and the result. Section 4 presents the 

conclusion. 

 

2. APPROACH 

Refraction is considered in camera system modeling, 

camera housing calibration and camera pose estimation in 

proposed approach. 

 

2.1 Camera System Modeling 
The robot camera system can be modeled based on the 

mechanical design as shown in Fig. 1. The shape of camera 

housing is cylindrical, and the camera is confined in the 

camera housing. When a light ray projects back to the outside 

from camera center, it can be segmented to three parts. 𝐫𝑎 is 

the ray in the air, 𝐫h is the ray passing through the camera 

housing, and 𝐫w is the ray in the water. The refractive angles 

are 𝜃1  to 𝜃4 . 𝑛𝑤 , 𝑛ℎ , 𝑛𝑎  are refractive index of water, 

camera housing and air, respectively. 𝐍1  and 𝐍2  are the 

normal on the refractive points, respectively. 

According to the ray tracing and Snell law, the camera 

system can be modeled as below: 
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𝑛h
cos θ4 − √1 − (
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The ray and normal vectors with tilde in the above 

equations mean the normalized vectors. Therefore, the light 

ray from a pixel to a corresponding point can be traced if the 

relative pose of camera to the camera housing is known. In 

next subsection, the detail of how to determine the relative 

pose will be described. 

 

2.2 Camera Housing Calibration 

To determine the relative pose of the camera to the camera 

housing, we propose a novel but simple calibration method. 

In the calibration, the camera relative position and rotation to 

the camera housing will be determined. We estimate these 

parameters by minimizing the back-projection error.  

As shown in Fig. 2, a calibrated camera is confined in a  

 
Fig. 1 The Camera System Modeling 

 

 
Fig. 2 Camera Housing Calibration 

 

camera housing. The camera housing center is set at H, and 

the camera center is set at C. The relative rotation and 

translation of camera to the camera housing are 𝐑CH  and 

𝐭CH, respectively. The world coordinate system origin is set 

on the checkerboard. Suppose 𝐗𝑛
𝑊 is a known point on the 

checkerboard, and the corresponding pixel is 𝐱𝑛. R and t are 

the rotation and translation of world coordinate system 

relative to the local camera system, respectively. According 

to Eq. (1) and Eq. (2), the estimated point, �̂�𝑛
𝑊 , can be 

represented by the unknown parameters need to estimate. 

If we minimize the distance between the estimated point and 

the ground truth, the unknown parameters can be estimated 

during the optimization process. If M views are obtained, and 

each view contains N points, the total points for the calibration 

are MN. The cost function is the sum of the squared distance 

of all the corner points.  

𝐽 = ∑ ∑ ‖�̂�𝑚𝑛
𝑊 −  𝐗𝑚𝑛

𝑊 ‖𝑁
𝑛=1

𝑀
𝑚=1              (3) 

This cost includes unknown rotation and translation need to 

estimate. During the optimization process, the relative pose of 

camera to the camera housing can be estimated. 

 

2.3 Camera Pose Estimation 

The relative pose between two local camera system can be 

estimated using modeled camera system in Subsection 2.1. As 

shown in Fig. 3, the robot has moved from location, L1, to 

location, L2. If the relative pose can be estimated, the point X 

can be reconstructed by triangulation. In this section, we 

propose a method to estimate the relative pose between two 

camera system based on the modeled camera system. 

As depicted in Fig. 3, the rays from two camera system in 

different view intersect at point X. The rays can be represented 

by plücker line, which is an efficient way to represent lines 

in 3D space (Pless, 2003). Thus, the equation as below can be 

obtained. 

𝐋 = (𝐝, 𝐦) = (𝐫w, 𝐗hw × 𝐫w)            (4) 

where d and m are the direction and moment of the plücker 

line, respectively. 𝐫w is the vector in the water, and 𝐗hw is 

the intersecting point of the ray in the water at the camera 
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Fig. 3 Camera Pose Estimation 

housing. 

In the camera system at the second location, the ray in the 

water can be represented similarly as Eq. (4). 

   𝐋′ = (𝐝′, 𝐦′) = (𝐫w
′ ,  𝐗hw

′ × 𝐫w
′ )          (5) 

To estimate the relative camera pose of these two local 

camera systems, the plücker vectors of the ray in the second 

local camera system are transformed to the first local camera 

system by rotation R and translation t. According to property 

of the plücker  line, the intersection of two lines can be 

described as below: 

𝐝⊤𝐦′𝑊 + 𝐦⊤𝐝′𝑊 = 0                  (6) 

 Thus, according to Eq. (4), Eq. (5) and Eq. (6), the equation 

as below can be obtained. 

(
𝐫w

𝐦
)

𝑻

(
[𝐭]×𝐑 𝐑

𝐑 𝟎
) (

𝐫′w

𝐦′
) = 0           (7) 

[𝐭]× is the skew-symmetric matrix of 𝐭. If the corresponding 

points are obtained using feature detection and matching 

method, the related rays can be calculated based on Eq. (2). 

The unknown parameters in Eq. (7) are rotation, R, and 

translation, t. Thus, the relative pose R and t can be solved. A 

point can be reconstructed using triangulation method after the 

camera pose estimation. 

 

3. EXPERIMENTS 

The experiments include two parts: camera housing 

calibration to determine the related housing parameters and 

Unit 3 PCV internal scene reconstruction using the photos 

captured during the robot investigation.  

 

3.1 Camera Housing Calibration  

Several checkerboard patterns were captured using the 

camera system of the robot for the Unit 3 PCV internal 

investigation as shown in Fig. 4. According to the proposed 

calibration method in Subsection 2.2, the relative pose of the 

camera to the camera housing can be estimated. We use the 

average values of the estimated parameters as our camera 

modeling parameters as shown in Table 1. In Table 1, we 

convert the rotation matrix to Euler angles. α, βandγ are 

rotation angles related to X, Y and Z axis, respectively. 𝑡𝑥, 𝑡𝑦 

and 𝑡𝑧  are translations of camera center to camera housing 

center in X, Y and Z direction. 

Table 1 Estimated Parameters 

Rotation angle α β γ 

Average (deg) 0.78 -0.66 -1.20 

Translation  𝑡𝑥 𝑡𝑦 𝑡𝑧 

Average (mm) 0.61 1.39 35.08 

 

Fig. 4 Checkerboard patterns for Calibration 

 

As depicted in Table 1, the camera has slight rotation to the 

camera housing and a major translation in Z direction. The 

results are also consistent with the design parameters. Thus, 

the proposed calibration method can estimate the related 

parameters precisely. After obtaining the camera housing 

parameters, the robot camera system can be modeled 

accurately using method in Subsection 2.1. 

 

3.2 Unit 3 Scene Reconstruction 

We use photos captured at inside of the Unit 3 PCV to 

reconstruct the 3D structures. In the experiment, we chose a 

typical scene as the input of the proposed approach. The 

images have been enhanced using our previous proposed 

enhancement method (Qiao et al., 2018) as shown in the right 

image of Fig. 5. The contrast and color of the image are 

improved.  

We used two views of enhanced image to obtain the 3D 

reconstruction of this scene. The correspondences are 

computed using dense flow method (Tao et al., 2012). Thus, a 

dense reconstruction can be obtained as shown in the left 

image of Fig. 6. The structure is successfully reconstructed. 

We also compared our proposed method with the 

conventional SfM method. As shown in the right image of Fig. 

6, the recovered structure is distorted, especially the angle 

between two beams. However, the proposed method can 

recover the structure accurately compared with the 

conventional method. Conventional method is distorted 

because the refraction problem is not considered. 

 

Fig. 5 Captured Images at Unit 3 PCV 
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Fig. 6 Comparison of proposed method and 

conventional SfM 

 

4. CONCLUSIONS 

In this paper, we proposed an approach to reconstruct the 

structures inside of Unit 3 PCV by considering the refraction. 

To achieve accurate reconstruction, the camera system of the 

investigation robot was modeled based on ray tracing and 

Snell’s law. We also proposed a simple but novel method to 

obtain the parameters between the camera and camera housing. 

Finally, the relative camera pose can be estimated based on the 

modeled camera system. The experiment results show that our 

method can reduce the distortion caused by refraction and 

achieve accurate 3D reconstruction compared with the 

conventional SfM method.  
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