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Abstract—In this study, it is aimed at non-contact judgment
of traversability for construction machinery on weak ground. A
new method for estimating cone index, one of the indicators
of traversability, from discriminated soil types and estimated
water content by hyperspectral cameras is proposed. Based on
the initial experiments, there is a possibility to estimate cone
index from hyperspectral images.

Index Terms—traversability, cone index, hyperspectral image

I. INTRODUCTION

Recently, landslide disasters occur frequently. After such
disasters, prompt restoration work is necessary, and con-
struction machinery is typically used for the work. Before
introducing construction machinery in such environments, it
is necessary to investigate traversability for the machinery,
not to get stuck in weak ground. When the soil is too
weak to support construction machinery, it may fall over and
break down. Therefore, the restoration work may fail without
traversability investigation. Generally, traversability is judged
by workers on site. However, due to the risk of secondary dis-
asters, workers had better not to enter landslide disaster sites.
Therefore, unmanned traversability investigation is necessary.
Teleoperated robots were used for unmanned traversability
investigations [1] [2]. These robots measured cone index,
which is one of the indicators of traversability of construction
machinery. However, the above methods took very long time to
measure cone index. Because these methods were contact type
investigation method and required to make a measuring device
contact soil at every measuring point. To reduce the time for
the investigation, a non-contact type traversability investigation
method is desired. Infrared images were used for non-contact
cone index estimation methods [3] [4]. In these methods, water
content was estimated from infrared wavelength to estimate
cone index. These methods reduced the investigation time,
because the investigation required only image shooting at the
site. However, these methods only estimated water content and
did not discriminate soil types that also affect cone index. It
is known that cone index depends not only on water content,
but also on soil types. Therefore, in this study, a new method
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Fig. 1. Flowchart of traversability investigation

to estimate cone index from water content for each soil type
is proposed. The new method uses hyperspectral images in
order to estimate not only water content, but also soil types.
The hyperspectral images obtain spectral reflectance, which
varies with soil types and water content.

II. METHODOLOGY

The proposed traversability investigation method consists
of three steps: step (1), step (2), and step (3). Figure 1 shows
each step and the overview of the traversability investigation.
In the step (1), soil types are discriminated from hyperspectral
images. In the step (2), water content of clay is estimated from
the hyperspectral images. In the step (3), cone index of clay
is estimated from water content for each soil type.

In the step (1), to discriminate soil types from hyperspec-
tral images, a neural network is used. Neural networks can
automatically learn important features for the classification of
hyperspectral images [5]. Therefore, in this step, soil types
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Fig. 2. Experiment overview

are discriminated from hyperspectral images using the neural
network with pre-learned images. As the result of this dis-
crimination, hyperspectral images are classified into three soil
groups: clay, sand, and gravel. It is known that the sand and the
gravel can be traversed by construction machinery regardless
of water content [6]. On the other hand, traversability of the
clay is affected by water content. Therefore, water content is
estimated when the soil type is classified into the clay.

In the step (2), water content is estimated from the gradient
of the spectral reflectance spectrum which is obtained from
hyperspectral images. Water absorbs light around 1450 nm.
When the water content is 0, in wavelength from the visible
to around 1450 nm, spectral reflectance increases as the
wavelength increases. However, as the water content increases,
spectral reflectance decreases. Therefore, as the water content
increases, the gradient at 1450 nm decreases. In this study,
water content is estimated by linear and exponential regres-
sions from the gradient. The gradient of 1450 nm is obtained
by calculating the first derivative of the spectral reflectance
spectrum. The first derivative is calculated approximately from
the difference between the spectral reflectance of 1440 nm and
1460 nm.

In the step (3), cone index of clay is estimated from water
content for each soil type. Basically, cone index depends on
soil types and water content. Therefore, if cone index for each
water content and each soil type is known, the estimation of
cone index is possible from soil types, water content, and the
known cone index. When the soil type is discriminated in the
step (1), the known cone index for each water content can be
used. From the water contents recorded with the known corn
index, two water contents immediately before and after the
estimated one in the step (2) can be extracted. By dividing
the two water contents internally with the estimated one, the
internal ratio is calculated. Estimated cone index is the point
which divides cone indexes corresponding to the extracted
two water contents internally with the internal ratio calculated
above.

Fig. 3. An example of hyperspectral images
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Fig. 4. Confusion matrix of hyperspectral images discrimination

III. EXPERIMENT
A. Experiment setup

Figure 2 shows an overview of the experiment. In this study,
hyperspectral cameras, NH-7 and SIS-I manufactured by Eva
Japan Co., Ltd., were used to take hyperspectral images. Figure
3 shows an example of the hyperspectral images used in this
study. The images were taken indoors and we used halogen
lamps as light sources. The reason for using them is to get all
wavelengths of light acquired by the hyperspectral camera. 3
hyperspectral images were taken for each soil type. Among
the 3 images, 2 images were used to learn the neural network
to discriminate soil types and to make estimation equations
of water content, and the remaining 1 image was used as test
data for the discrimination of soil types and the estimation
of water content. Hyperspectral images of 10 soil types were
used. They were collected at 10 different locations. Among
these 10 soil types, soil A, soil B, soil D, soil F, and soil G
were clay. The rest of the soil types were sand or the gravel.

B. Results

1) Discrimination of soil types: Figure 4 shows the con-
fusion matrix of the hyperspectral image discrimination of
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Fig. 5. Relationship between water content and the gradient of spectral reflectance around 1450nm.

the 10 soil types obtained in this experiment. The accuracy
rate of the discrimination was 81.57 % for the test data.
The discrimination of the 10 soil types from hyperspectral
images was successful. From the result, it was found that
the non-contact discrimination of soil types was possible
by distinguishing the difference in the spectral reflectance
spectrum depending on soil types.

2) Estimation of water content: Figure 5 shows the result
of the water content estiamtion of clay: soil A, soil B, soil D,
soil F, and soil G. In each graph, the horizontal axis shows

the first derivative of the spectral reflectance spectrum. On the
other hand, the vertical axis shows the water content. In the
graphs, the black solid lines show the relationship between
the measured water content and the spectral reflectance gra-
dient, and black dotted lines and red solid lines are linear
approximation lines and exponential approximation lines to
the above-mentioned black solid lines respectively. In these
graphs, the linear approximation lines and the exponential
approximation lines were along the actually measured black
solid lines. Using the approximation line equations, calculation



TABLE I
ESTIMATED CONE INDEX FROM ESTIMATED WATER CONTENT
FOR EACH SOIL TYPE

soil soil type and | estimated estimated calculated

group | water content | soil type | water content cone index
Soil A 10 % A 10.26 % 4333 kN/m?
Soil A 40 % A 29.20 % 401 kN/m?
Soil B 10 % B 9.51 % 12405 kN/m?
Soil B 40 % B 27.88 % 6344 kN/m?

clay Soil D 10 % D 6.97 % 1664 kKN/m?
Soil D 40 % D 37.98 % 237 kN/m?
Soil F 10 % F 10.67 % 9298 kN/m?
Soil F 40 % F 35.70 % 7570 kN/m?
Soil G 10 % G 11.76 % 6460 kN/m?>
Soil G 40 % G 37.87 % 2 kN/m?
Soil C 10 % C
Soil C 40 % C
Soil E 10 % E

gravel Soil E 40 % E

or Soil H 10 % H

sand Soil H 40 % H
Soil I 10 % I
Soil I 40 % I
Soil J 10 % J
Soil J 40 % J

of estimated water contents from the first derivatives of the
spectral reflectance spectrum of 1450 nm was successful. From
the result, it was found that estimation of water content was
possible by the fact that the spectral reflectance at water
absorption wavelength band decreases as the water content
increases.

3) Calculation of cone index: Table I shows the result of
the estimation of water content, estimation of soil types, and
calculation of the estimated cone index. Water content and
soil types were estimated for only clay: soil A, soil B, soil D,
soil F, and soil G. The leftmost column shows the soil group
and the second column from the left shows the true soil type
and water content of each soil type. The remaining columns
show the discriminated soil types, estimated water content,
and estimated cone index, respectively. The columns of the

discriminated soil types and estimated water content show the
result of the step (1) and the step (2) respectively. From this
table, it was found that the calculation of the estimated cone
index of clay from hyperspectral images was possible. This
estimation assumes that cone index depends on soil types and
water content. In order to confirm whether the assumption can
be used, it is necessary to compare the actual measured cone
index and the estimated one by the proposed method.

IV. CONCLUSION

In this study, a new method to estimate cone index of clay
from hyperspectral images for evaluation of traversability of
construction machinery is proposed. According to the initial
experiments, the soil types and water content were estimated
from hyperspectral images, and estimation of cone index from

hyperspectral images was possible. In the future, it will be
required to compare an actually measured cone index with an
estimated one by the proposed method in this study to validate
the method.
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