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Abstract. In this paper a novel procedure for the identification of the
dynamic parameters of rigid robot manipulators is presented. The method
is developed according to the Frisch scheme, an estimation procedure
based on a priori assumptions on the data that are different with re-
spect to the usual ones, e.g. to the common Least Square (LS) method.
The peculiarities of this scheme give rise to a new way to perform iden-
tification on a robot manipulator and offer a better insight of its results
with respect to classical methods. A complete and systematic identifica-
tion procedure is presented involving and improving known techniques of
both model reduction and planning of optimal exciting trajectory. Simu-
lation results performed on a 2-DOF robotic manipulator are presented
and discussed, confirming the effectiveness of the proposed method.

Keywords: Robotics, System Identification, Frisch Scheme, Optimal
Trajectory Planning

1 Introduction

Advanced control techniques, simulations and diagnostics of robots often require
an accurate knowledge of the dynamic model. Although robot manipulators are
designed according to precise mechanical specifications, the dynamic parameters
of their links are typically not perfectly known, even by robot manufacturers.
In order to achieve a correct knowledge of those parameters, experimental iden-
tification techniques can be performed where the estimates are obtained from
direct measurements collected during the motion of the robot. The topic has
been widely developed in the literature (see e.g [1,2,3,4]) and the great amount
of different contributions is due to the variety of steps and degrees of freedom
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that are present in identification procedures. The motivation of this work is
driven by the consideration that apparently most of the effort was done to im-
prove technical aspects preceding the real identification step, i.e. reduction of
the model and generation of exciting trajectories. Indeed the identification of
the parameters has been basically performed by means of least squares (LS) es-
timation techniques. However, these methods are not always reliable and often
lead to physically infeasible estimates [5].

The aim of this work is to improve the identification step, using tools from
system identification theory not exploited yet in robotics, in particular the (alge-
braic) Frisch Scheme [6]. This estimation scheme falls into the Errors-in-Variable
(EIV) context and abstracts from a commonly chosen input/output formulation
of the dynamic model of robot manipulators. Indeed, it is based on milder and
more general assumptions than those implicitly done when LS based identifica-
tion procedures are performed. This method introduces some post-identification
degree of freedom in the selection of dynamic parameters of the manipulator
among the feasible solutions compatible with the scheme itself. This aspect rep-
resents a resource since physical knowledge of the dynamic model of the robot
can help in this selection, mixing a pure black box estimation step with a rea-
sonable white box selection procedure.

The main contribution of this paper lies in the introduction of the Frisch
Scheme in a robot identification framework. Moreover, a systematic procedure
that involves and improves known techniques of model reduction and exciting
trajectory generation is presented. The paper is organized as follows: Sec. 2
summarizes some results of EIV schemes, in particular of the Frisch scheme. In
Sec. 3 the proposed identification procedure on robot manipulators is presented:
in Sec. 3.1 and Sec. 3.2 technical issues about model reduction and planning of
exciting trajectory are discussed and in Sec. 3.3 the real identification step is
presented. Sec. 4 reports a simulation example validating the proposed method
on 2-DOF robotic arm. Finally, conclusions and future work are reported in Sec.
5.

Notation: The set R is the the set of real, ‖ · ‖2 is the norm induced by the
inner product of Rn while ‖ · ‖∞ is the infinity matrix norm. The origin of Rn

is 0n while the n-dimensional identity matrix is In . N (0n ,In) is a multivariate
normal distribution with zero mean and unitary variance. Consider a square
matrix M ∈ Rn×n and a vector v ∈ Rn ; diag(M) ∈ Rn denotes the diagonal of M
while diag(v) ∈Rn×n is the diagonal matrix whose diagonal is v. Moreover, ker(M)
denotes a basis of the kernel (null space) of M; therefore, ker(·) represents the
operator of kernel basis extraction. Scalars are denoted as lower–case letters,
vectors as bold and lower–case and matrices as bold capital letters.

2 The Frisch Estimation Scheme: Background

Most of the content of this section derives from [6]. The Frisch Scheme is an
estimation scheme able to extract linear relations from data affected by noise.
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As every systematic procedure that deduces a model starting from data affected
by errors, it relies on the modification of the observed data since a deterministic
mathematical relation able to fit all the observations does not exist. A major
difference among different estimation schemes is the set of a priori assump-
tions that are necessary to estimate linear relations from noisy data. Different
schemes modify observations in different ways. In [7] a detailed analysis of the
assumptions behind several schemes is present. The Frisch Scheme falls into the
Errors-in-Variables (EIV) context that assumes additive noise on all variables.

2.1 Assumptions for EIV Estimation Schemes

Consider the following linear algebraic equation:

α1x1 +α2x2 +·· ·+αn xn = 0 (1)

where n variables xi are linked to n scalars αi . Let us collect m measurements
of the variables. We can define the observation matrix as

X =




x11 x12 . . . x1n

x21 x22 . . . x2n
...

... . . . ...
xm1 xm2 . . . xmn


 ∈Rm×n . (2)

From equation (1), it holds
X A = 0n (3)

where A = [α1, α2, · · · , αn]⊤ 4. By defining the sample covariance matrix Σ ,
1
m X⊤ X, it can be noticed that (3) is equivalent to

ΣA = 0n (4)

as Σ and X share the same kernel. The diagonal of Σ contains the variances of the
variables while the covariances are the off-diagonal elements. Assume now that
the noise enters in an additive way in the variables, i.e. xi = x̂i +x̃i where x̂i is the
unknown exact value of the variable and x̃i is the corresponding noise sample.
Notice that, due to the noise, Σ≻ 0 and it is thus impossible to extract any linear
relation from its kernel linear relations. To do that, it is necessary to modify the
observations covariance Σ. Under the usual assumptions made in EIV schemes of
zero–mean noise and statistical independence between noise and noisless samples
(see [6]) it turns out that Σ = Σ̂+ Σ̃, with Σ̂, 1

m X̂
⊤

X̂ and Σ̃, 1
m X̃⊤X̃, where X̂,

X̃ are defined as in (2) with x̂i and x̃i instead of xi . The problem of finding
linear relations compatible with noisy data, namely the “estimation problem”,
formulated by Rudolf E. Kálmán, is the following:

4 Note that, in general, A ∈Rn×p whenever there exists p independent linear relations
compatible with the data.
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Definition 1 (Estimation Problem [7]). Given Σ, determine Σ̃ such that

Σ̂=Σ−Σ̃º 0 det(Σ̂) = 0 (5)

Any base of ker(Σ̂) will span a space describing a set of linear relations compatible
with the data and the assumptions, i.e. Σ̂A = 0n can now be solved.

Differences among estimation schemes lie in the assumptions made on the
noise variables and consequently on Σ̃. Two estimation schemes of interest in
this work are now described.

2.2 Ordinary Least Square (OLS) [8]

The assumption made in this estimation scheme is that only one variable is
affected by noise, while the remaining ones are noise-free, i.e.

Σ̃= diag[0, · · · ,0, σ̃2
i ,0, · · · ,0]

where σ̃2
i is the variance of x̃i . The solution of the estimation problem is given

by
σ̃2

i =
det(Σ)

det(Σi )
(6)

where Σi is the matrix built by deleting the i -th row and the i -th column of Σ.
In fact σ̃2

i , as defined in (6), is the maximum amount of noise compatible with
condition (5). Note that:

– When no assumption is made about the noisy variable, the ordinary least
squares scheme leads to n different solutions;

– Each OLS solution Ai (i = 1, . . . ,n) minimizes the squared estimation error,
i.e.

Ai = argmin
Ai

‖Xi −X̄i Ai ‖2
2 (7)

where Xi is the i -th column of X and X̄i is obtained by deleting the i -th
column of X.

2.3 The Frisch Scheme

This scheme relaxes the OLS assumptions on the noise by requiring only the
mutual independence of the noise variables affecting dirrent variables, i.e.

Σ̃= diag
[
σ̃2

1, σ̃2
2, · · · , σ̃2

n

]

Notice that, for a given sample covariance matrix, Σ the n OLS solutions are
included in the solutions of the Frisch estimation scheme. This means that the
a priori assumptions made for the Frisch scheme are milder and more general
than those of any estimator which provides a single solution like least squares
(either computed by pseudoinversion or recursively). On the other hand, in this
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way the computation of closed-form solutions is more difficult, since in general
there are infinite possible solutions. In order to overcome this problem, we use
some of the results reported in [6], where this approach is presented in details.
In particular, we need to introduce a definition and a theorem. Let’s define
MaxcorF (Σ) as the maximum number of linear relations that can be extracted
from Σ under the assumptions of the Frisch scheme. Therefore

MaxcorF (Σ) = max
Σ̃∈D

{
dim

(
ker(Σ̂)

)}

being D the set of all the diagonal matrices satisfying (5), i.e., all the solutions
of the Frisch scheme.

Theorem 1. [6] If MaxcorF (Σ) = 1 the following hold:

1. All the linear relations compatible with the Frisch scheme lie (by normaliz-
ing one entry to 1) inside a simplex of Rn−1 whose vertices are the n OLS
solutions.

2. There exists a one-to-one relation to between the points of the simplex and
the solutions of the Frisch scheme.

3 Robot parameters identification

As it is well known, the Euler-Lagrangian dynamic model of a n dof robot
manipulator can be expressed in a linear form with respect to a vector of dynamic
parameters θ as

Γ
(
q, q̇, q̈

)
θ =τ (8)

where matrix Γ(q, q̇, q̈) ∈Rn×13n depends only on the kinematic parameters of the
robot and the joint position, velocity and acceleration q, q̇, q̈ ∈ Rn respectively,
[1]. Vector τ ∈Rn collects the generalized forces applied to the joints and

θ = [
θ⊤

1 θ⊤
2 . . . θ⊤

n

]⊤ ∈R13n , θi ∈R13

θi is the vector collecting the parameters of link i , including:

– the mass of the link mi ;
– the first order moments: mi r x

i , mi r y
i , mi r z

i ;
– the independent elements of the symmetric inertia matrix; expressed with

respect to the origin of frame i : I x
i , I y

i , I z
i , I x y

i , I xz
i , I y z

i ;
– the actuator inertia I m

i ;
– the Coulomb and viscous friction coefficients µi and βi respectively.

Usually, three conceptual steps are considered for parameter estimation: i) model
reduction; ii) planning of exciting trajectories; iii) actual parameter estimation.
In literature, many contributions have been proposed for improving the first
two aspects, see e.g. [1,9,10,11,12]. In the next sections, a systematic procedure
dealing with these two steps is presented, partially inspired by [1]; moreover, the
novel identification procedure is illustrated.
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3.1 Model Reduction

The first step is to define a reduced dynamic model of the robot starting from the
full symbolic model (8). In robotics, it is well known that only restricted relative
motion between links is allowed. Consequently it is impossible to estimate all
the 13n parameters in θ. Indeed, the elements of θ can be divided into three
categories:

– θa ∈Rpa , the absolutely identifiable parameters, i.e. parameters corresponding
to structurally independent columns of Γ;

– θl ∈ Rpl , the parameters identifiable in linear combination, i.e. parameters
giving contribution to the joint torques only in linear combination with each
other;

– θn ∈Rpn , the non-identifiable parameters, i.e. parameters that do not give any
contribution to the joint torques, corresponding to structurally null columns
of Γ.

Defining c = 13n, it yields c = pa + pn + pl . The goal of the model reduction
procedure is to find a vector of base parameters θb ∈Rp containing the symbolic
expression of the parameters characterizing the reduced model. In particular θb =
[θ⊤

a , θ⊤
d ]⊤ where θd ∈pd contains the sought linear combinations of the elements

of θl . Obviously, it results pd < pl and p = pa +pd < c. Therefore, matrix Γ can
be replaced by the corresponding n ×p reduced matrix Γb to obtain

Γb(q, q̇, q̈)θb =τ (9)

Since the purpose of this work is to define a systematic procedure which may
be applied to any robot, a numerical approach based on Singular Value Decom-
position (SVD) is adopted for model reduction, inspired by [10] [1]. Assume to
have m ≥ 13 observations of q, q̇, q̈ abd τ obtained by sampling a properly excit-
ing trajectory (see 3.2). Let r = mn and let Πm ∈ Rr×c be the regression matrix
obtained by computing Γ(q, q̇, q̈) in the m given samples5.

τm ,




τ(t1)
τ(t2)

...
τ(tm)


=




Γ(q(t1), q̇(t1), q̈(t1))
Γ(q(t2), q̇(t2), q̈(t2))

...
Γ(q(tm), q̇(tm), q̈(tm))


θ =Πmθ (10)

with
rank(Πm) = p < c

Since Πm is never full rank, this appears to be a rank deficiency problem. As
suggested by Gautier [10], the procedure to obtain the reduced model consists
in two steps:

1. Find the rank of matrix Πm , that gives the number p of base parameters;
5 In [1,10], Πm is computed using m random samples, here we use the optimization

procedure described in the next subsection to evaluate it.

6 ACD2019, 113, v6 (final): ’Frisch Scheme Identification of Robots Dynamic Parameters’



The Frisch Scheme Approach to Robot Identification 7

2. Choose the base parameters from the standard ones by eliminating some of
them which are regrouped to others in linear combinations (the regrouping
relations will be determined in this step).

In the following a systematic procedure to accomplish this task is presented.

The parameters θa and θn

By performing a SVD of Πm , the following factorization is obtained:

Πm = U S V⊤ = U
[

S11 0
0 0

][
V⊤

1
V⊤

2

]
(11)

where U ∈Rr×r , S ∈Rr×c , V1 ∈Rc×p , V2 ∈Rc×(c−p), U and V are orthogonal matrices
and S11 ∈Rp×p is a diagonal matrix containing (in non increasing order) the non
null singular values of Πm . By substituting (11) in (10) one obtains

τm = U
[

S11 V⊤
1 θ

0

]

The following considerations can be made, [1,10]:

– the non-identifiable parameters θn correspond to the null columns of V⊤
1

– the absolutely identifiable parameters θa correspond to the null columns of
V⊤

2
– the remaining parameters are identifiable only in linear combinations.

Thus, we need to know these linear combinations to define a set of base param-
eters.

The θd parameters
Consider matrix Π̄m ∈Rr×pl obtained eliminating from Πm all the columns corre-
sponding to the non-identifiable and absolutely identifiable parameters. A second
SVD may be performed on Π̄m :

Π̄m = ŪS̄V̄⊤ = Ū
[

S̄11 0
0 0

][
V̄⊤

1
V̄⊤

2

]

with
S̄11 ∈Rpd×pd V̄1 ∈Rpl×pd V̄2 ∈Rpl×(pl−pd )

where pd = rank(Π̄m) = (p −pa). It holds

Π̄m V̄2 = 0 (12)

and thus the columns of V̄2 define the linear combinations among the columns
of Π̄m . From (12), it follows

Π̄mθl = Π̄m(θl + V̄2θ
⋆) (13)
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where θ⋆ ∈R(pl−pd ) is an arbitrary vector. Hence, there exists an infinite number
of vectors

θr = θl + V̄2θ
⋆ (14)

which satisfy (13). The goal of this procedure is to linearly combine the com-
ponents of θl in pd linearly independent elements to end up with a parameter
vector θd which completes the base parameter vector. We report the following
result which provides a closed form solution for θd [10].

Theorem 2. There exists a permutation matrix P such that

P⊤V̄2 =
[

V̄21

V̄22

]

with V̄22 invertible. Then, being P⊤θl =
[
θl1 θl 2

]⊤ , and P⊤θr = [
θd θd⋆

]⊤ , it
holds that a solution of (14) with θd⋆ = 0 is

θd = θl 1 − V̄21V̄−1
22 θl 2

To end up with the reduced model (9) the matrix Γb has to be computed starting
from Γ. In particular

Γb = [
Γa Γd

] ∈Rn×p (15)

where Γa ∈Rn×pa is the matrix whose columns correspond to the parameters θa

and Γd ∈ Rn×pd is the matrix whose columns correspond to the parameters θd .
Now, a novel result useful to compute Yd in closed form is presented.

Theorem 3. Let Γl1 ∈Rn×pd and Γl2 ∈Rn×(pl−pd ) be the matrices corresponding
to the elements of θl1 and θl2 respectively. It results

Γd = (Γ⊤l1 − V̄21V̄−1
22 Γ

⊤
l2)⊤ (16)

Proof. Γd must be constructed combining the columns of Γl1 and Γl2 with the
same rules with which the elements of θl1 and θl2 in θd are combined. Naming
Γd ,i ∈Rd the i -th row of Γd and, similarly, Γl1,i ∈Rpd and Γl2,i ∈R(pl−pd ) the i -th
rows of Γl 1 and Γl2, we have

Γ⊤d ,i =Γ⊤l 1,i − V̄21V̄−1
22 Γ

⊤
l2,i

Since this is true for each row of Γd we can write

Γ⊤d =Γ⊤l 1 − V̄21V̄−1
22 Γ

⊤
l2 ⇔Γd = (Γ⊤l 1 − V̄21V̄−1

22 Γ
⊤
l2)⊤

■

Remark 1. V̄22 is function of the permutation matrix P. We know that V̄22 ∈
R(pl−pd )×(pl−pd ). The number nP of existing different permutation matrices P is
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equal to the number of possible combinations (without repetitions) of the pl

rows of V̄2 in sets of (pl −pd ) elements6

nP ,Cpl ,(pl−pd ) =
(

pl

pl −pd

)
= pl !

pd !(pl −pd )!

Therefore we need to set up an optimization problem to choose a proper per-
mutation matrix. In this work, in order to guarantee the regularity of V̄22, P has
been selected solving the following optimization problem:

P = argmin
P∈P

(
α1 cond(V̄22)+α2

1

det(V̄22)

)
(17)

where cond(V̄22) is the condition number of V̄22, α1 and α2 are arbitrary coeffi-
cients and P is the set of all permutation matrices of appropriate dimension.

3.2 Exciting Trajectory Planning

In this subsection, a systematic way to plan an optimal exciting trajectory to be
sampled in m time instances is presented.

The sensitivity of linear estimations to noise and errors is associated with the
conditioning number of the regression matrix Πm (see e.g. [1,3,11,12,13]), which
should be small when evaluated along a suitable exciting trajectory. The latter
should also not excite any unmodeled dynamic effects such as joint elasticity or
link flexibility that would naturally lead to unreliable estimates [13].
An exciting trajectory is defined by a sequence of m triplets

zi ,
(
q(ti ), q̇(ti ), q̈(ti )

)
i = 1, . . . ,m (18)

which give values to Γ along the trajectory, then used to build Πm :

Πm =




Γ(z1)
Γ(z2)

...
Γ(zm)




The m points7 of the optimal exciting trajectory are the solutions of the nonlinear
constrained optimization problem formulated as follows.

Let z, (z1,z2, . . . ,zm), n = (n1,n2, . . . ,nm) with ni ,
(
nq,i ,nq̇,i ,nq̈,i

)
being made

up of identically independently distributed samples of multivariate zero–mean
normal distributions with unitary variance, i.e. nq,i ,nq̇,i ,nq̈,i ∼N (0n ,In). Further-
more, let

Ψ(z,n), 1

nm
[Πm(z+n)−Πm(z)]⊤ [Πm(z+n)−Πm(z)]

6 In [1] it is erroneously stated that nP =∞. Although this is not theoretically correct,
in robotics nP is a huge number (for the PUMA 560 nP ∼ 5 ·108)

7 In order not to result in an underdetermined system, nm > p must yield
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and
ψ(z,n),

∥∥Ψ(z,n)−diag
(
diag(Ψ (z,n))

)∥∥∞
. The optimization problem is

minimize
z

λ1cond (Πm(z))+λ2
1

σmi n (Πm(z))
+ψ(z,n)

subject to ∀i q(ti ) ∈Wq (19)
∀i q̇(ti ) ∈Wq̇

∀i q̈(ti ) ∈Wq̈.

where σmi n(Πm) is the minimum singular value of Πm , and λ1, λ2 two arbitrary
coefficients. Wq, Wq̇ and Wq̈ are the sets of admissible joint positions, velocities
and accelerations, respectively. The constraints have been set to take into account
the physical limits of the manipulator.

Furthermore, the component ψ(z,n) of the cost function is used to increase
the performance of the Frisch scheme estimation. In fact, Ψ(z,n) can be seen as
the noise sample covariance matrix corresponding to the synthetic addite noise
n. Thus, by minimizing ψ(z,n), we obtain an exciting trajectory along which
the off–diagonal terms of the noise sample covariance matrix are suppressed,
enforcing the assumptions of the Frisch scheme. Besides, due to the nonlinear
terms of q, q̇, q̈ in the entries of Πm , it is very difficult to obtain a trajectory
in which independent additive noise on the q, q̇ and q̈ leads to a diagonal noise
covariance matrix.

Note that [1] only considers the first part of the cost function (without ψ(z,n))
as the are interested in performing a least squares estimation.

The number of decision variables of this optimization problem is 3nn, being
each measurement point z defined by 3n variables. Hence, this number varies
linearly with m and it is thus necessary to determine a trade off between the
possible advantages derived by considering high values of m and the efficiency
of the optimization algorithm.

Once the optimization problem has been solved, the m optimal measurement
points must be interpolated in a smooth way in order to impose continuity
of accelerations; this can be achieved e.g. with 3rd order splines or 5th order
polynomial trajectories, [14].

3.3 Identification procedure

Assume that a proper reduced model (9) has been derived. In order to estimate
the parameters θb , we impose to the robot a motion defined by a properly chosen
exciting trajectory and we record the sensor measurements of q(t ), q̇(t ), q̈(t )
and τ(t ) along this trajectory. Matrix Γb is computed and the joint torques
are sampled in the m time instants t1, t2, . . . , tm corresponding to the optimized
measurement points. They are then stacked in a matrix Πm,b and in a vector τm

10 ACD2019, 113, v6 (final): ’Frisch Scheme Identification of Robots Dynamic Parameters’
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as follows

Πm,b =




Γb(q(t1), q̇(t1), q̈(t1))
Γb(q(t2), q̇(t2), q̈(t2))

...
Γb(q(tm), q̇(tm), q̈(tm))


 τm =




τ(t1)
τ(t2)

...
τ(tm)




From (9), we can write
Πm,bθb =τm (20)

from which
Πm,b,e︷ ︸︸ ︷[

Πm,b ,−τm
][
θb

1

]

︸ ︷︷ ︸
θb,e

= 0n (21)

Defining now the covariance matrix Σe as

Σe ,
1

m
Π⊤

m,b,eΠm,b,e ∈R(p+1)×(p+1) (22)

equation (21) can be rewritten (equivalently to (4)) as

Σe θb,e = 0 (23)

It is now possible to implement the Frisch estimation scheme:

1. First of all the simplex of solutions in the parameter space is computed by
performing p +1 OLS solutions corresponding to the problem (23). Then, if
we normalize a parameter to 1, each OLS solution becomes a vertex of the
simplex.

2. The interior of the simplex represents the region in which any solution θb,e

can take values according to the Frisch scheme, and thus it represents a
region where the “best” parameter vector θb,e can be selected.

The following remarks highlight some interesting features of the application of
this procedure in robotics.

Remark 2. The application of the Frisch scheme to (23) represents a pure black
box identification approach. Nevertheless we have a very powerful knowledge
of the vector θb,e : it stores the base dynamic parameters of the robot whose
symbolic expression is known. Indeed this knowledge can be used to establish
proper criteria to seek θb,e inside feasible subregions of the simplex8. Furthermore
notice that the last element of θb,e must be equal to 1 by construction and thus
the OLS solutions should be computed by accomplishing this normalization.

Remark 3. The assumption MaxcorF (Σe ) = 1 is very reasonable since (23) is the
model of a robot manipulator which has been properly reduced to a base set
of parameters and conditioned by an exciting trajectory which should minimize
the condition number of Σe .
8 e.g. masses and friction coefficients cannot be negative
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3.4 Solution Selection and Validation

In order to select a unique solution from the simplex, a systematic procedure can
be developed based on the bounding–box recursive Frisch scheme (BBRF) [15].
This estimation technique aims at reducing the size of the space of solutions of
the identification problem in the context the Frisch scheme. In particular, the
BBRF solution can be computed iteratively from the regression matrix Πm,b,e as
thoroughly described in [15]. It consists in lower and upper bounds l(k), u(k) ∈Rp

(k indicates the algorithm iteration),

l(k), [l1(k), . . . , lp (k)]⊤, u(k), [u1(k), . . . ,up (k)]⊤

in which the true vector of parameters, i.e. the exact solution of the identification
problem, is supposed to be laying according to the assumptions of the Frisch
scheme.

Let θmin(Σ), θmax(Σ) be the vectors containing the minimum and maximum
estimations of each parameter among the vertices of simplex associated to Σ,
i.e. they define the axis aligned bounding–box enclosing the simplex 9. A pseudo–
code of the BBRF in the context of robot identification is provided in Agorithm
1.

In this phase, the post–identification degree–of–freedom offered by the Frisch
scheme become significant: in those cases in which it is known the sign of the
parameter, it sufficient to set the lower or upper bound of that parameter to
zero. E.g., suppose θi to be a friction coefficient, then we will set li (0) = 0. The
physical consistency will be then ensured by the monotonicity property of l and
u given by the algorithm, i.e.

∀i ,k li (k +1) ≥ li (k) ∧ ui (k +1) ≤ ui (k)

9 Note that, in the case of the robot model, the normalized entry of θb,e is always the
last one

Algorithm 1 Bounding Box Recursive Frisch Scheme
1: Inputs: Πm,b,e , w ,

2:

Initialize: X0 = [Πm,b,e ]1:w+1,:

Σ0 = 1
w X⊤

0 X0
l(0) = θmin(Σ0)
u(0) = θmax(Σ0)
k = 2

,

3: while k ≤ nm −w −1 do,
4: X(k) = [Πm,b,e ]i :w+i ,
5: Σ(k) = 1

w X(k)⊤X(k),
6: li (k) = max

{
li (k −1),θmin,i (Σ(k))

} ∀ j = 1, . . . , p,
7: ui (k) = min

{
ui (k −1),θmax,i (Σ(k))

} ∀ j = 1, . . . , p,
8: k ← k +1,
9: Outputs: l(k), u(k)
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Link (i) αi [deg] θi ai [m] di [m]
1 0 q1 1 0
2 0 q2 1 0

Table 1. Denavit-Hartenberg parameters of a 2-DOF planar robot

Let ktot the total number of BBRF iterations, a single consistent solution of
the Frisch scheme can be computed, for example, by minimizing a regularized
Euclidian norm cost function in the physically feasible region given by the Frisch
scheme i.e.

minimize
θ∗

b

‖Πm,bθ
∗
b −τm‖2 +‖θ∗

b‖2

subject to ∀i li (ktot ) ≤ θ∗b,i ≤ ui (ktot ) (24)

4 Case Study: 2-DOF manipulator

To validate the above procedure, an identification experiment on a planar 2-
DOF robot has been performed via simulation. A routine in Mathematica ©
has been implemented, taking as input the Denavit-Hartemberg parameters of
the manipulator (reported in Table 1) and computing symbolically the matrix
Γ ∈ R2×26 and the corresponding vector of parameters θ ∈ R26. These data are
then exported in Matlab © where the rest of the steps are performed10. The
procedure for trajectory planning described in 3.2 has been implemented with
m = 100, λ1 =λ2 = 1.
Remark 4. It is worth noticing that, for the sake of model reduction, we compute
the rank deficient regression matrix Πm along an optimized trajectory z1 and
not with random samples as in [1,10].
After the first SVD, (3.1), it results:

rank(Πm) = 9, pn = 14, pa = 5

Thus, four parameters are identifiable only in linear combinations (pd = 4, pl =
7). After the second SVD (3.1), we have:

{
Π̄m ∈R40×7, V̄ ∈R7×7,

rank(Π̄m) = 4, V̄2 ∈R7×3, V̄22 ∈R3×3

The number of possible permutation matrices P is

C32,15 =
7!

3!4!
= 35

We select the one which solves (17) with α1 =α2 = 1.
10 The whole code to reproduce every step of this paper is available at https://github.

com/massastrello/Robot-Frisch
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Fig. 1. Convergence of the optimization for z2

Remark 5. For different optimization trials of z1, the model reduction procedure
leads always to the same result, validating the proposed numerical method. The
result rank(Π̄m) = 4 confirms our expectations: it is equal to the number of linear
combinations of parameters needed to complete the set of base parameters.

The symbolic expression of the reduced matrix Γb is then derived as in (15)
and an exciting trajectory z2 is computed for the new model. The procedure to
solve (19) is carried out with an hybrid optimization technique which combines
a Particle Swarm Optimization and a Pattern Search algorithm [16,17]. The op-
timization results are reported in Table 2 while the descent of the cost function
during the optimization is shown in Fig. 1. Interpolation has been performed
using 5th order polynomials with a time interval of 1s between the samples. Note
that the regression matrix has been built using all the point of the interpolated
trajectory measured with a sampling rate of 50Hz, rather then only the opti-
mized ones. A total of 4951 data points have been obtained. The first 30s of the
interpolated trajectory is showed in Fig. 2. Simulation of the data acquisition
process has been implemented according to the following considerations:

– Joints positions, velocities, accelerations and torques are measurable vari-
ables. This values are comparable with commercial sensors;

Algorithm Iterations Function Evaluations Cost func. val.
Particle Swarm 1061 106200 18.0100
Pattern Search 1006 293471 13.5739

Cost Function Value cond(Πm,b ) σmax σmi n
13.5739 11.1564 74.5923 6.6860

Table 2. Optimization data of z2
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Fig. 2. First 30s of the interpolated trajectory (solid lines). The markers denote the
optimized points of z2.

– Independent Gaussian noise nq , nq̇ and nq̈ have been added to the joints
positions, velocities and accelerations respectively with standard deviations
σ(nq) = 10−2, σ(nq̇) =σ(nq̈) = 2 ·10−2;

– The reference reduced base parameters vector θb,ref has been defined accord-
ing to the model reduction (see Table 3 for their symbolic expression). In par-
ticular the physical robot parameters have been chosen as: β1 = 0.1434, β2 =
0.1391, µ1 = 0.3302, µ2 = 0.3576, m1 = 21Kg, m2 = 10Kg, I z

1 = 0.4667Kg ·m2,
I z

2 = 0.2333Kg ·m2, I m
2 = 21.18Kg ·m2, I m

1 = 12.10Kg ·m2, r x
1 = 0.25m, r x

2 =
0.25m. Note that these values have been partially inspired by [18].

– The nominal joint torque samples are derived from (20) using the reference
parameters values: τm =Πm,bθb,ref;

– Independent Gaussian noise nτ is also added to each torque sample, with
standard deviation σ(nτ) = 1;

– Πm,b,e ∈R9902×10 is obtained from (21) and Σe ∈R10×10 as in (22).

Therefore the simplex of solutions in the parameters space of the Frisch scheme
is determined by the OLS solutions associated to Σe .

4.1 Results and comments

For the sake of reliability and repeatability of the simulation experiments, a
Monte Carlo simulation of 250 runs has been performed re–sampling the noise
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Parameter (θi ) θb,ref θb,min(Σe ) θb,max(Σe )
β1 0.1434 -3.4309 ± 0.4304 3.1086 ± 0.1459
β2 0.1391 -2.7838 ± 0.3448 2.5173 ± 0.0955
µ1 0.3302 -7.8714 ± 2.0704 17.4337 ± 1.2847
µ2 0.3576 -7.0842 ± 1.7640 16.1686 ± 0.9681
I m

2 21.1800 21.1735 ± 0.0011 21.1862 ± 0.0007
m1/2+m2/2+m1r x

1 20.7500 20.7150 ± 0.0038 20.7717 ± 0.0014
I z

1 + I m
1 /100−m1/4−m/4 -7.1623 -7.1677 ± 0.0010 -7.1548 ± 0.0006

m2/2+m2r x
2 7.5000 7.4941 ± 0.0010 7.5061 ± 0.0008

I z
2 −m2/4 -2.2667 -2.2883 ± 0.0036 -2.2398 ± 0.0019

Table 3. Results of the Frisch Scheme estimation.

each time. The results have then been averaged. The resulting simplex has 10
vertices and belongs to R9. Table 3 reports, for each base parameter, the ref-
erence value, the minimum and maximum estimation among the vertices (OLS
solutions), i.e. the bounds of the bounding–box enclosing the simplex. Although
each reference parameter is between the corresponding minimum and maximum
values, the simplex appears to be wide spread (of some orders of magnitude) in
the parameter space across the dimensions corresponding to the “smallest” pa-
rameters. Thus, the selection procedure is necessary to: first, consistently shrink
the search space of the parameters, i.e. the estimation uncertainty, in a phys-
ically feasible manner and, second, select a single solution which can be used,
as validation, to compute the reconstructed torques. The selelection procedure
based in the BBRF has been implemented with w = 103 and θ∗

b has been ob-
tained solving (24) with the Matlab function fmincon. The absolute value of the
estimation error e has been computed as

e, [e1, . . . ,ep ]⊤ : ei = |θ∗b,i −θb,ref,i |.

θb,ref θ∗b e
0.1434 0.1427 ± 0.0084 0.0061 ± 0.0057
0.1391 0.1397 ± 0.0052 0.0041 ± 0.0032
0.3302 0.3281 ± 0.0318 0.0209 ± 0.0240
0.3302 0.3563 ± 0.0221 0.0176 ± 0.0134
21.18 21.1810 ± 0.0014 0.0013 ± 0.0011
20.75 20.7489 ± 0.0020 0.0018 ± 0.0015

-7.1623 -7.1620 ± 0.0005 0.0005 ± 0.0004
7.5 7.5006 ± 0.0015 0.0013 ± 0.0010

-2.2667 -2.2691 ± 0.0028 0.0029 ± 0.0022

Table 4. Results of the BBRF–based solution selection process.
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Fig. 3. Average among the Monte Carlo runs of the lower (solid orange) and upper
bounds (solid blue) of the BBRF algorithm. The dotted black line indicates the real
value of the parameter. The coloured shadows are the minimum and maximum values
of the bounds among the Monte Carlo runs.

The optimized selected parameter and the estimation error are reported in Ta-
ble 4. The evolution of the bounds l(k) and u(k) are shown in Fig. 3. It can
be noticed how the bounds shrinks monotonically around the true parameter
maintaining in between the true value while preserving the physical consistency.
Note that the lower bounds of the first four base parameters, i.e. the friction co-
efficients β1, β2, µ1 and µ2, has been initialized to zero having the prior on their
positiveness, as remarked in 3.4. As a final validation step, the torques where
recomputed with the selected parameter vector θ∗

b . The reconstructed torques
are compared with the measured ones in Fig. 4.

5 Conclusions

In this paper, a novel identification procedure for robot manipulators has been
proposed. Firstly, systematic methods for model reduction and for planning ex-
citing trajectories have been presented. Then, the Frisch scheme has been used
to compute a simplex of possible parameters estimate, generalizing previously
known results. As a matter of fact, with standard techniques it is possible to
obtain unrealistic results (e.g. negative masses and friction coefficients) and in
any case the basic assumption in OLS approaches (in which only one variable is
affected by noise) does not appear to be physically reasonable.
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Fig. 4. [Above] Reconstructed torques (blue) versus measured torques (orange) (Av-
erage among Monte Carlo runs). [Below] Absolute value torque reconstruction error.
The shadow indicate the minimum and maximum value of the torque error among the
Monte Carlo runs. For clarity of the figure, only the first 30s of data have been reported

The values of parameters computed by the Frisch scheme are not unique, and
lie in a simplex whose vertices are easy to be computed. The knowledge of the
symbolic expression of the parameters can be used to choose the most suitable
(and feasible) values, e.g. using the BBRF technique.

Future research aims at improving optimal criteria to select a single param-
eter value form the simplex. For this purpose, several methods can be adopted,
involving the theory of independent experiments in the Frisch scheme framework
[19], together with feasible region selection. Comparisons with other state–of–
the–art approaches will also be made.
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