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ABSTRACT
With the advantage of having a large field of view, fisheye cameras are widely used in many applications. In
order to generate a precise view, calibration of the fisheye cameras is very important. In this paper, we propose
a method of extrinsic parameters calibration of multiple fisheye cameras working in man-made structures. A
Manhattan Worlds space assumption is used, which describes man-made structures as sets of planes that are
either orthogonal or parallel to each other. The orientation of the cameras is obtained by extracting vanishing
points that denote orthogonal principal directions in different images captured by the cameras at the same time.
With the proposed method, the calibration of extrinsic parameters is very convenient and the system can be
recalibrated remotely.
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1. INTRODUCTION
Thanks to the continuing advancements in robotics and automation, applications of mobile robots are rapidly
increasing. Mobile robots are very useful in scenes that are dangerous or harmful for human, where we can use
the mobile robots rather than risking human’s life. Recently, the use of mobile service robots in indoor spaces like
offices, homes, etc. has also become popular. Fisheye cameras are more and more widely used on robots with their
advantage of a large field of view. For robots that carry multiple fisheye cameras in indoor spaces, it is a common
task to generate a bird’s-eye view for navigation. In order to generate a precise view, calibration of the cameras
is very important. The calibration of the fisheye cameras includes intrinsic and extrinsic parameters calibration.
The intrinsic parameters are the property of the camera itself and are independent of the environment or the
location. The extrinsic parameters describe the position and orientation between the cameras and determine
how the environment is projected on the camera. They will change as long as the relative position or orientation
between the cameras changes.

There have been many different types of intrinsic model of fisheye cameras. The most widely used model
and calibration method is that of OCamCalib (Omnidirectional Camera Calibration) toolbox, which uses black-
and-white checkboard like the calibration of normal cameras.1 The OCamCalib allows the mapping of every
pixel of the 2D fisheye image to a sphere in order to obtain a spherical image. As the intrinsic parameters are
independent of the environment or the location, they won’t change once calibrated.

As for the extrinsic parameters, there has been research using checkerboards with black and white squares
to calibrate the cameras.2 Such method has a significant shortcoming. If the orientation or position of a camera
changes during operation, the operation has to be interrupted and the system needs to be calibrated again. For
robots working in indoor spaces, as there are usually many orthogonal or parallel lines in man-made structure,
we can take advantage of this to obtain the orientation of the cameras. To solve the problem that has been
mentioned, this research proposes a new method of extrinsic parameters calibration of multiple fisheye cameras
by extracting vanishing points that denote orthogonal principal directions. With the proposed method, the
system can be recalibrated remotely without interruption if the extrinsic parameters change during operation.
The vanishing points have useful properties that their directions are independent of the position of the cameras
and they are always orthogonal or opposite to each other. Previous research has used the vanishing points in
localization.3 A Manhattan World space assumption is used, which describes the world as a set of planes that
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Figure 1. Overview of proposed method

are either orthogonal or parallel to each other.4 Under that assumption, it’s easy to obtain the orientation of
the cameras by using information from the environment.

In this research, we work on a system of two fisheye cameras which are assembled to the opposite direction and
form a spherical camera. For the cameras we work on, the translation distance between the two fisheye cameras
is fixed and very small, so the translation distance is negligible and the extrinsic parameters only include the
rotation.

2. OVERVIEW OF PROPOSED METHOD
The overview of the proposed method is shown in Figure 1. In the first step, the intrinsic parameters of both
cameras are calibrated by OCamCalib. Both the fisheye images are converted into their respective half-spherical
images. In the next step, lines in spherical images are detected and the vanishing points in both images will
be extracted from orthogonal sets of lines. Then the extrinsic parameters will be calculated using the vanishing
points. In the final step, the images from both cameras are stitched into a full spherical image, and the result
will be shown in an equirectangular image.

3. METHODOLOGY
3.1 Mathematical model and intrinsic parameters calibration
The mathematical model of a spherical camera is shown in Figure 2. The raw image output consists of two
fisheye images. These images need to be converted into their respective half-spherical images and then form a

Figure 2. Mathematical model of the spherical camera



Figure 3. The translation and rotation between two coor-
dinate systems

Figure 4. Great circles in the spherical image

full spherical image. The intrinsic parameters of both the cameras and the extrinsic parameters between the two
camera coordinate systems need to be calibrated.

The OCamCalib toolbox based on Matlab is used for intrinsic parameters calibration. Determination of the
intrinsic parameters allows the mapping of every pixel of the 2D fisheye image to the unit sphere.

Point [i, j]T on the fisheye image is transformed into a unit vector [x, y, z]T on the unit sphere. The following
equation can be written:  x
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z
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where polynomial function f(ρ) is assumed to be:

f(ρ) = a0 + a1ρ+ a2ρ
2 + a3ρ

3 + a4ρ
4 + ... (2)

The degree of the polynomial is adjustable. In this research the degree is chosen as 4 for both the cameras.
Parameters a0, a1, a2, a3, a4 are the intrinsic parameters and they are calculated by OCamCalib.

3.2 Extrinsic parameters calibration
As shown in Figure 3, oc−xcyczc and ow−xwywzw are the coordinate systems of the two cameras. The extrinsic
parameters include the relative position and orientation between the cameras. As the distance between the
two fisheye cameras we work on is fixed and very small, we do not consider the translation distance and the
translation vector ~T = ~0. The extrinsic parameters only include rotation matrix R.

3.2.1 Line detection in fisheye image
In previous research, it has been shown that 3D lines in the environment are projected as ‘great circles’ in the
spherical image.5 Each great circle can be represented by a unit vector perpendicular to its plane from the center
of the sphere, as shown in Figure 4. The direction of this vector can define a line uniquely. The normal vectors
of great circles form a descriptor of the line information inside a spherical image.

Thus, to detect a 3D line uniquely, it only needs to obtain two vectors located on the great circle of that 3D
line. The normal vector of the great circle can be calculated by the cross product of the two vectors. Assume
vectors ~u and ~w are two vectors located on a great circle, the normal vector ~n of that great circle can be calculated
by:

~n =
~u× ~w

||~u× ~w||
. (3)

In the proposed method, we firstly detect feature points in the fisheye image, and then choose two feature points
on the same 3D line by clicking the points with the mouse. This can be done remotely by the operator. Every
time the mouse is clicked, the feature point closest to the clicking point will be chosen. The pixel coordinates
of the chosen points are u0(iu, ju) and w0(iw, jw). They are transformed into vector ~u and ~w in the unit sphere
with (1), thereafter ~n can be calculated. The line that normal vector ~n defines in the fisheye image is shown in
Figure 5.



Figure 5. Line detection in fisheye image Figure 6. Parallel lines are transformed on the same plane
in the descriptor

3.2.2 The vanishing points
In spherical projection, parallel lines converge at vanishing points as they do in perspective projection. As shown
in Figure 6, we make use of the fact that unit normal vectors obtained from parallel lines lie on the same plane,
and the vector to the vanishing point is the normal vector of that plane. Under the Manhattan world assumption,
there should be three such orthogonal planes. The coordinates of a vanishing point are calculated by the cross
product of the normal vectors obtained from two lines. Vanishing point ~v is calculated by:

~v =
~n1 × ~n2

|| ~n1 × ~n2||
, (4)

where ~n1 and ~n2 are normal vectors obtained from two parallel lines.
As shown in Figure 7, blue curves are the detected lines in fisheye images and the green points are the

vanishing points that parallel lines converge. We can obtain two opposite vanishing points from a set of parallel
lines. If there are three sets of orthogonal lines in the image, all three orthogonal vanishing points can be
obtained. In case there are only two sets of orthogonal lines, the third can be calculated by the cross product of
the two detected vanishing points.

3.2.3 Calculation of rotation matrix
Coordinate systems ow − xwywzw and oc − xcyczc are the two camera coordinate systems. By extracting the
vanishing points that denote the three orthogonal directions, we can obtain their coordinates in both coordinate
systems. w1, w2 and w3 are their coordinates in ow−xwywzw and c1, c2 and c3 are their coordinates in oc−xcyczc.
wi and ci (i = 1, 2, 3) denote the same direction. Thus, the transformation matrix R from ow − xwywzw to
oc − xcyczc can be calculated using the vanishing points via a method of Singular Value Decomposition (SVD).

4. EXPERIMENT RESULT AND ANALYSIS
Camera coordinate systems ow−xwywzw is used as the world coordinate system. The three orthogonal vanishing
points are w1, w2, w3 in ow − xwywzw and they are c1, c2, c3 in oc − xcyczc. The coordinates of w1, w2, w3 are
shown in Table 1 and the coordinates of c1, c2, c3 are shown in Table 2.

(a) Fisheye image 1 (b) Fisheye image 2
Figure 7. Vanishing points in both fisheye images



Table 1. Coordinates of three orthogonal vanishing points in ow − xwywzw

xw yw zw

w1 0.996036 0.0811818 0.0362806
w2 -0.0285451 0.746666 -0.66454
w3 0.120418 -0.674861 -0.728053

Table 2. Coordinates of three orthogonal vanishing points in oc − xcyczc

xc yc zc

c1 -0.992663 0.0916338 -0.0782038
c2 -0.020476 -0.74552 -0.666169
c3 0.100764 0.67449 -0.73137

With the SVD method, the rotation matrix R from coordinate system ow−xwywzw to oc−xcyczc is calculated
as:

R =

 0.999855 −0.00421668 0.0164685
0.00424719 0.999989 −0.001818
−0.0164606 0.00188768 0.999863

 , (5)

We use equirectangular images to represent the result of spherical images in this research. The two original
fisheye images are shown in Figure 8. Figure 8 (a) is captured by fisheye camera whose coordinate system is
ow − xwywzw and Figure 8 (b) is captured by fisheye camera whose coordinate system is oc − xcyczc. They
are transformed into their respective half-spherical images with their intrinsic parameters calibrated. The result
of directly stitched spherical image is shown in Figure 9 (a). Obvious shear can be seen in the area where the
images are stitched. In Figure 9 (b), the result of stitched spherical image with its half image from Figure 8 (b)
rotated by rotation matrix R is shown. It can be seen that with calibration, the stitching is well improved.

The error of each pixel is evaluated by:

errori,j =

√
∆R2

i,j +∆G2
i,j +∆B2

i,j

3
. (6)

The error of directly stitched result without calibration is shown in Figure 10 (a), while the error of stitched
result with calibration is shown in Figure 10 (b). The average error with and without calibration is shown in
Table 3. It can be seen that with our calibration method, the average error is significantly reduced from 11.16
to 3.41.

(a) Fisheye image 1 (b) Fisheye image 2
Figure 8. Original fisheye images



(a) Without calibration (b) With calibration
Figure 9. Stitched equirectangular images

(a) Without calibration (b) With calibration
Figure 10. Error with and without calibration

5. CONCLUSIONS AND FUTURE WORKS
In this research, a remote calibration method of extrinsic parameters of two fisheye cameras is proposed. A
Manhattan Worlds space assumption is used and the orientation of the cameras is obtained by extracting or-
thogonal vanishing points. Using the vanishing points has the advantage that their directions are independent
of the position of the cameras and they are always orthogonal or opposite to each other. With the proposed
method, the extrinsic parameters calibration can be done remotely during operation.

As for future work, a more complicated system of four fisheye cameras carried by a mobile robot will be
worked on. Since the distance between the cameras is no longer negligible, the extrinsic parameters calibration
should include the calibration of both orientations and positions.

Table 3. Average error with and without calibration

Without calibration With calibration
Average error 11.16 3.41
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