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1. INTRODUCTION

In the last three decades, the fundamental concept of
energy experienced an impressive growth process in en-
gineering practice and in particular in system theory. The
framework of passivity–based control (PBC) is now a well–
established branch in nonlinear control theory and aims
at treating dynamical systems as devices able to exchange
energy, rather than to process signals (Ortega et al., 2001).
This is possible by equipping dynamical systems with
additional structure (e.g. storage functions, supply rates,
etc.) by means of which the concepts of energy and in-
put/output characterisation of the system are connected in
a unique framework (Sontag, 2008). The other fundamen-
tal aspect of this paradigm is interconnection of systems
by means of power ports (Duindam et al., 2009), which
led to the definition of port-Hamiltonian systems (Maschke
and Schaft, 1992; Ortega et al., 2001; Van Der Schaft and
Jeltsema, 2014), the mathematical framework in which
PBC developed naturally, merging geometry and network
theory. Hence, the control problem reduces to the design
of a dynamical system (the controller) and an intercon-
nection structure that “shapes”, in a desired way, the
energy of the original system (Ortega et al., 2001, 2008).
This approach allows control engineers to pay particular
attention to the performance of the control system and not
only to stabilizability (as common in nonlinear control).

In this perspective, the aim of this work is to design a
controller for a stable linear time–invariant (LTI) system,
able to simultaneously stabilize multiple fixed points of the
controlled system and switch among them.

Exponentially stable LTI systems admit a unique equilib-
rium point, while in many practical situations, they have

to operate in a finite number of working modes (fixed
values of voltages, positions, etc.). Thus, with standard
linear control techniques, a continuous exogenous reference
signal must be constantly provided in order to achieve the
desired behaviour, e.g. asymptotic stabilisation of a desired
set points.

In order to embed in the controlled system the information
on the desired working modes, a nonlinear controller
is employed to simultaneously stabilise multiple points,
i.e. achieve multistability and avoid the need of external
reference signals. The introduction of the nonlinear terms
gives rise to interesting properties of the controlled system,
e.g. the possibility of shaping the basins of attraction of
the different fixed points. Appealing studies on the inverse
problem, i.e., turning monostable a multistable nonlinear
system, have already been presented by Pisarchik and
Feudel (2014).

Here, considering that stable LTI system can be made
passive through an opportune choice of input and output
(Byrnes et al., 1991), a nonlinear controller able to stabilize
multiple points is designed following a port-Hamiltonian
paradigm, (Ortega and Mareels, 2000; Secchi et al., 2007;
Ortega et al., 2008; Van Der Schaft and Jeltsema, 2014).
Then, in order to switch among the working modes, a
mode selector is developed exploiting the theory of hybrid
dynamical systems (Van Der Schaft and Schumacher,
2000; Goebel et al., 2009).

Notation: The set R (R+) is the the set of real (non
negative real) numbers. The set of squared–integrable
functions z : R → Rm is Lm2 while the set of d–times

continuously differentiable functions is Cd. Let 〈·, ·〉 :
Rm×Rm → R denote the inner product on Rm and



‖v‖2 ,
√
〈v, v〉 its induced norm. The origin of Rn is 0n.

Let H : Rn → R be C2 and let ∂H ∈ Rn be its transposed
gradient, represented as a column vector. The Hessian of
H is ∂2H ∈ Rn×n.

2. MULTISTABLE ENERGY SHAPING OF LTI
SYSTEMS

In this section a nonlinear feedback law for a LTI system
is designed to stabilise multiple fixed points. Passivity and
the properties of passive LTI systems are briefly discussed.

2.1 Passivity of LTI Systems

Let us consider a controlled affine system{
ẋ = f(x) + g(x)u
y = h(x)

(1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, y ∈ Y ⊂ Rm.
f : X → Rn, g : X → Rm×n (rank(g) = m ≤ n) and
h : X → Rm are assumed smooth enough such that the
solutions are forward–complete for all initial conditions
x0 ∈ X and all inputs u(t) ∈ Lm

2 . Let Φ(t, x0, u) denote
the state trajectory at time t ≥ 0.

A supply rate is a real valued function ω defined on Y ×U .
The system (1) is said to be dissipative with respect to
the supply rate ω if there exists a continuous function
H : X → R+, called storage function such that, for all
u ∈ U , x ∈ X and t ≥ 0, it holds

H(x(t))−H(x(0)) ≤
∫ t

0

ω(s)ds.

Furthermore, the system is said to be passive if it is
dissipative with respect to the supply rate ω = 〈y, u〉.
The supply rate ω and the storage function H(x) can
be thought as the generalized power and the generalized
energy 1 , respectively. In fact, the pair (u, y) represents
the medium by which the system can exchange generalized
energy through ω.

Definition 1. (Kalman-Yakubovich-Popov (KYP) Prop-
erty). System (1) is said to enjoy the KYP property if
there exists a storage function H : X → R+, H(x) ∈ C1,
H(0n) = 0 such that:

∂>H(x)f(x) ≤ 0 ∂>H(x)g(x) = h>(x)

for all x ∈ X .

Proposition 2. (Byrnes et al., 1991). System (1) is passive
with storage function H(x) ∈ C1 if and only if it enjoys the
KYP property.

Let us consider the stable LTI specialization of (1), i.e. the
standard system with state space realization{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(2)

with system matrices (A, B, C) of appropriate dimensions
and A Hurwitz. It is easy to verify that, once system (2)
is equipped with a quadratic storage function H(x) =

1 Without any loss of generality, H(x) can be taken bounded
from below rather than nonnegative, since the properties of storage
functions hold regardless of an additive constant.

1
2x
>Px, P = P> > 0, it enjoys the KPY property, i.e.

it is passive, if and only if

A>P + PA ≤ 0 B>P = C. (3)

Furthermore, for system (2) with A Hurwitz and u = 0,
the storage function is non increasing along trajectories,
i.e.

Ḣ(x) = x>PAx ≤ 0 ∀x ∈ X .
This means that the natural dissipation inferred by the
choice of P of the autonomous system corresponds to
x>PAx.

In order to present clearly the upcoming concepts, the
following prototype linear system has been chosen as
example to be invoked throughout the paper.

Example 3. Consider a forced mass–spring–damper sys-
tem with unitary mass

q̈ + bq̇ + kq = ϕ

where q is the displacement of the mass and k, b ∈ R+ \{0}
are the stiffness and damping coefficients. By choosing the
forcing term ϕ as input, u = ϕ, and letting the state of the
system be x = [q, q̇]>, the state–space form of the system
becomes:

ẋ =

[
0 1
−k −b

]
︸ ︷︷ ︸

A

x+

[
0
1

]
︸︷︷︸
B

u.

The autonomous system is exponentially stable if b > 0.
Let P = diag(k, 1). Indeed P = P> > 0 and A>P +
PA < 0. Thus, the system is passified (with storage
function H = 1

2x
>Px) choosing the linear output as

y , B>Px = q̇. Note that H is the total energy of the
system. In general, any mechanical systems is passive with
its total energy as storage function by choosing as input(s)
the (generalised) forces and as output(s) the (generalised)
velocities.

Now let us briefly review port–Hamiltonian systems and
their properties, since they represent the framework where
PBC has been consistently developed (Ortega et al., 2001).

2.2 Port–Hamiltonian Systems and PBC

A port–Hamiltonian (PH) system (Van Der Schaft and
Jeltsema, 2014) has an input–state–output representa-
tion 2 : {

ẋ = [J(x)−R(x)] ∂H+g(x)u
y = g>(x)∂H (4)

which is in the form (1) where J(x) is a skew symmetric
matrix representing the power preserving interconnections,
R(x) is a symmetric positive semi–definite matrix repre-
senting the dissipation of the system and g(x) is a matrix
representing the way in which external power is distributed
into the system. Furthermore, X is an n–dimensional
manifold, U is a m–dimensional vector space and Y = U∗
is its dual space; y>u has the unit measure of power.

The power conservation property of (4) is defined by the
power–balance equation

d

dt
H = ∂>H ẋ = −∂>HR∂H+y>u ≤ y>u

2 From now on, the dependency on x of the scalar function H is
hidden for compactness.



i.e., PH systems are passive. Indeed, system (4) has the
KYP property automatically satisfied.

Problem 4. (Passivity–based control). Consider a PH sys-
tem (4). A control action u = β(x) + v solves the PBC
problem if the closed-loop system satisfies a desired power-
balance equation

Ḣ∗ = z>v − d∗

where H∗ is the desired energy function, d∗ the desired
dissipation function and z ∈ Rm the new power conjugated
(passive) output.

The most common solution to the PBC problem is the
energy–balancing PBC (EB–PBC) proposed by Ortega
and Mareels (2000). The controller is obtained directly
from the power balance equation by setting the desired
dissipation d∗ equal to the natural dissipation of the
system, i.e, d∗ , ∂>HR∂H and keeping the same output
z , y. Next proposition gives an operative insight of how
to accomplish the EB–PBC control task

Proposition 5. (Secchi et al., 2007). If it is possible to find
a function β(x) such that

Ḣa = y>β(x)

then the control law u = β(x) + v is such that

Ḣ∗ = y>v − d∗

is satisfied for H∗ , H+Ha.

This implies that the state feedback β(x) is such that the
added energy Ha equals the energy supplied to the system
and, consequently, H∗ is the difference between the stored
and supplied energy. In Ortega et al. (2008) the closed-
form solution of the EB–PBC controller is given by

β(x) = −g+ [J −R]
>
∂Ha

where g+ is the left pseudo–inverse of matrix g and Ha
satisfies the following matching equations[

g⊥ [J −R]
>

g>

]
∂Ha = 0n+m

being g⊥ a left full–rank annihilator of matrix g.

The idea behind this state–feedback control is to “shape”
the energy function so that its only minimum translates
towards a new minimum, representing the desired working
condition of the controlled system (e.g. PD + gravity
compensation in robot regulation, Secchi et al. (2007)). In
the following it is shown how this concept can be extended
to produce multiple stable working conditions by means of
a nonlinear feedback law applied to an LTI system (2).

2.3 Application to LTI Systems and Multistable PBC

Any passive system (2) with storage function H(x) =
1
2x
>Px such that null(P ) ⊆ null(A) admits a port-

Hamiltonian representation 3 :{
ẋ = [J −R]Px+Bu
y = B>Px

where

J =
1

2
(AP−1 − P−1A>), R = −1

2
(AP−1 + P−1A>).

3 Since we choose P > 0, this condition does not represent a loss of
generality, i.e. any system (2) can be written in PH form.

Thus, for a LTI system, the energy balancing control law
becomes

β(x) = −B+[J −R]> (∂H∗−Px) (5)

with Ha , H∗− 1
2x
>Px and the matching conditions:[

B⊥[J −R]>

B>

]
(∂H∗−Px) = 0n+m. (6)

Note that, the closed loop linear PH system becomes
ẋ = [J − R]∂H∗+gv. Our purpose, is to simultaneously
asymptotically stabilize N desired set points of the system
through EB–PBC. Hereafter, we show that if we design a
H∗ with N isolated minima in the desired set points, those
are locally asymptotically stable.

Lemma 6. Consider the EB-PBC controlled system. Every
closed set M⊂ Rn such that

∀x ∈M, ∂H∗ = 0n, ∂
2H∗ > 0, ∂>H∗R∂H∗ = 0

which is contained in an open neighborhood U ⊃ M
satisfying

∀x ∈ U \M, ∂H∗ 6= 0n

is locally stable. Furthermore, if ∀x ∈ U\M ∂>H∗R∂H∗ <
0, then M is asymptotically stable.

Proof. For all x ∈ M, ẋ = 0n by construction and,
thus, M is forward invariant. Let U ⊃ M be an open
neighborhood of M such that ∀x ∈ U \ M, ∂H∗ 6= 0n
and let V (x) = H(x) be a candidate Lyapunov function.

It holds: ∀x ∈ U V̇ = ∂>H∗R∂H∗ ≤ 0 and ∀x ∈
M V̇ = 0. Thus M is stable. In addition, if ∀x ∈ U \M
∂>H∗R∂H∗ = V̇ < 0, M is asymptotically stable.

Thus, it follows:

Proposition 7. If, moreover, H∗ possesses solely isolated
minima {x∗i }i∈N, i≤N , those are locally stable in the sense
of Lyapunov. If this is the case, by further assuming
asymptotic stability, the minima x∗i are also attractive,
i.e. ∃x∗i : limt→∞ Φ(t, x0, β(x)) = x∗i for almost all
initial condition x0 ∈ X (but local maxima or stable
eigendirections of saddle points).

Proof. The proof follows directly from Lemma 6 noticing
that the attractiveness of the minima is guarandeed for,

since ∀x ∈ X , Ḣ∗(x) ≤ 0.

Remark 8. Deeper evaluations and considerations on Lya-
punov functions for multistable nonlinear systems are re-
ported in Efimov (2012). It has to be underlined that, in
order to have an energy function with multiple minima, it
is necessary to have the presence of local maxima, which
however do not affect global behaviour of the system, since
those are just unstable invariants of the closed loop system.

Furthermore, if the system is detectable, the control law
u = β(x) + v with v = −Kdy = −KdB

>Px (Kd ∈
Rm×m, Kd = K>d > 0), will asymptotically stabilise any
minimum of H∗ (see Secchi et al., 2007). This control law
is known as damping injection and the constant matrix
Kd is often defined as the dissipation rate. Note that,
the damping injection term in closed loop is equivalent
to renaming the dissipation R = R + gg>Kd > 0. This
implies that damping injection can asymptotically stabilise
in closed–loop points that are not affected by natural
dissipation. A block diagram picturing the overall control
scheme is represented in Fig. 1.
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aaaaaa(output feedback)
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v

Fig. 1. A block representation of the controlled system.

2.4 Application Example 3

Consider the system in Example 3 and let the desired en-
ergy function have two symmetrically distributed minima
on the displacement axes, e.g.,

H∗ = λq4 − µq2 +
1

2
q̇2 − µ2

2λ
λ, µ > 0

which has two minima in [±
√
µ/2λ, 0]> and a local max-

imum in [0, 0]>. Thus,

Ha = H∗−H = λq4 − (µ+
1

2
k)q2 − µ2

2λ
and, therefore

∂Ha = [4λq3 − (2µ+ k)q, 0]>.

It is easy to proof that the matching conditions (6) of the
EB–PBC are satisfied for Ha. The energy shaping control
law becomes

β(x) = − [0 1]

[
0 −1
1 −b

] [
4λq3 − (2µ+ k)q

0

]
= −4λq3 + (2µ+ k)q. (7)

A numerical simulation of the proposed control scheme
has been performed with k = 1, b = 0.5. The parameters
λ and µ have been set to 2 and 1 respectively, placing
the minima of H∗ in [±0.5, 0]>. The dissipation rate
kd ∈ R has been set to zero as the asymptotic stability
is already guaranteed by the natural dissipation of the
autonomous linear system. Starting in the initial position
x0 , [−0.9, 0]> the system has been simulated for both
the autonomous and the multistable EB–PBC controlled
system for 40s. The resulting phase–space portraits are
reported in Fig. 2.
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Fig. 2. Comparison of the phase–space portraits of the autonomous

and the multistable EB–PBC controlled system with k = 1,
b = 0.5, λ = 2, µ = 1 and kd = 0. The phase–space portraits
are represents over contour plots of the corresponding energy
functions, i.e., H = 1

2
(q+ q̇) and H∗ = 2q4 − q2 + 1

2
q̇+ 1

8
. The

blue dots indicates the critical points of H and H∗.

2.5 Choice of the Dissipation Rate: Shaping the basins of
attraction

In this section it is shown how, by tuning the dissipation
rate Kd, it is possible to shape the basins of attraction of
the designed stable fixed points of the closed–loop system.

Definition 9. The basin of attraction B of a fixed point x∗

of a system (1) is the set of all initial conditions x0 leading
to long-time behaviour that approaches that fixed point,
i.e.

B ,
{
x0 ∈ X | lim

t→∞
Φ(t, x0, u) = x∗

}
.

The designed feedback control law (7) allows to fix multiple
stable points for the closed–loop system. The damping
injection component of the overall control action can be
used to “shape” their basins of attraction. This property
allows to have interesting control actions which will be
qualitatively shown.

Consider the system of Example 3 controlled by the energy
shaping control law (7). The closed–loop system in the
form (1) can be expressed asẋ =

[
q̇

−4λq3 + 2µq − bq̇

]
+Bv

y = B>Px
.

If v = 0 the system has two asymptotically stable fixed
points in [±

√
µ/2λ, 0]>. The output feedback controller

v = −kdy = −kdq̇ does not change the location of the fixed
points. In facts, it only changes the overall dissipation of
the system from bq̇ to (b + kd)q̇. Besides, the respective
basins of attraction strongly depend on the choice of the
controller, i.e., on the value of kd. In Fig. 3 the basins of
attraction of the two fixed points are shown for different
values of kd in the region [−1, 1]× [−1, 1] of the state space
with b = 0, λ = 2, µ = 1. It is evident that the higher the
dissipation rate is, the lower is the number of transitions
between basins of attraction.

Therefore, given an initial condition x0, and a desired set
point x∗i , corresponding to one of the minima of H∗, we
would be interested in choosing a dissipation rate Kd =
K>d ≥ 0 such that x0 belongs to the basin of attraction
Bi of x∗i . In order to choose among the possibly infinite
values of Kd such that x0 ∈ Bi, one could minimise both
the approaching time and the damping injection control
effort needed to bring x(t) from x0 to x∗i , i.e.,

minimize
Kd

∫ ∞
0

(
(x(s)− x∗i )

>
Q (x(s)− x∗i ) +

+ x>(s)PBKdSKdB
>Px(s)

)
ds

subject to lim
t→∞

Φ(t, x0, β(x)−KdB
>Px) = x∗i

with Q = Q> ≥ 0 and S = S> ≥ 0. Further investigations
on the implementation of this optimal controller are left
as future work.

3. HYBRID MODE SELECTOR

Once the feedback law and the damping injection are
designed to produce the desired working modes and to
shape their basins of attraction, the proposed strategy
aims to switch from a working mode to another. In
particular, considering the system to be in one of the



Fig. 3. Basins of attraction of the fixed points of the system for different values of kd (κ in the figure) in the region [−1, 1] × [−1, 1]. The
basin of attraction of the minima [blue points] are represented in dark gray ([−0.5, 0]>) and light hatched gray ([0.5, 0]>).

working modes x∗i , a control action which moves the
system to another desired mode, x∗j , is designed. The
strategy reckons on the following actions:

1. Switch-off the energy shaping controller (the system
turns back linear);

2. Give an impulse to the system to bring the state inside
the basin of attraction of x∗j ;

3. Switch on again the energy shaping controller.

3.1 Impulse generation

When the nonlinear controller u = β(x) + v is switched
off, i.e. u = 0, the system turns back in the LTI form (2).
Without loss of generality, let t = 0 and let the LTI system
be controllable. The response of the system to a weighted
impulse input

u(t) = νδ(t)
where ν ∈ Rm distributes the Dirac delta function δ(t)
among the m inputs, is

x(t) = etAx0 +

∫ t

0

e(t−s)ABνδ(s)ds

= etAx0 + etABν = etA (x0 +Bν) . (8)

Since the control objective is to move the system from x∗i
to x∗j in a time t∗, it is tempting to impose the desired
behaviour in (8) by requiring:

x∗j , x(t∗) = et
∗A (x∗i +Bν) . (9)

Therefore, ν = B+(e−t
∗Ax∗j−x∗i ). However, unless m = n,

(9) is overdetermined, i.e. n (scalar) equations with only m
unknowns (the components of ν). To overcome this issue,
the design of the impulse controller is achieved by solving
the following optimisation problem: find t∗, ν such that

[t∗, ν] = arg min
t∗,ν

γ‖ν‖22 + ρ‖x∗j − et
∗A (x∗i +Bν) ‖22

subject to Φ(t∗, x∗i , νδ(t)) ∈ Bj
(10)

where γ, ρ ∈ R+ are two arbitrary weights and Bj is the
basin of attraction of x∗j . The solution of (10), provides an
impulsive input u = νδ which guarantee that the system
will arrive in Bj in a time t∗. For the sake of a latter
numerical implementation, the constraint was defined as

‖Φ̂
(
T, et

∗A (x∗i +Bν) , β(x)−KdB
>Px

)
− x∗j‖2 ≤ ε

where Φ̂ is the numerically integrated trajectory of the
system, T � 1 is the integration time and 0 ≤ ε� 1 is a
chosen threshold.

Remark 10. Assuming that the switch is performed only
at steady–state, the optimisation of ν and t∗ for each pair
of fixed points xi, xj can be performed off–line.

[
ẋ
τ̇

]
=

[
Ax+Bu

0

]
u = β(x)−KdB>Px

[
ẋ
τ̇

]
=

[
Ax
1

]
[
x+

τ+

]
=

[
x+Bν

0

]

τ = t∗ ∧ x ∈ Br

r 6= 0

(τ, r) = (0, 0)

S1 S2

Fig. 4. Hybrid automata representing the overall controlled system
with the hybrid mode selector.

3.2 Overall Hybrid System

If an impulse is applied to the system at time t in order
to reach the desired destination x∗j , in the instant of time
in which the impulse is applied, the state undergoes to a
discontinuous jump

x+ = x(t) +Bν. (11)

Therefore, the controlled system can be described as an
hybrid automata, (Van Der Schaft and Schumacher, 2000),
with two logic states S1 and S2. In S1 the system is
controlled with the multistable EB–PBC and in S2 the
system is completely uncontrolled. Thus, by introducing a
timer τ and an external asynchronous signal r (initialised
to 0), the transition from S1 to S2 will happen when r
changes from 0 to the index of the desired fixed point, i.e.,
r ∈ {0, 1, . . . , N}, with a state jump described by (11) and
resetting the timer τ to 0. Then the system will remain
uncontrolled (and thus linear) for a time t∗, i.e. τ = t∗

after which the logic state will switch back from S2 to S1
and the timer and the external signal r will be reset. A
graphical representation of the designed hybrid automata
is given in Fig. 4.

3.3 Numerical Simulation

A numerical simulation of the overall controlled system has
been performed to validate the proposed control scheme.
The whole procedure has been implemented in the Mat-
lab R© 4 environment. The system introduced in Example
3 has been controlled with the multistable energy shaping
(7) and the damping injection v = −kdq̇. The system
parameters has been chosen as k = 5, b = 0.5 and, as
in the example in Section 2, the minima of H∗ have been
positioned in [±0.5, 0]> by setting λ = 2 and µ = 1. To
implement the asynchronous external control signal r, the
two fixed points have been denoted with x∗1 = [−0.5, 0]>

and x∗2 = [0.5, 0]>. The dissipation rate kd has been
set to 4.5. The fmincon solver of the global optimization
4 The source code is available at https://github.com/

massastrello/MultistableControl.
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Fig. 5. Simulation experiment of the overall hybrid system carried

out by settling γ = 10−3.

toolbox of Matlab R© has been employed to solve the
optimisation problem (10). The optimisation parameters
have been chosen as T = 103, ε = 10−5, considering an
absolute tolerance of 10−6 for the numerical integration
(ODE45). Starting from the initial state x0 , [−0.8, 0]>,
the system, controlled with the nonlinear state feedback
and the damping injection, has been integrated until se-
cured convergence to x∗1 (5s). Then, r has been set to 2
in order to trigger the change of working mode, i.e. to
bring the state to x∗2. After the jump, the system has
been let flowing uncontrolled for a time t∗ and then the
nonlinear controller has been turned on again. After other
5s the procedure has been repeated, by setting r to 1
and bring the state back in x∗1. This simulation has been
performed twice, with different values of γ for the impulse
design process (performed off–line); ρ has been set to 1 in
both cases. First, γ has been set to 10−3 to emphasise
the minimisation of the norm of the error ‖e‖22 = ‖x∗j −
et

∗A (x∗i +Bν) ‖22 . Then, γ has been set to 2, accentuating
the minimisation of the squared norm ‖ν‖22 of the impulse
weights vector (in this case ν ∈ R).

The numerical results of the optimisation are reported in
Table 1 while the system trajectories are shown in Figs. 5
and 6. In the first case (γ = 10−3), the transient from x∗1 to
x∗2 (and vice versa) is very fast and without any oscillation
in the displacement, due to the high dissipation rate and
the minimised error norm: when the EB–PBC controller
is switched–on again the state is very close to the desired
energy minimum. However, the price of this performance
is the impulse, i.e. state jump, that has to be generated.
On the other hand, when γ = 2, no state discontinuity
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(b) Phase–space portrait.
Fig. 6. Simulation experiment of the overall hybrid system carried

out by settling γ = 2.

is needed to change working mode, but at the cost of a
slower transient.

4. CONCLUSIONS AND FUTURE WORK

In this paper a novel technique for controlling stable
linear time invariant systems which operate in a finite
number of working modes has been presented. The theory
of passivity–based control and port-Hamiltonian systems
has been used to stabilize multiple fixed points of the
closed-loop system. The proposed method allows then to
switch among the desired working modes by engaging
a hybrid mode selector triggered asynchronously by an
external logic signal. Simulations have been performed to
prove the validity of the control scheme. Future work will
include investigations of the theoretical aspects linked to
the multistable controller, the shaping of the basins of
attraction and the stability of the overall hybrid system.
A real implementation of the control system will also be
explored.
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Table 1. Hybrid controller optimisation results.
(a) 1st impulse (x∗1 → B2)

γ ‖e‖22 ν t∗

10−3 0.00 1.05 1.04

2 0.15 0.00 1.41

(b) 2nd impulse (x∗2 → B1)

γ ‖e‖22 ν t∗

10−3 0.00 -1.05 1.05

2 0.15 0.00 1.42
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